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Abstract. In this paper, we re-visit the problem of perfectly reliable
message transmission (PRMT) and perfectly secure message transmis-
sion (PSMT) in a directed network under the presence of a thresh-
old adaptive Byzantine adversary, having unbounded computing power.
Desmedt et.al [4] have given the necessary and sufficient condition for
the existence of PSMT protocols in directed networks. In this paper, we
first show that the necessary and sufficient condition (characterization)
given by Desmedt et.al [4] does not hold for two phase3 PSMT protocols.
Hence we provide a different necessary and sufficient condition for two
phase PSMT in directed networks. We also derive the lower bound on
communication complexity of two phase PSMT and show that our lower
bound is asymptotically tight by designing a two phase PSMT protocol
whose communication complexity satisfies the lower bound. Though the
characterization for three or more phase PSMT is resolved by the result
of Desmedt et. al. [4], the lower bound on communication complexity for
the same has not been investigated yet. Here we derive the lower bound
on the communication complexity of three or more phase PSMT in di-
rected networks and show that our lower bound is asymptotically tight by
designing communication optimal PSMT protocols. Finally, we charac-
terize the class of directed networks over which communication optimal
PRMT or PRMT with constant factor overhead is possible. By com-
munication optimal PRMT or PRMT with constant factor overhead, we
mean that the PRMT protocol is able to send ` field elements by commu-
nicating O(`) field elements from a finite field F. To design our protocols,
we use several techniques, which are of independent interest.
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1 Introduction

Consider the following problem: a sender S and a receiver R are a part of di-
rected synchronous network and are connected by uni-directional vertex disjoint
paths/channels (also called as wires), which are directed either from S to R or
vice-versa. Moreover, S and R do not share any information in advance. An ad-
versary At having unbounded computing power controls at most t wires between
S and R in Byzantine fashion; i.e., the adversary can read and forge the commu-
nication through these wires in an arbitrary fashion. S intends to communicate
a message m containing ` field elements from a finite field F to R. The challenge
is to design a protocol such that after interacting in phases, as per the protocol,
R should output m correctly with probability one irrespective of the behavior
of At. This problem is called perfectly reliable message transmission (PRMT)[5,
4]. The problem of Perfectly secure message transmission (PSMT)[5, 4] has an
additional restriction that at the end of the protocol, the adversary should have
no information about m what so ever, in information theoretic sense.

If S and R are directly connected by a private channel, as assumed in generic
secure multiparty computation protocols [1, 19, 2, 13], then reliable and secure
communication between them is trivially guaranteed. However this assumption
implies that the underlying network is a complete graph, which is impractical! In
incomplete networks, where S and R are NOT directly connected, PRMT/PSMT
protocols help to simulate a reliable/secure link. There is another motivation to
study PSMT protocols. Currently, the security of all existing public key cryp-
tosystems, digital signature schemes, etc are based on unproven hardness as-
sumptions of certain number theoretic problems. However with increase in com-
puting speed and advent of new computing paradigm (like Quantum computing)
may render these assumptions to be baseless. In such a scenario, PSMT proto-
cols will help to achieve information theoretic security against an all powerful
adversary.

Existing Literature: In [5] Dolev et.al have shown that PRMT/PSMT be-
tween S and R tolerating At is possible in an undirected network iff there exists
2t+1 bidirectional wires between S and R. The problem of PRMT and PSMT in
directed networks was first studied by Desmedt et.al [4]. Modeling the underly-
ing network as a directed graph is well motivated because in practice not every
communication channel admits bi-directional communication. For instance, a
base-station may communicate to even a far-off hand-held device but the other
way round communication may not be possible. Following the approach of Dolev
et.al [5], the authors in [4] have abstracted the underlying directed network in
the form of directed vertex disjoint paths/wires, which are directed either from
S to R or vice-versa. Under such settings, Desmedt et.al [4] have shown that
PRMT tolerating At is possible iff there are at least 2t + 1 wires from S to R.
Desmedt et.al [4] have also proved that PSMT tolerating At is possible iff there



are at least n = max(3t − 2u + 1, 2t + 1) wires from S to R where u is the
number of wires (disjoint from the n wires ) directed from R to S. Noticeably,
in this paper we show that this result does not hold good for two phase PSMT.
Desmedt et.al [4] have shown the sufficiency of their characterization for PSMT
by designing a PSMT protocol with exponential phase and communication com-
plexity. Recently, PSMT protocols with polynomial phase and communication
complexity, satisfying the characterization of Desmedt et.al in directed networks
have been proposed in [12, 18].

A variant of PRMT (PSMT) problem is called URMT (USMT) problem. The
problem of URMT (USMT) is same as PRMT (PSMT) except that at the end of
the protocol, R should output m with very high probability of 1− 2κ where κ is
an error parameter. URMT and USMT in the presence of At was first introduced
and solved by Franklin et.al [7] in undirected synchronous networks, where they
showed that URMT/USMT between S and R is possible iff there exists 2t + 1
bi-directional wires between S and R. Over directed networks, Desmedt et.al [4]
have shown that URMT/USMT tolerating At is possible iff there are total 2t+1
wires between S and R, of which at least t + 1 should be directed from S to
R. Recently, Patra et. al [11] have derived the lower bounds on communication
complexity of URMT and USMT problems and have designed communication
optimal URMT and USMT protocols over directed networks. Shankar et.al [15]
have studied URMT in arbitrary directed networks, where they have given the
complete characterization of URMT tolerating At by considering the underling
directed network as a whole. Their characterization shows that it is inappropriate
to model an underlying directed network in the form of directed wires between
S and R. However, it is likely to take exponential time to verify whether a given
directed network and At satisfies the conditions given in [15] for the possibil-
ity of URMT. Moreover, as a part of their sufficiency condition, the authors in
[15] have given an exponential time URMT protocol. These two shortcomings
”justifies” the use of wire based characterization of URMT and USMT given by
Desmedt et.al, where we can afford to design efficient protocols [11]. Similarly, it
can be shown that it is inappropriate to model a digraph in the form of directed
wires between S and R, in the context of PSMT. But as far our knowledge is
concerned, we are not aware of any work, which have considered the underly-
ing directed network as a ”whole” to study and characterize PSMT. Moreover,
we strictly believe that any characterization of PSMT in arbitrary directed net-
works, derived by considering the entire network as a ”whole”, will have the
same shortcomings as in the case of URMT/USMT. Nevertheless, finding the
”exact” characterization of PSMT tolerating At in arbitrary directed networks
is a theoretically challenging open problem.

Network Model and Definitions: Even though it might be inappropriate to
model a directed graph in the form of directed wires, the characterization of
PRMT and PSMT given by Desmedt et.al is advantageous if the network is
densely connected and there are sufficient number of wires between S and R.
For such networks, we can easily check whether PRMT/PSMT is possible toler-
ating At in polynomial time. So the moral is that for enough densely connected



digraph, wire based abstraction of the network is preferable over the graph based
one, where the digraph is considered as a whole. Hence, in this paper, we fol-
low the model of Desmedt et.al [4] and abstract the underlying network in the
form of a directed graph G = (V,E), where S and R are two special honest
nodes in V . We assume that there are n directed wires f1, f2, . . . , fn from S to
R, called as top band and u directed wires b1, b2, . . . , bu from R to S, called as
bottom band. Moreover, the wires in the top band are disjoint from the wires in
the bottom band. A centralized adversary At with unbounded computing power
actively controls at most t wires between S and R, including the top and bottom
band in a colluded fashion. The adversary is adaptive; i.e., it can corrupt wires
dynamically during the protocol execution and its choice of corrupting a wire
depends upon the data seen so far from the already corrupted wires. A wire
once under the control of At, will remain so for the rest of the protocol. Once
a wire is compromised, the communication over the wire is fully eavesdropped
and dictated by At. We say that a wire is corrupted, if the value(s) sent over
the wire is changed arbitrarily by At. A wire which is not under the control of
At is called honest. The network is synchronous and a protocol is executed in
terms of phases, where a phase denotes a communication either from S to R or
vice-versa.

Our protocols work on a finite field F where |F| ≥ (n + u). We use m to
denote the message that S intends to send to R, where m is a sequence of ` ≥ 1
field elements from F.

