
On the Composability of Statistically Secure Bit Commitments

Rafael Dowsley∗ Jeroen van de Graaf† Jörn Müller-Quade‡

Anderson C. A. Nascimento§

October 30, 2008

Abstract

We show that stand-alone statistically secure commitments based on two-party stateless
primitives are statistically universally composable. I.e. they are simulatable secure with an
unlimited adversary, an unlimited simulator and an unlimited environment machine.

Especially, these protocols can be used in arbitrary statistically secure applications without
lowering the security.

1 Introduction

Commitment Protocols: Commitment is one of the most fundamental cryptographic protocols.
It is used as a sub-protocol in applications such as secure multi-party computation [21], contract
signing [19] and zero-knowledge proofs [22, 20, 5]. A commitment protocol involves two players: the
committer and the verifier. The idea behind the notion of commitment is simple: the committer
provides the verifier with a digital equivalent of a “sealed envelope”. This envelope should contain a
value x in the commitment phase of the protocol. Before the committer helps the verifier in opening
the envelope, the verifier should learn nothing about the value x. Additionally, the committer should
not be able to change x after the commitment phase. When the committer helps the verifier in
opening the envelope in the decommitment phase, the verifier learns the value x.
Universal Composability: A very large number of commitment protocols are known in the
standalone setting, based on various assumptions, but this notion does not guarantee security
when multiple copies of the protocol run at the same time, or when the commitment protocols
are used within other protocols. Universally Composable (UC) Commitment [7, 8] is a notion of
security that holds even when the commitment scheme is concurrently composed with an arbitrary
set of protocols.

This notion of security is so strong that it is impossible to obtain UC commitment protocols if
no set-up assumption is provided [8]. UC commitment protocols were constructed in the common
∗Department of Electrical Engineering, University of Brasilia. Campus Universitario Darcy Ribeiro, Brasilia,

CEP: 70910-900, Brazil. rafaeldowsley@redes.unb.br
†Departamento de Computação, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro,

Ouro Preto/MG, CEP: 35400-000, Brazil. jvdg@iceb.ufop.br
‡Universitaet Karlsruhe, Institut fuer Algorithmen und Kognitive Systeme. Am Fasanengarten 5, 76128 Karlsruhe,

Germany. muellerq@ira.uka.de
§Department of Electrical Engineering, University of Brasilia. Campus Universitario Darcy Ribeiro, Brasilia,

CEP: 70910-900, Brazil. andclay@ene.unb.br

1

reference string (CRS) model [8, 9, 17, 15]. In the CRS model there exists an honestly generated
random string at the system initialization; the simulator can generate its own string (as long as
it looks indistinguishable from the honestly generated one). Barak et al. [2] show how to make
the above schemes work in the PKI set-up model in the presence of a static adversary. In this
model, parties have certified public keys. Dodis et al. [18] extend these results to adaptive corrup-
tions. A UC commitment protocol was constructed in the random oracle model by Hofheinz and
Müller-Quade [23]. Prabhakaran and Sahai [29] introduced a model in which the environment, the
adversary and the simulator are given oracle access to super-polynomial angels. In this model one
can securely implement any multiparty functionality without setup assumptions. In [25, 28] UC
Commitment protocols based on tamper-proof hardware were proposed.
Statistically Secure Protocols and Our Result: There have been some questions on the
equivalence of stand-alone and composable securities in the case of statistically secure protocols
[26, 1]. In general, these securities notions are not equivalent [1]. Therefore, it is an interesting
question to study if there are restricted scenarios where this equivalence holds. In this paper we
show that commitment protocols based on stateless two-party primitives and matching a certain
list of information-theoretical security properties commonly used in the literature (bindingness,
concealingness and soundness) are not only secure in a simulation based way, but actually compose
securely. As a particular consequence of our result, all the previously published commitment
schemes based on noisy channels presented in the literature are actually secure when arbitrarily
composed [11, 12, 16, 24].
Related Work: The question about the composability of statistically secure protocols has been
previously addressed in [26, 1], where it was proven that the equivalence does not hold in general.
In [13, 14] it was proven that perfectly secure oblivious transfer protocols according to a list of
properties are sequentially composable, this result being extended to statistical security in [14].