Our Contributions: Desmedt et.al [4] have shown that PSMT tolerating At

is possible iff there are at least n = max(3t − 2u + 1, 2t + 1) wires from S to
R where u is the number of wires directed from R to S. In this paper, we
first show that the necessary and sufficient condition (characterization) given
by Desmedt et.al [4] does not hold for two phase PSMT protocols. Specifically,
we show that two phase PSMT tolerating At is possible iff there are at least
n = max(3t − u + 1, 2t + 1) wires from S to R where u is the number of wires
directed from R to S.

A key parameter of any PSMT protocol is its communication complexity,
which is the number of field elements communicated by S and R in the protocol.
Though the PSMT protocols of [18, 12] are efficient, they are not communica-
tion optimal. In this paper, we prove the lower bound on the communication
complexity of both two phase and three or more phase PSMT protocols4, which
securely sends a message containing ` field elements. Moreover, we show that
our bounds are asymptotically tight by giving efficient, polynomial time com-
munication optimal PSMT protocols which are first of their kind. Specifically,
for securely sending a message containing ` field elements, we show that (a) If
0 < u ≤ t, then any two phase PSMT requires n ≥ 3t− u + 1 wires and commu-

4 Any single phase PSMT protocol in directed network is no different from a single
phase PSMT protocol in undirected networks. Hence, from [5], any single phase
PSMT in directed networks requires n ≥ 3t+1 wires in the top band. Also, from [6],
any single phase PSMT over n ≥ 3t + 1 wires communicates Ω( n`

n−3t
) field elements

to securely send ` field elements.



nicates Ω( N`
N−3t ) field elements where N = n + u. However, if u > t, then any

two phase PSMT requires n ≥ 2t+1 and communicates Ω( n`
n−2t ) field elements.

(b) If 0 < u ≤ t, then n ≥ max(3t− 2u + 1, 2t + 1) and any three or more phase
PSMT must communicate Ω( n`

n−(3t−2u) ) field elements. However, if u > t, then
n ≥ 2t + 1 and any three or more phase PSMT must communicate Ω(`) field
elements.

Finally, we characterize the class of directed networks over which commu-
nication optimal PRMT or PRMT with constant factor overhead is possible.
By communication optimal PRMT or PRMT with constant factor overhead, we
mean that the PRMT protocol is able to send ` field elements by communicating
O(`) field elements. Any such PRMT protocol is communication optimal because
any PRMT protocol has a trivial lower bound of Ω(`) on communication com-
plexity. Specifically, we show that any communication optimal PRMT protocol
that transmits a message containing ` field elements by sending O(`) field ele-
ments, tolerating At is possible over a digraph iff the digraph has n ≥ 2t + 1
wires in the top band and u wires in the bottom band where (n−2t)+2u = Ω(t).
To design our protocols, we use several techniques, which are of independent
interest.

For ease of exposition, we assume that if S (R) is expecting some value(s) in
some specific format from R (S) along a wire and if nothing (or some syntacti-
cally incorrect value(s)) comes, then S (R) substitutes predefined value(s) from
F in the same specific format and continue the protocol. Thus, we separately do
not consider the case when nothing or something syntactically incorrect comes
along a wire. Any information which is sent over all the wires (either top or
bottom band) is said to be broadcasted. If some information is broadcasted over
at least 2t + 1 wires, then it will always be received correctly at the receiving
end by taking majority vote.

2 Preliminaries

All the protocols that we present in this paper are heavily based on the concept
of pseudo-basis, a novel idea introduced by Kurosawa et.al [8] and on the proper-
ties of Reed-Solomon encoding and decoding from coding theory [9]. Kurosawa
et.al [8] have first introduced the concept of pseudo-basis for designing a two
phase communication optimal PSMT protocol over undirected graph where S
and R are connected by at least 2t+1 bidirectional vertex disjoint paths. In the
sequel, we first briefly recall the ideas related to pseudo-basis and Reed-Solomon
encoding and decoding.

2.1 Reed-Solomon (RS) Encoding and Decoding

We first define Reed-Solomon (RS) codes.

Definition 1 ( [9]). For message block M = (m1 m2 . . . mk) over F, define
Reed−Solomon polynomial as PM (x) = m1 + m2x + m3x

2 + . . . + mkxk−1. Let
α1, α2, ..., αL, L > k, denote a sequence of L distinct and fixed elements from



F. Then vector C = (c1 c2 . . . cL) where ci = PM (αi), 1 ≤ i ≤ L is called the
Reed-Solomon (RS) codeword of size L for the message block M .

So given a message block M = (m1 m2 . . . mk) of size k over F, the method of
computing the RS codeword C for M is called RS encoding. So we write C =
RS − ENC(M, k, L). Now let A and B are two specific nodes and there exists
L wires from A to B. Let A sends an RS codeword C = RS−ENC(M, k, L) of
size L to B over the L wires. Specifically, A sends the ith component of C over
the ith wire. Now assume that among the L wires, at most t can be under the
influence of At who can arbitrarily change information flowing over the wires.
Also let B receives C ′ where C and C ′ differs in at most t locations. Under this
scenario, the error correction and detection capability of R in C ′ is given by
the error correction and detection capability of RS decoding which is stated as
follows:

Theorem 1 ([9, 4]). Let C denotes the RS codeword for a message block of
size k, where |C| = L. Let receiver receives C ′ where C ′ differs from C in at
most t locations. Then RS decoding can correct upto c Byzantine errors in C ′

and simultaneously detect additional d Byzantine errors (c + d ≤ t) in C ′ iff
L− k ≥ 2c + d.

2.2 Pseudo-basis and Pseudo-dimension

The current description of pseudo-basis and pseudo-dimension is taken from
[8]. For full details, see [8]. Let C be the set of all possible codewords C =
(c1 c2 . . . cL). This implies that C is the set of all possible (PM (α1) . . . PM (αL)),
where PM (x) is a polynomial over F with degree of PM (x) being k− 1. Also we
assume that the hamming distance [9, 8] of code C is t + 1. This implies that
L−(k−1) ≥ t+1 [8]. We may call the individual codewords in C as L-dimensional
vectors. We would like to stress that any L length codeword is an L length vector
but the reverse is not true.

Now let us return back to the same settings where A and B are connected
by L wires, among which t are controlled by At. Now if A sends γ codewords
C1, . . . , Cγ ∈ C over these wires, then the locations at which error occurs in these
codewords are not random. This is because for all the codewords the errors always
occur at the same t (or less) locations. This important and brilliant observation
is the incentive for Kurosawa et. al. [8] to introduce the concept of pseudo-
basis which we briefly recall in the sequel. Let B receives the L length vectors
Y1 . . . , Yγ such that for i = 1, . . . , γ, Yi = Ci + Ei, where Ei = (ei1, . . . , eiL) is
an error vector caused by the adversary At. Let

support(Ei) = {j | eij 6= 0}. (1)

Then there exist some t-subset {j1, . . . , jt} of L wires such that each error vec-
tor Ei satisfies support(Ei) ⊆ {j1, . . . , jt} where {j1, . . . , jt} is the set of wires
that At has corrupted. This means that the space E spanned by E1, . . . , Eγ has
dimension at most t. The notion of pseudo-basis exploits this idea extensively.



Let V denotes the L-dimensional vector space over F. For two vectors Y, E ∈ V,
we write Y = E mod C if Y −E ∈ C. Notice that for 1 ≤ i ≤ γ, for every triplet
(Yi, Ci, Ei), Yi = Ei mod C holds since Yi − Ei = Ci ∈ C. Let us now recall the
definition of pseudo-span on Y = {Y1 . . . , Yγ} and definition of pseudo-dimension
and pseudo-basis of Y.

Definition 2 (Pseudo-span [8]). : We say that {Ya1 . . . , Yap
} ⊂ Y pseudo-

spans Y if each Yi ∈ Y can be written as Yi = (b1Ya1 + . . . + bpYap) mod C, for
some non-zero vector (b1, . . . , bp) ∈ Fp.

Definition 3 (Pseudo-dimension and pseudo-basis [8]). : Let p be the
dimension of E = {E1, . . . , Eγ} and let {Ea1 , . . . , Eap} ⊂ E be a basis of E. We
then say that Y has pseudo-dimension p and {Ya1 , . . . , Yap

} ⊂ Y is a pseudo-basis
of Y.

We now recall the following theorems whose proofs are available in [8].

Theorem 2 ([8]). B = {Ya1 , . . . , Yap
} is a pseudo-basis of Y iff B is a minimal

subset of Y which pseudo-spans Y.

Theorem 3 ([8]). The pseudo-dimension of Y is at most t.