2 The UC Framework

This section briefly reviews the main concepts of the UC framework. We refer the reader to [7] for
a more detailed explanation of this framework. We also describe the ideal functionalities that we
use in this work.

2.1 Overview

In the UC framework, the security of a protocol to carry out a certain task is ensured in three
phases:

1. One formalizes the framework, i.e., the process of executing a protocol in the presence of an
adversary and an environment machine.

2. One formalizes an ideal protocol for carrying out the task in an ideal protocol using a “trusted
party”. In the ideal protocol the trusted party captures the requirements of the desired task
and the parties do not communicate among themselves.

3. One proves that the real protocol emulates the ideal protocol. I.e. for every adversary in
the real model there exists an ideal adversary in the ideal model such that no environment
machine can distinguish if it is interacting with the real or with the ideal protocol.

2

The environment in the UC framework represents all activity external to the running protocol,
so it provides inputs to the parties running the protocol and receives the outputs that the parties
generate during the execution of the protocol. As stated above the environment also tries to
distinguish between attacks on real executions of the protocol and simulated attacks against the
ideal functionality. If no environment can distinguish the two situations, the real protocol emulates
the ideal functionality.

Proving that a protocol is secure in the UC framework provides the following benefits:

1. The ideal functionality describes intuitively the desired properties of the protocol.

2. The protocols are secure under composition.

3. The security is retained when the protocol is used as a sub-protocol to replace an ideal
functionality that it emulates.

The ideal protocol. An ideal functionality F represents the desired properties of a given task.
Conceptually, F is treated as a local subroutine by the several parties that use it, and so the
communication between the parties and F is supposedly secure (i.e., messages are sent by input
and output tapes).

The ideal protocol for an ideal functionality F involves an ideal protocol adversary S, an
environment Z on input z and a set of dummy parties that interacts as defined below. Whenever a
dummy party is activated with input x, it writes x onto the input tape of F . Whenever the dummy
party is activated with value x on its subroutine output tape, it writes x on subroutine output
tape of Z. The ideal protocol adversary S has no access to the contents of messages sent between
dummy parties and F , and it should send corruption messages directly to F that is responsible for
determining the effects of corrupting any dummy party. The ideal functionality receives messages
from the dummy parties by reading its input tape and sends messages to them by writing to their
subroutine output tape. In the ideal protocol there is no communication among the parties using
the adversary to deliver the message. The environment machine, Z, can set the inputs to the
parties, and read their outputs, but cannot see the communication with the ideal functionality.

The real protocol. In the real world, the protocol π is executed by parties P1, . . . , Pn with some
adversary A and an environment machine Z with input z. Z can set the inputs for the parties and
see their outputs, but not the communication among the parties.

The parties of π can invoke subroutines, pass inputs to them and receive outputs from them.
They can also write messages on the incoming communication tape of the adversary. These messages
may specify the identity of the final destination of the message. A can send messages to any party
(A delivers the message). In addition, they may use the ideal functionalities that are provided to
the real protocol.
A can communicate with Z and the ideal functionalities that are provided to the real protocol.

A can also corrupt parties. After receiving a special message (Corrupt id) from the environment,
the adversary corrupt a party by delivering the message (Corrupt). By the definition of the process
of corrupting, the environment always knows which parties are corrupted.

3

The adversarial model. The parties have unique identities and are locally PPT. The network is
asynchronous without guaranteed delivery of messages. The communication is public, but authen-
ticated (i.e., the adversary cannot modify the messages). The adversary is adaptive in corrupting
parties, and is active in its control over corrupted parties. Any number of parties can be corrupted.
Finally, the adversary, the environment and the simulator are allowed unbounded complexity. This
assumption on the computational power of the simulator somehow weakens our result as the com-
position theorem cannot be applied several times if the real adversary were restricted to polynomial
time, because the “is at least as secure as” relation cannot be proven to be transitive anymore.
However, arbitrary composition is allowed when considering statistically secure protocols and this
situation is common in the literature when proving general results on the composability of statis-
tically secure protocols[1, 26, 14, 13].