Let B = {Ya1 , . . . , Yap} is a pseudo-basis of Y. Then let FORGED = ∪p
i=1support(Eai).

Therefore FORGED is the set of wires that the adversary At has corrupted.
So,

Theorem 4 ([8]). For each i, support(Ei) ⊆ FORGED.

Finally, Kurosawa et. al [8] also have provided a polynomial time algorithm
which finds the pseudo-dimension p (which is at most t) and a pseudo-basis
B = {Ya1 . . . , Yap} of Y = {Y1, . . . , Yγ}. For convenience, we use the following
notation: (p,B, I) = FindPseudo-basis(Y). The interpretation is that the al-
gorithm FindPseudo-basis takes set of received (by R) vectors Y as input and
finds the pseudo-basis B = {Ya1 , . . . , Yap} ⊂ Y, pseudo-dimension p = |B| ≤ t
and an index set I = {a1, . . . , ap} ⊂ {1, . . . , γ} containing the indices of the
codewords selected in B, in polynomial time.

2.3 Extracting Randomness

For designing our PSMT protocols, we need another technique called Extract-
ing Randomness which is described as follows. Suppose by some means, S and
R agree on a sequence of L random numbers x = [x1 x2 . . . xL] ∈ FL such that
At knows L − f components of x, but has no information about the other f
components of x. However S and R do not know which values are known to At.
The goal of S and R is to agree on a sequence of f elements [y1 y2 . . . yf ] ∈ Ff ,
such that At has no information about [y1 y2 . . . yf ]. This is done as follows
[17]:



Algorithm EXTRANDL,f (x) [17]: Let V be an L × f Vandermonde matrix with
members in F and which is known publicly. Then S and R both locally compute the
product [y1 y2 . . . yf ] = [x1 x2 . . . xL]V .

3 PRMT with Constant Factor Overhead

Any PRMT protocol which reliably sends ` field elements by communicating O(`)
field elements, is called a communication optimal PRMT protocol. Essentially, a
communication optimal PRMT protocol achieves reliability with constant factor
overhead. In this section, we first characterize the class of digraphs over which
communication optimal PRMT protocol is possible tolerating At. To be more
clear, we answer the following question:

What is the characterization of the digraphs over which a communica-
tion optimal PRMT is possible and how to design such communication
optimal protocol over a sufficiently connected digraph? In other words
what is the necessary and sufficient condition for the possibility of com-
munication optimal PRMT protocol over a digraph?

The following theorem completely resolves the above question.

Theorem 5. Any communication optimal PRMT protocol that transmits a mes-
sage m containing ` field elements by communicating O(`) field elements, toler-
ating At is possible over a digraph iff the digraph has n ≥ 2t+1 wires in the top
band and u wires in the bottom band where (n− 2t) + 2u = Ω(t).

Proof: Necessity: First irrespective of the value of u, by the results of [5], any
PRMT (may or may not be communication optimal) from S to R is possible iff
there exist n ≥ 2t+1 wires from S to R. Hence the digraph must have n ≥ 2t+1
wires in the top band for the existence of communication optimal PRMT. Next
we show that the u wires in the bottom band must satisfy (n− 2t) + 2u = Ω(t)
for the existence of communication optimal PRMT protocol. We have to prove
this when u < t because if u ≥ t then (n− 2t) + 2u = Ω(t) is satisfied.

Suppose both S and R in advance knows that the entire bottom band is
corrupted. Under this assumption, any multiphase PRMT protocol virtually re-
duces to a single phase PRMT protocol, where S is connected to R by n ≥ 2t+1
wires, of which at most t− u are corrupted. Now by the results of [17], any sin-
gle phase protocol, where S is connected to R by n ≥ 2t + 1 wires, of which
at most t are corrupted must communicate Ω( n`

n−2t ) fields elements for reliably
sending ` field elements. This implies that any single phase protocol, where S is
connected to R by n ≥ 2t + 1 wires, of which at most t− u are corrupted must
communicate Ω( n`

n−2(t−u) ) fields elements for reliably sending ` field elements.
This in tern implies that any multiphase PRMT protocol must communicate
Ω( n`

n−2(t−u) ) fields elements for reliably sending ` field elements over a digraph.
Therefore Ω( n`

n−2(t−u) ) defines a lower bound on the communication complexity
of any multiphase PRMT protocol sending ` field elements. Note that this lower



bound is derived by assuming that S and R in advance knows that the entire
bottom band is corrupted. Any lower bound derived under this assumption is
trivially a lower bound for the more general case, where S and R do not have
this information in advance. Now the lower bound implies that any communi-
cation optimal PRMT protocol must communicate Ω( n`

n−2(t−u) ) field elements
for sending ` field elements. By definition any communication optimal PRMT
protocol transmits O(`) field elements for sending ` field elements. It is easy to
see that Ω( n`

n−2(t−u) ) will turn out to be O(`) iff (n− 2t) + 2u = Ω(t).

Sufficiency: To prove the sufficiency, in the sequel we design a communication
optimal PRMT protocol OPRMT, which reliably sends a message m containing
(nt) field elements by communicating O(nt) field elements and terminates in
three phases, provided that n ≥ 2t + 1 and (n− 2t) + 2u = Ω(t). ¤
Before describing protocol OPRMT, we present a special type of single phase
PRMT protocol called SP-REL where S is connected to R by n ≥ 2t + 1 wires
(i.e. top band contains n ≥ 2t + 1 wires). SP-REL either sends the message m
to R or it may fail to send the message due to some behavior of At. In the later
case, At must have done corruptions exceeding some limit which R will be able
to detect. Protocol SP-REL is heavily based on RS codes. Let X = n− 2t.

Protocol SP-REL(m, `, n, t, b): n ≥ 2t + 1, 0 ≤ b ≤ t

1. S breaks up m into blocks B1,B2, . . . ,Bz, each consisting of k field elements,
where k = X + b. If ` is not an exact multiple of k, a default padding is used to
make ` mod k = 0.

2. For each block Bi, 1 ≤ i ≤ z of m, S computes (ci1ci2 . . . cin) = RS−ENC(Bi, k, n)
and sends cij , 1 ≤ i ≤ z along the wire fj , 1 ≤ j ≤ n.

3. R parallely receives c′ij ’s (possibly corrupted) over n wires. R then applies RS
decoding algorithm to the received n length vectors and tries to correct t−b errors
and simultaneously detect additional b errors in each of the z received vectors.

4. If after correcting t−b errors, the RS decoding algorithm does not detect additional
errors in any of the z received vectors, then R correctly recovers Bi, 1 ≤ i ≤ z and
concatenates these blocks to recover m.

5. If ∃e ∈ {1, 2, . . . , z} such that after correcting t− b errors, the decoding algorithm
detects additional errors in the eth received vector, then R generates “ERROR”
signal.

Lemma 1. In SP-REL, if at most t− b wires are corrupted by the adversary,
then R recovers m. Otherwise, R detects that more than t − b wires have been
corrupted in the top band.

Proof: In the protocol, R receives n ≥ 2t + 1 values for each Bi, each of which
is RS encoded using a polynomial of degree k− 1 = X + b− 1. Now substituting
these values in Theorem 1, we find that RS decoding can correct c = t− b errors
and simultaneously detect additional d = b errors in each of the received n length
codeword. If at most t− b errors occur in the top band, then decoding algorithm



will correct them and will not detect any additional errors. So R will be able to
recover m correctly. On the other hand if more than t − b wires are corrupted
in the top band, then more than t − b values will be corrupted in at least one
of the received codewords. After correcting t − b errors in that codeword, the
RS decoding algorithm will detect additional errors in the codeword. So R will
come to know that more than t− b wires are corrupted in the top band (though
he does not know the identity of the corrupted wires). In this case, R fails to
recover m. ¤

Lemma 2. SP-REL communicates O
(

n`
(n−2t)+b

)
field elements where |m| = `.

Proof: Follows from the working of the protocol. ¤
Thus protocol SP-REL creates a win-win situation with the adversary as fol-
lows: if At does at most (t− b) errors then m is recovered; else R comes to know
that more than (t − b) wires are corrupted. We now design our communication
optimal PRMT protocol OPRMT using SP-REL as a black-box. Though the
protocol looks quite complex, we request the reader to read the protocol and
go through the proof of Theorem 6, after which the protocol will be understood
easily.
Theorem 6. OPRMT reliably sends m in at most three phases.