Realizing an ideal functionality. We say that a protocol π statistically UC-realizes an ideal
functionality F if for any real-life adversary A there exists an ideal-protocol adversary S such that
no environment Z, on any input z, can tell with non-negligible probability whether it is interacting
with A and parties running π in the real-life process, or it is interacting with S and F in the
ideal protocol. This means that, from the point of view of the environment, running protocol π is
statistically indistinguishable of interacting with an ideal protocol for F .

2.2 The Commitment Functionality

We present the ideal bit commitment functionality as described in [7] (a modified version of the
first formalized functionality in [8]). The functionality is similar to the idea of a “sealed envelope”
containing a value x. Before the committer helps the verifier in opening the envelope, the verifier
learns nothing about the value x. But the committer cannot change the value after the commitment
phase. When the committer helps the verifier in opening the envelope in the decommitment phase,
the verifier learns the value x.

Functionality FCOM

1. Upon receiving an input (Commit, sid, x) from P1, verify that sid = (P1, P2, sid
′)

for some P2, else ignore the input. Next, record x and generate a public delayed
output (Receipt, sid) to P2. Once x is recorded, ignore any subsequent Commit
inputs.

2. Upon receiving an input (Open, sid) from P1, proceed as follows: If there is a
recorded value x then generate a public delayed output (Open, sid, x) to P2. Oth-
erwise, do nothing.

3. Upon receiving a message (Corrupt-committer, sid) from the adversary, send x
to the adversary. Furthermore, if the adversary now provides a value x′, and the
Receipt output was not yet written on P2’s tape, then change the recorded value
to x′.

4

The commitment phase is modeled in item 1 of the functionality in which FCOM receives the
value committed to, records the value and send a public delayed output to the verifier to notify that
a commitment was received (i.e. the message is first sent to the adversary, and later sent to the
verifier when the confirmation from the adversary is received). The sid must contain the identities
of the committer and verifier.

The decommitment phase takes place when the committer sends a message to FCOM to open
the commitment as indicated an item 2 of FCOM . If the committer has already recorded a value
then a public delayed output with the value is generated to the verifier.

Item 3 of the functionality models the response when the adversary corrupts some committer.
The FCOM sends the recorded value to the adversary and lets him modify the value if the Receipt
message was not yet written to the verifier’s tape.

2.3 Statistically Secure Two Party Stateless Functionality

We briefly introduce a hybrid model in which the participants have ideal access to a statistically
secure two party stateless functionality FPV,W |X,Y

. Informally, this primitive receives P1’s input x
taken from domain X and P2’s input y taken from domain Y and produces v and w defined over
V ×W according to the conditional probability distribution PV,W |X,Y and gives them to P1 and P2

respectively.

Functionality FPV,W |X,Y

1. Upon receiving an input (Input, sid, x) from P1, verify that sid = (P1, P2, sid
′)

for some P1 and P2, and that x ∈ X , else ignore the input. Record sid and the
corresponding x, if there is already a recorded value x for this sid ignore the input.
If the values x and y corresponding to sid are already recorded, choose randomly
v, w according to PV,W |X,Y . Output v to P1 and w to P2.

2. Upon receiving an input (Input, sid, Y) from P2, verify that sid = (P1, P2, sid
′)

for some P1 and P2, and that y ∈ Y, else ignore the input. Record sid and the
corresponding y, if there is already a recorded value y for this sid ignore the input.
If the values x and y corresponding to sid are already recorded, choose randomly
v, w according to PV,W |X,Y . Output v to P1 and w to P2.

In the ideal process for the functionality FCOM (described in section 2.2) FPV,W |X,Y
is not used,

so the ideal protocol adversary (simulator) that simulates a real-life adversary can play the role of
FPV,W |X,Y

for the simulated adversary.