Proof: If more than t−b errors take place during Phase I, then R detects it (see
Lemma 1) and sends “ERROR” signal, along with the received n tuple for which
it has detected more than t− b errors, through the bottom band. In this case, in
the bottom band, there can be at most b− 1 Byzantine faults. Now irrespective
of whether b = u

2 or t
2 , R will correctly receive the n tuple and “ERROR” signal

over at least u
2 wires. S then locally find the number of mismatches between

what R had received and what S had sent during Phase I. S then comes to
know the identity of more than t − b Byzantine faults and adds them to the
list Lfault. S then sends Lfault to R through entire top band. So R also comes
to know the identity of these faults. Finally, S resends the message by dividing
it into blocks of size k = X + |Lfault| and sending an n − |Lfault| length RS
codeword for each message block. Now from Theorem 1, by substituting d = 0,
R will be able to recover the message after correcting t− |Lfault| faults in each
received vector.

On the other hand, if during Phase I, at most t−b Byzantine faults occurred,
then from Lemma 1, R will be able to recover the message correctly after Phase
I. R then correctly broadcasts “SUCCESS” signal through the bottom band.
Since it has recovered m, it will simply neglect whatever it receives from S
during Phase III. Hence the theorem holds. ¤

Theorem 7. The protocol OPRMT is a communication optimal PRMT pro-
tocol which sends Ω(nt) field elements by communicating O(nt) field elements.

Proof: Since n ≥ 2t+1, ` = Ω(nt), n−2t+2u = Ω(t) and b = min(u
2 , t

2 ), from
Lemma 2, the communication complexity of Phase I is O(nt). During Phase II,
R either sends an n tuple and “ERROR” signal or “SUCCESS” signal over all



Protocol OPRMT (m, `, n, u, t)
Phase I: S to R: S executes SP-REL(m, `, n, t, b) where b = min( u

2 , t
2 ), n ≥ 2t+1 and |m| = ` =

(nt).

Phase II: R to S: If R recovers m after the execution of SP-REL, then he sends a ”SUCCESS”
message to S through the entire bottom band. Else R sends an ”ERROR” message and the received
n tuple (vector) for which R has detected more than t− b faults.

Phase III: S to R: Let S receives “SUCCESS” signal along us ≥ 0 wires and “ERROR” signal
along with an n tuple through ue ≥ 0 wires. S now considers the following two cases:

– Case 1. us ≥ u
2 : In this case, S does nothing and terminates the protocol(see Theorem 6).

– Case 2. ue ≥ u
2 : In this case, S checks whether it has received the same n tuple over at least

u
2 wires out of the ue wires through which it has received “ERROR” signal and n tuple. If
not, then S does nothing and terminates the protocol (see Theorem 6). If S receives the same
n tuple through at least u

2 wires out of ue wires, then S does the following:

S locally finds the number of mismatches between the n tuple received through at least u
2 wires

and the corresponding original n tuple which it had sent during Phase I. If the number of
mismatches is at most t− b, then S does nothing and terminates the protocol (see Theorem 6).
If the number of mismatches is more than t− b, then S considers the corresponding wires (i.e.,
the wires, corresponding to which S has found a mismatch) as faulty and adds such wires to a
list Lfault. Notice that |Lfault| > t − b. S eliminates all the wires in the list Lfault from the
top band. For simplicity, let these be the last |Lfault| wires in the top band. S then re-sends
m by executing following steps:
• First notice that now S considers only the first n − |Lfault| wires. Also if indeed the

received n tuple is correct then among the n−|Lfault| wires there are at most t−|Lfault|
wires under the control of At. Also note if the received n tuple is wrong then R already
has got the message at the end of SP-REL.

• S breaks up m into blocks B1, B2, . . . , Bz, each consisting of k field elements, where
k = X + |Lfault|. If ` is not an exact multiple of k, a default padding is used to make `
mod k = 0.

• For each block Bi, 1 ≤ i ≤ z of m, S compute an (n − |Lfault|) length RS codeword
(ci1 . . . ci(n−|Lfault|)) and sends cij , 1 ≤ i ≤ z along the wire fj , 1 ≤ j ≤ (n− |Lfault|).
In addition, S also sends Lfault to R over entire top band.

Message Recovery by R

If R had sent “ERROR” signal and an n tuple to S during Phase II, then R will correctly receive
the list Lfault. After eliminating the wires in Lfault from the top band, R receives (n − |Lfault|)
length codeword for each block Bi. R now correctly recovers each Bi by applying RS decoding
algorithm and correcting t− |Lfault| Byzantine errors in each codeword.

the u wires in bottom band. This involves communicating at most nu = O(nt)
field elements. During Phase III, S either sends nothing or resends the message.
Communication complexity of resending the message is O( (n−|Lfault|)|m|

X+|Lfault| ). Since
|Lfault| > t− b > t

2 , the following holds: |Lfault| = Θ(t) and n−|Lfault| = Θ(t).
Hence re-sending m incurs a communication complexity of O(nt). Thus the total
communication complexity is O(nt). ¤

4 Two Phase PSMT in Directed Networks

In this section, we prove the necessary and sufficient condition for the existence
of any two phase PSMT protocol in directed networks tolerating At. We then
derive the lower bound on the communication complexity of any two phase
PSMT protocol tolerating At. Finally, we show that the bound is asymptotically
tight.



4.1 Characterization of Two Phase PSMT in Directed Networks

The characterization for two phase PSMT in directed networks tolerating At is
given by the following theorem:

Theorem 8. Suppose there exists n wires from S to R in the top band and u
wires from R to S in the bottom band, such that the wires in the top band are
disjoint from the wires in the bottom band. Moreover, let At controls at most
t of these n + u wires. Then there exists a two phase PSMT tolerating At iff
n ≥ max(3t− u + 1, 2t + 1).

Proof: Sufficiency: The sufficiency proof is divided into two cases, namely
when 0 < u ≤ t and when u > t. If 0 < u ≤ t, then n ≥ 3t−u+1. So there will be
total n + u ≥ 3t + 1 wires between S and R. In this case, we design a two phase
PSMT protocol called O2PSMT-I, given in Table 1. Protocol O2PSMT-I
securely sends a secret message m ∈ F by communicating O(n+u) field elements.
So to send a message m ∈ F` of size ` > 1, we can parallely execute O2PSMT-
I for each individual element of m, incurring a communication complexity of
O((n + u)`).

Protocol O2PSMT-I achieves it’s goal by allowing S and R to share a
common polynomial of degree t, such that At knows only t points on it. Once
this is done, both S and R can generate an information theoretic pad of length
one. S then can blind the message with the pad and sends it to R. Let C be the
set of all RS codewords of length N = n + u = 3t + 1 encoded using polynomial
of degree t. Hence the hamming distance between any two codeword in C is
N − t = 3t + 1− t = 2t + 1.
Theorem 9. In protocol O2PSMT-I, R will correctly recover m at the end of
Phase II.

Proof: From the protocol, it is clear that S and R will agree on at least 2t + 1
values (components) among 3t + 1 values in C. In other words, C and Y will
differ at most at t locations. From Theorem 1, by substituting d = 0, we find
that the maximum number of errors c that can be corrected in Y is t. Hence
by applying RS decoding on Y , R can recover C and corresponding polynomial
F (x) of degree t. Thus at the end of Phase II, both S and R will share the
common pad Z = F (0). Now since the blinded message Γ reaches to R correctly,
R will recover message m correctly. ¤

Theorem 10. In protocol O2PSMT-I, At will get no information about m.

Proof: The proof follows from the fact that At will get at most t distinct points
on F (x). Thus F (0) will be information theoretically secure. Since the pad is
secure, so is the message m. ¤

Theorem 11. Protocol O2PSMT-I sends a message m ∈ F` of size ` by com-
municating O((n + u)`) field elements.

Proof: It is easy to check that protocol O2PSMT-I sends a single field element
by communicating O(n + u) field elements. So to send a message m containing



Protocol O2PSMT-I(m, n, u, t)

Phase I: R to S: R selects a random u length vector R such that R = (r1, . . . , ru).
Now R sends jth component of R along wire bj in bottom band.

Phase II: S to R:

1. S receives R̄ and selects a codeword C from C such that last u components of C is
same as R̄. This is always possible because every codeword C ∈ C corresponds to
a t degree polynomial F (x), where t ≥ u. Now S sends jth component of C over
wire fj in the top band.

2. S computes Γ = m ⊕ Z where Z = F (0) and F (x) is the t degree polynomial
corresponding to codeword C. S sends the blinded message Γ over the entire top
band.

Local Computation by R At The End of Phase II:

1. After receiving information over the top band, R possesses N = 3t+1 length vector
Y = C + E corresponding to codeword C such that Y is different from C at most
at t locations. Hence by Theorem 1, R can recover C (and hence F (x) and hence
Z = F (0)) by applying RS decoding algorithm on Y and correcting t errors.

2. R also receives Γ correctly. Hence R recovers the message m by computing m =
Γ ⊕ Z

Table 1. Protocol O2PSMT-I: Two Phase PSMT with n = 3t− u + 1 and 0 < u ≤ t

` > 1 field elements, we can parallely execute O2PSMT-I for each individual
field element of m, incurring a total communication complexity of O((n + u)`)
field elements. ¤

On the other hand, if u > t, then n = 2t + 1. So there will be total N = n + u >
3t+1 wires between S and R. In this case, we design a two phase PSMT protocol
called O2PSMT-II, given in Table 2. Protocol O2PSMT-II securely sends a
message m containing (u−t) field elements from F by communicating O(n(u−t))
field elements. So to send a message m ∈ F` of size ` > (u − t), we can divide
m into several blocks of size (u − t) and securely send each block by executing
O2PSMT-II, incurring a communication complexity of O(n`). Note that here
at least (u− t) wires in the bottom band are free from the influence of At. Using
this knowledge, S and R tries to establish an information theoretically secure
one time pad of length (u − t). Once this is done, the message can be send
securely by blinding it with the pad. The idea of Protocol O2PSMT-II is very
similar to Protocol O2PSMT-I. Let C be the set of all RS codewords of length
N = n + u > 3t + 1 encoded using polynomial of degree u. Hence the hamming
distance between any two codeword in C is N − u = n = 2t + 1.

Theorem 12. In protocol O2PSMT-II, R will correctly recover m at the end
of Phase II.

Proof: The proof is similar to the proof of Theorem 9. Here again C and Y
will differ at most at t locations. By Theorem 1, R can recover C by applying



RS decoding on Y and correcting t errors. The rest follows from the correctness
of the EXTRAND and working of the protocol. ¤
Theorem 13. In protocol O2PSMT-II, At will get no information about m.

Proof: The secrecy of message m follows from the security of pad Z. Pad Z is
secure from the security proof of the EXTRAND. ¤
Theorem 14. Protocol O2PSMT-II can send a message m ∈ F` of size ` ≥
(u− t) by communicating O(n`) field elements.

Proof: From the protocol, it is clear that the protocol sends a message con-
taining (u − t) field elements by communicating O(n(u − t)) field elements. So
to send a message m containing ` ≥ (u − t) field elements, we can parallely
execute O2PSMT-II for each sub-block of m of size (u − t), incurring a total
communication complexity of O(n`) field elements. ¤

Protocol O2PSMT-II(m, `, n, u, t)

Phase I: R to S: Same as in protocol O2PSMT-I.

Phase II: S to R:

1. S receives R̄ and selects a codeword C from C such that last u components of C
is same as R̄. Now S sends jth component of C over wire fj in the top band.

2. S computes Γ = m⊕Z where Z = [z1, . . . , zu−t] = EXTRANDN,u−t(C). S sends
the blinded message Γ over the entire top band.

Local Computation by R At The End of Phase II:

1. After receiving information over the top band, R possesses N = n + u length
vector Y = C + E corresponding to codeword C such that Y is different from C
at most at t locations. Hence by Theorem 1 R can recover C (and hence F (x),
the polynomial corresponding to C) by applying RS decoding algorithm on Y and
correcting t errors. Once C is obtained, R gets Z in the same way as done by S.

2. R now recovers m in the same way as in protocol O2PSMT-I.

Table 2. Protocol O2PSMT-II: Two Phase PSMT with n = 2t + 1 and u > t.

Thus sufficiency of Theorem 8 is proved by protocols O2PSMT-I and O2PSMT-
II. We now proceed to prove the necessity of Theorem 8.

Necessity: As in the case of sufficiency proof, the necessity proof is also divided
into two cases, namely when 0 < u ≤ t and when u > t. If u > t, then the
necessary condition says that there should exist n = 2t + 1 wires from S to R
in the top band. By [5, 4], n = 2t + 1 wires from S to R are necessary for any
PRMT protocol tolerating At. So it is obviously necessary for PSMT.

Next we show that if 0 < u ≤ t, then n = 3t − u + 1 wires from S to R
in the top band is necessary for the existence of any two phase PSMT protocol
tolerating At. The proof is by contradiction. Let Π2Phase be an instance of a two



phase PSMT protocol sending message m with 0 < u ≤ t wires in the bottom
band and n = 3t−u wires in the top band, tolerating At. The random coin flips of
S, R and At in Π2Phase areRS

Π2P hase ,RR
Π2P hase andRAΠ2P hase respectively. Then

we show that there exists an instance of single phase PSMT protocol Π1Phase

(with non-zero probability), which sends m tolerating certain behavior of At

with N = n + u = 3t wires from S to R. But by results of [5], Π1Phase can
not deliver m tolerating that behavior of At. This in turn implies that Π2Phase

also will fail to deliver m (with non-zero probability). But since Π2Phase is an
instance of PSMT, it must succeed in all cases. This shows contradiction. Let
the random coin flips of S, R and At in Π1Phase are RS

Π1P hase , RR
Π1P hase and

RAΠ1P hase respectively.
Since Π2Phase is a two phase PSMT, the first phase is from R to S, while

the second phase is from S to R. Without loss of generality, the computation
and communication during Π2Phase are as follows:

1. Phase I: R to S: R uses RR
Π2P hase to generate β1, β2, . . . , βu and sends βi

to S through wire bi, 1 ≤ i ≤ u.
2. Phase II: S to R: Let S receives β′i through wire bi. Based on the received

information, m and RS
Π2P hase , S computes α1, α2, . . . , αn and sends αi to R

through wire fi, 1 ≤ i ≤ n.
3. Computation by R at the end of Phase II: Let R receives α′i through

wire fi. Thus the combined view of R at the end of Phase II is [α′1, α
′
2, . . . , α

′
n,

β1, β2, . . . , βu]. On the other hand, the combined view of S at the end of
Phase II is [α1, α2, . . . , αn, β′1, β

′
2, . . . , β

′
u]. R performs local computation

according to the protocol specification and correctly and securely recovers
m.

Now we proceed to present an instance of a single phase PSMT Π1Phase where
there exists N = n + u = (3t− u) + u = 3t wires f1, f2, . . . , fN . from S to R.

1. Phase I: S to R: S uses RS
Π1P hase to generate β′1, . . . , β

′
u (which he can

do with non-zero probability by simulating R in Phase I of Π2Phase). S
performs the same computation as in Π2Phase and generates α1, . . . , αn.
Finally, S sends αi to R through wire fi, 1 ≤ i ≤ n and β′i through wire
fi, n + 1 ≤ i ≤ 3t.

2. Computation by R at the end of Phase I: Let R receives α′i through
wire fi, 1 ≤ i ≤ n and β′′i through wire fi, n + 1 ≤ i ≤ 3t. Now R performs
the same computation as in Π2Phase to recover m.

Now we demonstrate two adversarial behavior; one in Π2Phase and another in
Π1Phase, which allow the views of S and R in Π2Phase to be identical to views
of S and R in Π1Phase, respectively. Consider the following adversarial behavior
A2Phase

t in Π2Phase:At corrupts entire bottom band and first t−u wires from top
band. When R transmits βi over bi,At changes it to β′i with β′i 6= βi for 1 ≤ i ≤ u.
When S transmits αi over fi, At changes it to α′i with α′i 6= αi for 1 ≤ i ≤ t−u.
In this case views of S and R are (α1, . . . , αt−u, αt−u+1, . . . , αn, β′1, . . . , β

′
u) and

(α′1, . . . , α
′
t−u, αt−u+1, . . . , αn, β1, . . . , βu) respectively. Now consider the follow-

ing adversarial behavior A1Phase
t in Π1Phase: At corrupts last u wires and first



t− u wires. When S transmits β′i over fi, At changes it to βi for n + 1 ≤ i ≤ 3t.
When S transmits αi over fi, At changes it to α′i for 1 ≤ i ≤ t− u. Now notice
that the views of both S and R in Π1Phase against A1Phase

t is same as in Π2Phase

against A2Phase
t . Hence if in Π2Phase, R is able to get m, same should hold for

Π1Phase. But from the results of [5], it is easy to show that Π1Phase can not
recover m against A1Phase

t . Hence it implies that Π2Phase also can not recover m
against A2Phase

t . Since given Π2Phase, the existence of A2Phase
t is possible with

non-zero probability, we conclude that Π2Phase may fail to recover m against
A2Phase

t with non-zero probability. This is a contradiction, since Π2Phase is an
instance of two phase PSMT. Hence for 0 < u ≤ t, n ≥ 3t−u+1 should hold. ¤

4.2 Lower Bound on Communication Complexity of Two Phase
PSMT

We now prove the lower bound on the communication complexity of any two
phase PSMT protocol in a directed network tolerating At.