3 Commitment Based on Statistically Secure Two Party Stateless
Functionalities

In this section we define a stand-alone security model for commitment protocols based upon the
previously defined two party stateless functionalities. A bit commitment protocol has two phases:

5

commitment and decommitment. In both phases, the committer and verifier, also denoted P1 and
P2, respectively, have two channels available between them:

− a bidirectional authenticated noiseless channel, denoted as FAUTH , and

− the two party stateless functionality FPV,W |X,Y
.

We model the probabilistic choices of P1 by a random variable R1 and those of P2 by a random
variable R2, so we can use deterministic functions in the protocol. Note that in this way, all the
messages generated by P1 and P2 are well-defined random variables, depending on the bit value P1

wants to commit to, b. As usual, we assume that the noiseless messages exchanged by the players
and their personal randomness are taken from {0, 1}∗.

Commitment Phase: P1 has an input bit b ∈ {0, 1} that it wants to commit to. The protocol
has some rounds of noiseless and authenticated communications between P1 and P2. After the i-th
round, P1 and P2 input symbols xi and yi to the functionality FPV,W |X,Y

, which generates outputs
vi and wi for P1 and for P2, according to PV,W |X,Y . Let K denote all the noiseless messages
exchanged between the players, and Ki the noiseless messages sent until round i. Denote similarly
by xi, yi, vi and wi the vectors of these variables until round i. At the end of this commitment
phase, P2 outputs (Receipt, sid). Note that this modeling allows multiple use of the FPV,W |X,Y

functionality within a protocol in an interactive manner; let t denote the number of times the
parties use this functionality.

Decommitment Phase: The parties exchange messages only over the noiseless channel. The
committer, P1, announces the value b′ that it claims that was the value it committed to in the first
phase, his private randomness r1, the outputs vt generate by the functionality FPV,W |X,Y

and his
inputs xt. Then P2 executes his test β(xt, yt, vt, wt, r2, r1, k, b

′) for a deterministic function β. The
test can accept or reject b′. If P2 accepts b′, it outputs (Open, sid, b′).

This modeling does not reflect all possible decommit protocols as one could e.g. use the func-
tionality FPV,W |X,Y

in the decommit phase. However such a decommit is always possible and we
can prove our results even when restricting to this type of decommit protocols. Note that we could
split the noiseless messages k in those originated by P1 and P2, but this will not be necessary in
our proofs.

We call the view of P2 all the data in his possession after the completion of the commitment
phase, i.e. yt, wt, r2, k and denote it by V iew2. V iew1 is defined similarly.

We will now define the security of a protocol. A protocol is ε-concealing if for any possible
behavior of P2 in the commitment phase,

1
2
·

∑
r1,r2∈{0,1}∗

Pr[r1] · |Pr[yt, wt, r2, k|r1, b = 0]− Pr[yt, wt, r2, k|r1, b = 1]| ≤ ε

A protocol is δ-sound-and-binding, if for an honest verifier and committer executing the protocol
and b ∈ {0, 1},

Pr[β(Xt, Y t, V t,W t, R2, R1,K, b) = accept] ≥ 1− δ

and, for every possible private randomness used by P1 during the commit phase:

6

Pr[β(Xt, Y t, V t,W t, R2, R1,K, 0) = accept & β(X ′t, Y t, V ′
t
,W t, R2, R

′
1,K, 1) = accept] ≤ δ

We call the protocol stand-alone secure if ε and δ are negligible in t.

4 Statistically Secure Universal Composability of Stand-Alone Se-
cure Commitments

In this section we address the question of whether the stand-alone conditions for commitment
protocols we stated previously are enough for ensuring their statistical universal composability.

We will now prove two lemmas that we will use later to prove the main result of this pa-
per. We first show that, in any stand-alone secure bit commitment protocol based on two party
stateless functionalities, given P1’s input to the functionality and all the noiseless communication
exchanged by P1 and P2, one can almost surely infer P1’s commitment (this property is known as
extractability).