Theorem 15. Suppose there exists u wires in the bottom band and n = max(3t−
u + 1, 2t + 1) wires in the top band. Then any two phase PSMT protocol which
securely sends a message m ∈ F` containing ` field elements must communicate

(a) Ω
(

N`
N−3t

)
field elements where 0 ≤ u ≤ t, n ≥ 3t− u + 1 and N = n + u ≥

3t + 1.

(b) Ω
(

n`
n−2t

)
field elements where u > t and n ≥ 2t + 1.

Moreover, the bounds are asymptotically tight.

Proof : We first prove part (a) of this theorem. This proof is heavily based on
the necessity proof of Theorem 8. Following the same line of argument, we can
show that when n = 3t − u + 1 and 0 < u ≤ t, then for every possible pair of
Π2Phase and A2Phase

t there exist a pair Π1Phase and A1Phase
t (with non-zero

probability) such that the view of S and R are same in both the scenarios.
It is easy to see that the communication cost are also same in Π1Phase and
Π2Phase. It implies that for every two phase PSMT protocol sending m with
n ≥ 3t − u + 1 and 0 < u ≤ t wires in top and bottom band respectively, there
exist a single phase PSMT sending m with N = n + u wires (from S to R)
with same communication cost. Now any single phase PSMT sending m over
N ≥ 3t+1 wires must communicate Ω

(
N`

N−3t

)
field elements [6]. Hence any two

phase PSMT must communicate Ω
(

N`
N−3t

)
field elements for sending m. The

tightness of the bound follows from protocol O2PSMT-I and Theorem 11.
We now proceed to prove part (b) of the theorem. Any PSMT protocol has to

deliver the message correctly. Thus any PSMT protocol is also a PRMT proto-
col. Now neglecting the communication from R to S, any two phase PRMT can
be reduced to single phase PRMT. Such a conversion is possible [17]. Now from
[17], any single phase PRMT protocol over n = 2t+1 wires has to communicate



Ω( n`
n−2t ) field elements. So any two phase PSMT protocol has to communi-

cate Ω( n`
n−2t ) field elements. The tightness of the bound follows from protocol

O2PSMT-II and Theorem 14. ¤

5 Lower Bounds on the Communication Complexity of
Three or More Phase PSMT

Recall that from [4], any 3 or more phase PSMT requires n = max(3t−2u+1, 2t+
1) wires in the top band to tolerate At. To build our lower bound argument for
three or more phase PSMT protocol, we need a few concepts from secret sharing
and Maximum Distance Separable (MDS) codes. Hence we briefly recall them
before presenting our lower bound result.

5.1 Secret Sharing and Maximum Distance Separable (MDS) Codes

Definition 4 (x-out-of-n Secret Sharing Scheme [14]). : An x-out-of-n
Secret Sharing scheme is a probabilistic function S : F → Fn with the property
that for any M ∈ F and S(M) = (s1, . . . , sn), no information on M can be
inferred from any x elements of (s1, . . . , sn) and M can be recovered from any
x + 1 elements in (s1, . . . , sn).

The set of all possible (s1, . . . , sn) is called a code and its element a codeword. If
the code is a Maximum Distance Separable (MDS) code [9, 4], then it can correct
c errors and simultaneously detect d additional errors iff n − x > 2c + d [9, 4].
An x-out-of-n Secret Sharing scheme is called MDS secret sharing scheme if it is
constructed from a MDS code. MDS secret sharing schemes can be constructed
from any MDS codes, for example Reed-Solomon codes [9, 10, 4]. So we have
the following theorem on the error correction and detection capability of MDS
x-out-of-n Secret Sharing scheme:

Theorem 16 ([9, 4]). Any MDS x-out-of-n Secret Sharing scheme can correct
c errors and detect d additional errors in a codeword iff n− x > 2c + d.

5.2 The Lower Bound

We now derive the lower bound on the communication complexity of any three or
more phase PSMT protocol tolerating At. We first give the following definition:

Definition 5 ((α, β, γ,m, `)-SecretSharingScheme:). Given a secret m con-
taining ` field elements from F, an (α, β, γ, m, `)-SecretSharingScheme generates
α shares of m, such that any set of β shares have full information about the se-
cret m, while any set of γ shares have no information about the secret m with
α > β > γ.



Theorem 17. Suppose there exists u wires in the bottom band and n = max(3t−
2u+1, 2t+1) wires in the top band. Then any three or more phase PSMT protocol
that securely sends a message m containing ` field elements from F tolerating At

must communicate

(a) Ω( n`
n−(3t−2u) ) field elements when 0 < u ≤ t 5.

(b) Ω(`) field elements when u > t.

Proof: We first prove part (a) of the theorem. The outline of the proof is
as follows: we first show that the communication complexity of any three or
more phase PSMT protocol tolerating At to send a message m containing ` field
elements from F is not less than the share complexity (sum of all the shares) of
an (n, (n−2(t−u)), t, m, `)-SecretSharingScheme (see Lemma 3). We then show
that the share complexity of any (n, (n−2(t−u)), t, m, `)-SecretSharingScheme is
Ω( n`

n−(3t−2u) ) field elements (see Lemma 4). Part (a) of Theorem 17 now follows
from Lemma 3 and Lemma 4. So we proceed to prove Lemma 3.

Lemma 3. Let 0 < u ≤ t and n = max(3t−2u+1, 2t+1). Then the communica-
tion complexity of any three or more phase PSMT protocol tolerating At to send
a message m containing ` field elements from F is not less than the share com-
plexity (sum of all the shares) of a (n, (n−2(t−u)), t,m, `)-SecretSharingScheme.

Proof: Let Π be a PSMT protocol which runs for p phases with p ≥ 3. In the
sequel we will give a possible behavior of At which proves the lemma statement.
Now as in [4], without loss of generality, the view of S in protocol Π, denoted as
viewS

Π is drawn from a probability distribution that depends on the message m,
the coin flips RS of S, the coin flips RR of R, the coin flips RA of At (without
loss of generality, we assume that the value of RA will determine the choice of
faulty wires controlled by At). Without loss of generality, we assume that the
protocol proceeds in phases where S is silent in even phases and R is silent in
odd phases [5, 4]. Now the strategy of the adversary At is as follows:

1. First At uses RA to choose a value r.
2. If r = 0, then At uses RA to choose t wires fj1 , fj2 , . . . , fjt from the top band

and behaves passively over these paths. This means the adversary proceeds
according to protocol Π.

3. If r = 1, then At uses RA to choose t − u wires fj1 , fj2 , . . . , fjt−u from the
top band and all the u wires from the bottom band. In this case At corrupts
all the u wires in the bottom band and the t − u wires fa1 , fa2 , . . . , fat−u

from the top band. At also uses RA to choose a message m ∈ F according
to the same probability distribution from which the actual message m was
drawn. Now over the corrupted wires, At behaves in the following way: (i)

5 Note that when u = 0, then any multiphase PSMT turns out to be a single phase
PSMT. From results of [5], any single phase PSMT requires at least n = 3t + 1
wires from S to R. Fitzi et. al. [6] have proved that any single phase PSMT must
communicate Ω( n`

n−3t
) field elements for sending ` field elements. This resolves the

issue of lower bound for u = 0.



Over the wires fj1 , fj2 , . . . , fjt−u
, it ignores what S sends in odd phases of Π

and simulates what S would send to R if m would have been the message.
(ii) Over the paths in the bottom band, it ignores what R sends to S in even
phases of Π and simulates what R would send to S when r = 0.

Since At has unbounded computing power, he can behave in the above manner.
Now let αS

i,j be the values that S sends on wire fi in phase j of protocol Π. Let
αS

i = (αS
i,1, . . . , α

S
i,p) i.e. αS

i is the concatenation of the values sent by S over
wire fi during the execution of Π. We can view αS

i ’s as the shares of message
m. Similarly, let αR

i,j be the values that R sends on wire bi in phase j. Let
αR

i = (αR
i,1, . . . , α

R
i,p). Now if we assume r = 0, due to the fact that Π is a PSMT

protocol, At should not get any information on m from any t shares from the
set {αS

1 , . . . , αS
n}. Thus (αS

1 , . . . , αS
n) is an x-out-of-n secret sharing scheme with

x ≥ t, since with x > t, we still maintain that t shares from the set {αS
1 , . . . , αS

n}
does not reveal any information on m. Now if we assume r = 1, due to the fact
that Π is also a PRMT protocol, R must be able to correct any t − u errors
in the shares (αS

1 , . . . , αS
n) and thus recover the message m. Thus in summary,

(αS
1 , . . . , αS

n) is an x-out-of-n (MDS) secret sharing scheme with the capability
of correcting t−u error where x ≥ t. Now by Theorem 16, an x-out-of-n (MDS)
secret sharing scheme can correct (t− u) errors if

n− x > 2(t− u) ⇒ x < n− 2(t− u) ⇒ x + 1 ≤ n− 2(t− u). (2)

This shows that the communication done by S (alone) is equivalent to the share
complexity (sum of all the shares) of an (n, (n−2(t−u)), t, m, `)-SecretSharingScheme.
Thus ignoring the communication done by R, we can say that the communica-
tion done in protocol Π is not less than the share complexity (sum of all the
shares) of an (n, (n− 2(t− u)), t, m, `)-Scheme. ¤
Next, we prove that the share complexity of any (n, (n − 2(t − u)), t,m, `)-
SecretSharingScheme is Ω( n`

n−(3t−2u) ) field elements. This along with Lemma
3 proves part (a) of Theorem 17. To prove Lemma 4, we use entropy based ar-
gument which is used in [16] to prove the lower bound on the communication
complexity of PSMT protocols in undirected networks.

Lemma 4. The share complexity of any (n, (n−2(t−u)), t, m, `)-SecretSharingScheme
is Ω( n`

n−(3t−2u) ) field elements.

Proof: Let Xi denotes the ith share. For any subset A ⊆ {1, 2 . . . n}, let XA

denotes the set of variables {Xi|i ∈ A}. Let m be a value drawn uniformly at
random from F`. Then the secret m and the shares Xi are random variables. Let
H(X) for a random variable denote its entropy. Let H(X|Y ) denotes the entropy
of X conditional on Y . The conditional entropy measures how much entropy a
random variable X has remaining if we have already learned completely the
value of a second random variable Y [3]. Since m is a value drawn uniformly at
random from F`, we have H(m) = `. Since any set B consisting of n− 2(t− u)
correct shares has full information about m, we have H(m|XB) = 0. Consider



any subset A ⊂ B such that |A| = t. Since any set of t shares has no information
about m, we have H(m|XA) = H(m). From the chain rule of the entropy [3], for
any two random variables X1, X2, we have H(X1, X2) = H(X2) + H(X1|X2).
Substituting X1 = m|XA and X2 = XB−A, we get

H(m|XA, XB−A) = H(XB−A) + H(m|XA|XB−A) (3)

From the properties of joint entropy [3], for any two variables X1, X2, we have
H(X1, X2) ≥ H(X1) and H(X1, X2) ≥ H(X2). Thus, H(m|XA, XB−A) ≥
H(m|XA). Substituting in the above equation, we get

H(m|XA) ≤ H(m|XA, XB−A) + H(XB−A)
≤ 0 + H(XB−A) because m can be known completely from XA and XB−A

Consequently, H(m) ≤ H(XB−A) because H(m|XA) = H(m). Since |B| =
n− 2(t− u) and |A| = t, we get |B−A| = n− (3t− 2u). So for any set C of size
|B −A| = n− (3t− 2u),

H(XC) ≥ H(m) ⇒
∑

i∈C

H(Xi) ≥ H(m)

Since there are
(

n
n−(3t−2u)

)
possible subsets of cardinality n−(3t−2u), summing

the above equation over all possible subsets of cardinality n− (3t− 2u) we get

∑

C

∑

i∈C

H(Xi) ≥
(

n

n− (3t− 2u)

)
H(m)

Now in all the possible
(

n
n−(3t−2u)

)
subsets of size n− (3t−2u), each of the term

H(Xi) appears
(

n−1
n−(3t−2u)−1

)
times. So

(
n− 1

n− (3t− 2u)− 1

) n∑

i=1

H(Xi) ≥
(

n

n− (3t− 2u)

)
H(m)

⇒
n∑

i=1

H(Xi) ≥ n

n− (3t− 2u)
H(m)

Since H(m) = `, we get
∑n

i=1 H(Xi) ≥ n
n−(3t−2u)`. Thus the share-complexity

of any (n, (n− 2(t− u)), t, m, `)-SecretSharingScheme is Ω
(

n`
n−(3t−2u)

)
. ¤

Part (a) of Theorem 17 now follows from Lemma 3 and Lemma 4. We now pro-
ceed to prove part (b) of Theorem 17. We can prove part (b) by two different
arguments. First argument goes as follows: since any PSMT protocol has to at
least send the message, it must communicate Ω(`) field elements for sending `
field elements. The second argument is as follows. Notice that from the result of
part (a), any PSMT must communicate Ω(`) field elements for sending ` field



elements when n ≥ 2t+1 and u = t. Hence increasing u beyond t can neither in-
crease (because we may simply ignore any u−t wires and consider the remaining
t wires in the bottom band) nor decrease (because of first argument) the lower
bound on the communication complexity. So if u > t, then n ≥ 2t + 1 and any
three or more phase PSMT has to communicate Ω(`) field elements to securely
send ` field elements. This proves part(b) of Theorem 17. ¤
In the next section, we show that our lower bounds on the communication com-
plexity of any 3 or more phase PSMT are asymptotically tight.

6 Upper Bounds on the Communication Complexity of
Three or More Phase PSMT

From Theorem 17, we get the following implications: Any three or more phase
PSMT protocol which wishes to send a message m containing ` field elements,
has to communicate (i) Ω( n`

n−(3t−2u) ) field elements when 0 < u < t
2 and n ≥

3t − 2u + 1, (ii) Ω( n`
2u−t) ) field elements when t

2 ≤ u ≤ t and n ≥ 2t + 1, (iii)
Ω(`) field elements when u > t and n ≥ 2t + 1.

In this section, we show that the lower bounds in (i), (ii) and (iii) are asymp-
totically tight. Specifically, we provide a three phase PSMT protocol whose com-
munication complexity satisfies the lower bound specified in (i) where 0 < u < t

2
and n ≥ 3t−2u+1. Then we provide a six phase PSMT protocol whose commu-
nication complexity satisfies the lower bound specified in (ii) where t

2 ≤ u ≤ t
and n ≥ 2t + 1. Finally we show that a trivial modification of our second proto-
col leads to a six phase PSMT protocol which communicates O(`) field elements
for transmitting ` field elements when u > t and n ≥ 2t + 1. All the protocols
that we present here are heavily based on the concept of pseudo-basis, a novel
idea introduced by Kurosawa et.al [8] and on the properties of Reed-Solomon
encoding and decoding from coding theory (see Section 2). Designing a five or
less phase PSMT protocol with t

2 ≤ u ≤ t (u > t) and n ≥ 2t + 1 wires in
the bottom and top band respectively and with a communication complexity of
O( n`

2u−t) ) (O(`)) is left as an open problem.