Lemma 1. Any stand-alone secure protocol of commitment based on two party stateless function-
ality supports extraction of committer’s commitment given her input to the channel and all the
noiseless communication.

Proof. Every possible commit value b, and P1 and P2’s private randomness R1 = r1 and R2 = r2,
induce a set of possible messages (also called conversation) to be sent by P1 that has a certain
probability of being accepted, which we denote by ρb,r1,r2 . By soundness we have∑

r1,r2

Pr(r1, r2)ρb,r1,r2 ≥ 1− δ (1)

Applying Chebyshev inequality we obtain that for each possible value of b there must exist a set
of values of r1 and r2 which happens with total probability larger or equal than 1 − δ for which
ρb,r1,r2 ≥ 1− 2

√
δ . We call those sets typical for b and committer’s conversations induced by r1, r2

in those sets typical conversations for b, here on denoted Cb. Clearly, for each value of b, we have
that P (Cb) ≥ 1− 2

√
δ.

From the bindingness condition we also obtain that the probability that a (cheating) P1 produces
a conversation belonging to Cb should be negligible, when committing to a certain b′ 6= b. Then we
have an estimator for computing b from P1’s conversation. For each b ∈ {0, 1} and for a certain δ,
we compute Cb, the set of typical committer conversations for b for which

ρb,r1,r2 ≥ 1− 2
√
δ (2)

and check in which typical set the committer’s conversation is contained. If none is found or if it
is present in more than one set, then P2 declares an error. Clearly, the probability of error will be
negligible if δ is.

We now prove that, for any possible view of P2 after the commit phase is finished, there exists
at least one view of P1 that passes the test executed by P2 at the end of the opening phase, for any
possible committed value b (the so-called equivocability property of the commitment protocol).

7

Lemma 2. Any stand-alone secure protocol of bit commitment based on two party stateless func-
tionality has the equivocability property.

Proof. After the commitment phase, P2 possesses yt, wt, r2, k. Let the honest committer’s opening
information be xt, vt, r1, b. From the correctness property of the protocol we know that

Pr[β(xt, yt, vt, wt, r2, r1, k, b) = accept] ≥ 1− δ

.
We claim that there exist x̃t, ṽt, r̃1, so that

Pr[β(x̃t, yt, ṽt, wt, r2, r̃1, k, b
′) = accept] ≥ 1− δ,

because if this were not the case, P2 could break the concealing condition, computing

Pr[β(xt, yt, vt, wt, r2, r1, k, b) = accept]

for all the possible values of xt, vt, r1 and b and P1’s correct commitment would be the only one
that would produce an overwhelmingly acceptance probability.

We now use lemmas 1 and 2 to prove our main result, which is stated below:

Theorem 3. Any stand-alone secure protocol of commitment based on two party stateless func-
tionality statistically UC-realize FCOM using FAUTH and FPV,W |X,Y

.

Proof. We construct the ideal-protocol adversary S as follows. S runs a simulated copy of A in
a black-box way, plays the role of the ideal functionality FPV,W |X,Y

and simulates a copy of the
hybrid interaction of π for the simulated adversary A. In addition, S forwards all inputs from Z to
A′s input and all outputs from A to Z. S should be able to extract the committed value from the
messages that it receives from A if P1 is corrupted and also should be able to send a commitment
in the hybrid interaction and later open it to any value. These two properties are guaranteed by
the lemmas 1 and 2. Below we describe the procedures of the simulator in each occasion:

Commitment - Uncorrupted Committer: If the environment Z writes a message (Commit,
sid, b) on the input tape of an uncorrupted committer P1, then P1 copies the message to the
functionality FCOM , and S is informed about the commitment. S chooses a random bit b′ to
commit in the hybrid interaction and proceeds as follows:

− If P2 is uncorrupted, S simulates for A the messages that both parties send in each
round of the noiseless communication (i.e., S chooses the randomness r1 of P1 and the
randomness r2 of P2 and simulates the noiseless messages and FPV,W |X,Y

in each round
without revealing the inputs and outputs of the functionality to the adversary). When
A delivers all noiseless messages, S allows FCOM to output (Receipt, sid) to P2 in the
ideal protocol.