6.1 Communication Optimal PSMT with 0 < u < t
2

and
n ≥ 3t − 2u + 1

In this section, we present a three phase communication optimal PSMT pro-
tocol called O3PSMT where there are n = 3t − 2u + 1 wires in the top band
and u wires in the bottom band with 0 < u < t

2 . Protocol O3PSMT securely
sends ` = n2u field elements by communicating O(n3u) = O(n`) field elements.
Informally the protocol works in the following way. S tries to securely and cor-
rectly establish an information theoretic secure one time pad of size n2u with
R. Let C denotes the set of all RS codewords of length n = 3t− 2u + 1 encoded
using polynomials of degree t. Hence the hamming distance between any two
codeword is n − t = 2t − 2u + 1 ≥ t + 1. In protocol O3PSMT, S selects a



number of random codewords from C and sends them across the n wires. Notice
that each random codeword from C corresponds to a polynomial of degree t.
R receives (possibly) modified codewords (which are different from the original
codewords at most at t locations) and finds the pseudo-basis of the received
codewords using algorithm FindPseudo-basis (see section 2). R then sends
the pseudo-basis, pseudo-dimension and index set over all the wires in bottom
band. S first checks the validity of the pseudo-basis and index set received over
a wire and then for each valid pseudo basis finds the set of corrupted wires. We
say that a pseudo-basis, pseudo-dimension and index set triple received over a
wire in bottom band is valid iff all the codewords listed in pseudo-basis differs
from the corresponding original codewords (sent by S) at most at t locations.
Note that S has no knowledge on whether the original pseudo-basis generated
by R is received by him. So S sends all the valid triple of (pseudo basis, pseudo-
dimension and index set) as received by him along with the corresponding list
of corrupted wires through all the n wires. Now R correctly receives all the
pseudo-basis, pseudo-dimension and index set, along with their corresponding
list of corrupted wires. R checks whether the pseudo-basis generated by him is
present in the received list of pseudo-basis. If yes then he knows the set of cor-
rupted wires and can recover all the original codewords (sent by S) by neglecting
the values received over those corrupted wires during first phase. Otherwise R
learns that entire bottom band is corrupted and hence in the top band there are
at most t−u Byzantine faults. Now from Theorem 1, R can correct t−u errors
in each of the codeword and thus can recover all the original codewords. Hence
in any case S and R will agree on all the codewords chosen by S. But during the
transmission of pseudo-basis over u wires, At who may control all the u wires in
the bottom band can generate u distinct valid pseudo-basis each containing at
most t disjoint codewords (this he can do by guessing with very non-zero prob-
ability). Therefore initially S should send sufficient number of codewords such
that after removing all the ut codewords appearing in the received list of valid
pseudo-basses, the remaining codewords can be used to construct an information
theoretic secure pad of size n2u. Once the pad is established between S and R,
S can use the pad to blind the message and sends the blinded message reliably
to R. The protocol O3PSMT is given in Table 3.

Theorem 18. In Protocol O3PSMT, R will correctly recover m.

Proof: First note that since n = 3t − 2u + 1 > 2t + 1, any information sent
by S over all the wires in top band will be received by R reliably without any
error. This implies R correctly receives blinded message Γ and either one of
the two (depending upon what S has sent during Phase III): all quadruples
(Bj , pj , Ij , FORGEDj) or the message “Entire Bottom band is corrupted”.
Now to prove that R recovers the message m sent by S, we show that S and R
shares the same pad Z. S and R will share Z if (i) Λ is same at both ends and (ii)
R is able to recover polynomials Fi(x) for i 6∈ Λ. Since S sends all valid triples
to R over all wires in top band, Λ will be same at both ends. Now we show that
irrespective of the behavior of At, R will always recover all the polynomials.



If At spares (either does not control or behave passively) at least one wire,
say bj , in the bottom band, then S will correctly receive (Bj , pj , Ij) = (B, p, I)
and hence FORGEDj will contain all the wires which were corrupted during
first phase. In this case, R will correctly receive FORGEDj , from which it
identifies all wires which were corrupted during first phase. R ignores the values
received over those wires during Phase I and with the remaining values all the
polynomials can be recovered correctly. On the other hand, if At corrupts the
entire bottom band such that either S detects that all the received triples are
invalid or R detects that his original triple is not present in the list of triples
received by S (at the end of Phase II), then R concludes that entire bottom
band is corrupted. Hence R applies RS decoding on the received vector Yi to
correct t−u errors (see Theorem 1) and reconstruct polynomial Fi(x) for i 6∈ Λ.
Hence the theorem. ¤
Theorem 19. In Protocol O3PSMT, m is information theoretically secure.

Proof: The message m will be information theoretically secure from At if the
pad Z is information theoretically secure. According to the protocol, Z contains
Fi(0) iff i 6∈ Λ. Notice that Λ = ∪j {Ij |(Bj , pj , Ij) is a valid triple}. Now a
valid triple (Bj , pj , Ij) can be either the original triple (B, p, I) sent by R or
it may be different from (B, p, I) and generated by At by guessing (which is
possible with non-zero probability). In the previous case (Bj , pj , Ij) may be
eavesdropped by At during its transmission over the bottom band. In later case,
At knows (Bj , pj , Ij) since he himself has generated them. Hence it is possible
that all Fi(0) with i ∈ Λ is already exposed to At. But for remaining polynomials
At knows at most t points on them (by listening during first phase) and hence
constant term of each Fi(x) with i 6∈ Λ is information theoretically secure. ¤

Theorem 20. Protocol O3PSMT sends a message m containing ` = n2u field
elements by communicating O(n3u) = O

(
n`

n−(3t−2u)

)
= O(n`) field elements.

Moreover, the protocol is communication optimal.

Proof: During Phase I, S communicates P = n2u + ut codewords to R which
has communication complexity of Pn = n3u + nut = O(n3u) field elements.
In Phase II, R sends triple (B, p, I) through the bottom band. This incurs a
communication cost of O(nt.u + 1.u + t.u) = O(n2u). In the worst case, it may
happen that over every wire in bottom band, S receives a distinct valid triple
(Bj , pj , Ij). Then communication complexity of Phase III for sending the triples
will be O(n2u).n = O(n3u). Since message is of size n2u, sending blinded message
Γ results in a communication cost of O(n3u). Hence overall communication
complexity of Protocol is O(n3u). Thus from Theorem 17, Protocol O3PSMT
is a communication optimal PSMT protocol. ¤

6.2 Six Phase Communication Optimal PSMT when t
2

≤ u ≤ t and
n ≥ 2t + 1

In this section, we present a six phase communication optimal PSMT protocol
called O6PSMT where there are n = 2t + 1 wires in the top band and u wires
in the bottom band with t

2 ≤ u ≤ t. Protocol O6PSMT securely sends ` = n2u



Protocol O3PSMT(m, `, n, u, t)

Phase I: S to R S selects P = n2u + ut = ` + ut random codewords C1, . . . , CP from C. Let
Ci = (ci1, . . . , cin). Also let F1(x), . . . , FP (x) be the t degree polynomials corresponding to the

codewords. Now S sends jth component of all the codewords along wire fj in top band.

Phase II: R to S

1. R receives Yi = Ci + Ei corresponding to codeword Ci such that Yi is different from Ci at
most at t locations. Let Y = {Y1, . . . , YP }.

2. Now R invokes (p,B, I) = FindPseudo-basis(Y) to find pseudo-basis B = {Ya1 , . . . , Yap} ⊂
Y, pseudo-dimension p = |B| and index set I = {a1, . . . , ap} ⊂ {1, . . . , P}.

3. R sends the triple (B, p, I) over all the wires in bottom band.

Phase III: S to R

1. S may receive different triples over different wires. Let S receives (Bj , pj , Ij) over wire bj in

bottom band. Let Bj = {Y j

a
j
1
, . . . , Y j

a
j

pj

} and Ij = {aj
1, . . . , aj

pj }.

2. S considers the triple (Bj , pj , Ij) as valid iff pj = |Bj | and every n length vector listed in Bj

is different from the corresponding original codeword at atmost t locations.

3. Now for every valid triple (Bj , pj , Ij), S finds Ej

a
j
1

= Y j

a
j
1
−C

a
j
1

. . ., Ej

a
j

pj

= Y j

a
j

pj

−C
a

j

pj
and

computes FORGEDj = ∪pj

α=1support(Ej

a
j
α

).

4. S computes Λ = ∪j {Ij |(Bj , pj , Ij) is a valid triple}. Then S concatenates all the Fi(0)’s such

i 6∈ Λ and forms an information theoretic secure pad Z of length at least n2u (since |Λ| ≤ ut
and P = n2u + ut).

5. Now S communicates the following over all the wires in the top band: (i) every valid triple

(Bj , pj , Ij) and corresponding list of corrupted wire FORGEDj (ii) If there is no valid triple,
then the message “Entire Bottom band is corrupted”, (iii) blinded message Γ = Z` ⊕ m
where Z` contains first ` elements from Z.

Local Computation by R at the End of Phase III:

1. R correctly receives all the information that are sent by S in Phase III and computes Λ in the
same manner as done by S.

2. If either R gets the message “Entire Bottom band is corrupted” or if R finds his original
triple (B, p, I) is not present in the list of valid triples sent by S, then R concludes that entire
bottom band is corrupted. Hence in the top band there are at most t − u