− If P2 is corrupted, S simulates for A the messages of an honest committer in each round
of noiseless communication (i.e., S chooses the randomness r1 of P1 and simulates the
noiseless messages). After the adversary A delivers all the noiseless messages in the
round i and sends the input yi ∈ Y of the corrupted verifier to FPV,W |X,Y

, S simulates
the outputs of the functionality according to the probability PV,W |X,Y (using xi ∈ X that
is determined by r1 and b′ as P1 input) and sends wi to the adversary. The simulator
proceeds to the next round.

8

Decommitment - Uncorrupted Committer: If Z writes a message (Open, sid) on the input
tape of some uncorrupted committer P1, then P1 copies the message to the functionality
FCOM . If P1 has previously committed to a value b, S will receive the bit b. By lemma 2, S
can find x̃t, ṽt and r̃1 such that after the exchange of messages in the decommitment phase,
the bit b will be accepted in an honest verifier’s test. S proceeds as follows:

− If P2 is uncorrupted, S simulates the messages of both parties in this phase and allows
FCOM to output (Open, sid, b) to P2 in the ideal protocol when A delivers all messages.

− If P2 is corrupted, S simulates the messages sent by P1 in this phase.

Commitment - Corrupted Committer: If A lets some corrupted P1 commit to a bit b, S can
extract b according to lemma 1. S proceeds as follows:

− If P2 is uncorrupted, S simulates in each round the noiseless messages sent by the honest
verifier and P2’s input yi to FPV,W |X,Y

(i.e., S chooses the randomness r2 of P2 and sends
these messages). AfterA sends P1’s input xi to the functionality, S simulates the outputs
of FPV,W |X,Y

and sends vi to A. When all the t rounds are finished and the simulated
verifier accepts the commitment, then S sends the message (Commit, sid, b) to FCOM .

− If P2 is corrupted, S just simulates FPV,W |X,Y
.

Decommitment - Corrupted Committer: If A tells some corrupted P1 to open a valid com-
mitment with bit b′ and P2 is uncorrupted, then S simulates the messages sent by the honest
verifier in the decommitment interaction with A. It then checks b′ following the procedures
used by an honest verifier in the hybrid interaction. If an honest verifier would reject it, then
S stops; otherwise S sends (Open, sid) to FCOM .

Corruption - Committer: If A corrupts P1, then S corrupts the committer in the ideal protocol
and learns b. S proceeds as follows:

− If the (Receipt, sid) output was not written on P2’s tape before the corruption, then A
has not yet delivered all the messages from the commitment phase and A can play the
role of the committer in the remaining rounds of this phase. S uses the equivocability
property of lemma 2 to find valid x̃i, ṽi and r̃1 for the i rounds already finished, follows in
the remaining rounds the same procedures as in the case of commitment with corrupted
committer, extracts the new value b′ and sends b′ to FCOM .

− If the (Receipt, sid) output was written on P2’s tape before the corruption, the ad-
versary knows k and possibly yt, wt and r2 (only if P2 is already corrupted). S finds a
valid x̃i, ṽi and r̃1 using the equivocability property of lemma 2 and sends them to A.

Corruption - Verifier: If A corrupts P2, then S corrupts the verifier in the ideal protocol. S
proceeds as follows:

− If P2 is corrupted after round i of the commitment stage and before the decommitment,
S plays the role of FPV,W |X,Y

and thus it can send P2’s randomness r2 and valid yi and
wi to A.

9

− If P2 is corrupted after the decommitment, S also learns b and can send also b to A.

We analyze below the probabilities of the events that can result in different views in the real
execution of the protocol, with adversary A, and in the ideal execution of the protocol, with
simulator S:

− The procedure of commitment with uncorrupted committer perfectly emulates the hybrid
execution for the adversary A.

− The procedure of decommitment with uncorrupted committer fails to emulate the hybrid exe-
cution for the adversary A if the simulator cannot equivocate, or if, in the hybrid interaction,
an honest committer is unable to open a valid commitment. However, by lemma 2 the sim-
ulator can equivocate. And by the δ-sound-and-binding property of the stand-alone secure,
the probability that an honest committer in the hybrid interaction is unable to open a valid
commitment is negligible.

− The procedure of commitment with corrupted committer perfectly emulates the hybrid exe-
cution for the adversary A if the simulator successfully extracts b. Lemma 1 guarantees that
the simulator can extract the bit b.

− The procedure of decommitment with corrupted committer fails to emulate the hybrid exe-
cution for the adversary A only if a dishonest committer in the hybrid interaction succeeds
to open a bit other than the bit he committed to in the commitment phase. But by the δ-
sound-and-binding property of the stand-alone secure protocol this probability is negligible.

− The procedure of corrupting P1 fails to emulate the hybrid execution for the adversary A
only if the simulator cannot equivocate or cannot extract the value of the commitment (only
in the case that the corruption occur during the commitment phase). But lemmas 1 and 2
guarantees that the simulator can extract the value of the commitment and can equivocate.

− The procedure of corrupting P2 perfectly emulates the hybrid execution for the adversary A.

− A dishonest verifier that knows yt, wt, r2, k in the hybrid interaction has, before the de-
commitment, negligible information about b according to the ε-concealing property of the
stand-alone secure protocol.

We conclude that since all events that can result in different views have negligible probabilities,
the protocol π UC-realizes FCOM , and so the theorem is valid.

5 Conclusion

In this paper, we prove commitment protocols based on two-party stateless functionalities matching
a previously used ad-hoc list of security properties (binding, concealing and sound) are universally
composable when unbounded simulators are allowed. As previously commented, this assumption
on the simulator gives us secure universal composability with other statistically secure protocols,
but it does not hold anymore when composing with computationally secure protocols. However,
we note here that in the case there exists efficient procedures for extracting the commitment from
P1’s messages and to find equivocations for a certain view, then our simulator becomes efficient.
In those cases, we obtain the full generality of the UC composability theorem.

10

References

[1] M. Backes, J. Müller-Quade, D. Unruh. On the Necessity of Rewinding in Secure Multiparty
Computation. in Theory of Cryptography, Proceedings of TCC 2007, Lecture Notes in Com-
puter Science vol. 4392, Springer-Verlag, pp. 157-174, March 2007. Preprint on IACR ePrint
2006/315.

[2] B. Barak, R. Canetti, J. B. Nielsen, R. Pass. Universally Composable Protocols with Relaxed
Set-Up Assumptions. 36th FOCS, pp.186-195. 2004.

[3] C. H. Bennett, G. Brassard, C. Crépeau, U. Maurer. Generalized Privacy Amplification. IEEE
Transaction on Information Theory, Volume 41, Number 6, November 1995, pp. 1915-1923.
1995.

[4] C. H. Bennett, G. Brassard, C. Crépeau and M. H. Skubiszewska. Practical Quantum Oblivious
Transfer. In Advances in Cryptology: Proceedings of Crypto ‘91, Lecture Notes in Computer
Science, Vol. 576, page 351-366. Springer-Verlag, 1992.

[5] G. Brassard, D. Chaum, C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS, Vol.
37, No. 2, pages 156-189, 1988.

[6] G. Brassard, C. Crépeau, R. Jotza, D. Langlois. A Quantum Bit Commitment Scheme Provably
Unbreakable by both Parties. Proceeding of the 34th IEEE Symposium on Foundations of
Computer Science, pp. 362-371. 1993.

[7] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
Available at http://eprint.iacr.org/2000/067. 2005. Extended Abstract appeared in proceed-
ings of the 42nd Symposium on Foundations of Computer Science (FOCS), 2001.

[8] R. Canetti and M. Fischlin. Universally composable commitments. In Advances in Cryptology
- Crypto 2001, pages 19-40, Berlin, 2001. Springer-Verlag. Lecture Notes in Computer Science
Volume 2139.

[9] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally Composable Two Party and Multi-
party Secure Computation. 34th STOC, pp. 494-503, 2002.

[10] J. L. Carter and M. N. Wegman. Universal Classes of Hash Functions. Journal of Computer
and System Sciences, Vol. 18, 1979, pp. 143-154. 1979.

[11] C. Crépeau, J. Kilian. Achieving Oblivious Transfer using Weakened Security Assumptions.
Proc. 29th FOCS, pp. 42–52. 1988.

[12] C. Crépeau. Efficient Cryptographic Protocols Based on Noisy Channels. Advances in Cryp-
tology: Proceedings of Eurocrypt ‘97 , Springer-Verlag, pages 306-317, 1997.

[13] C. Crépeau, G. Savvides, C. Schaffner, J. Wullschleger. Information-theoretic conditions for
two-party secure function evaluation Advances in Cryptology - EUROCRYPT ’06, LNCS,
Springer-Verlag, 2006.

11

[14] C. Crépeau, J. Wullschleger. Statistical Security Conditions for Two-Party Secure Function
Evaluation Proceedings of ICITS 2008, LNCS, Springer-Verlag, 2008.

[15] I. Damg̊ard, J. Groth. Non interactive and reusable non-malleable commitment schemes. 34th
STOC, pp. 426-437. 2003.

[16] I. Damg̊ard, J. Kilian, L. Salvail. On the (Im)possibility of Basing Oblivious Transfer and Bit
Commitment on Weakened Security Assumptions. Advances in Cryptology: EUROCRYPT
1999, pp. 56–73. 1999.

[17] I. Damg̊ard and J. B. Nielsen. Perfect Hiding and Perfect Binding Universally Composable
Commitment Schemes with Constant Expansion Factor. CRYPTO 2002, pp.581-596. 2002.

[18] Y. Dodis, R. Pass and S. Walfish. Fully Simulatable Multiparty Computation. Manuscript,
2005.

[19] S. Even, O. Goldreich, A. Lempel. A Randomized Protocol for Signing Contracts. Communi-
cations of the ACM 28(6), pp.637-647. 1985.

[20] O. Goldreich, Foundations of Cryptography : Volume 1 - Basic Tools. Cambridge University
Press. 2001.

[21] O. Goldreich, S. Micali and A. Wigderson. How to Play Any Mental Game or a Completeness
Theorem for Protocols with Honest Majority. STOC ’87. 1987.

[22] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or All
Languages in NP have Zero-Knowledge Proof System. J. ACM 38(3): 691-729. 1991.

[23] D. Hofheinz and J. Müller-Quade. Universally Composable Commitments Using Random Or-
acles. Theory of Cryptography Conference (TCC), LNCS 2951 pp. 58-74. 2004.

[24] H. Imai, A. C. A. Nascimento, A. Winter. Commitment Capacity of Discrete Memoryless
Channels. IMA Int. Conf. 2003 pp.35-51. 2003.

[25] J. Katz. Universally Composable Multi-party Computation Using Tamper-Proof Hardware.
EUROCRYPT 2007. pp. 115–128. 2007.

[26] E. Kushilevitz, Y. Lindell, T. Rabin. Information Theoretically Secure Protocols and Security
under Composition. STOC06. 2006

[27] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland.
1977.

[28] T. Moran and G. Segev. David and Goliath Commitments: UC Computation for Asymmetric
Parties Using Tamper-Proof Hardware. EUROCRYPT 2008. pp. 527–544. 2008.

[29] M. Prabhakaran and A. Sahai. New Notions of Security: Achieving Universal Composability
without Trusted Setup. In Proc. of STOC, 2004.

12

	Introduction
	The UC Framework
	Overview
	The Commitment Functionality
	Statistically Secure Two Party Stateless Functionality

	Commitment Based on Statistically Secure Two Party Stateless Functionalities
	Statistically Secure Universal Composability of Stand-Alone Secure Commitments
	Conclusion

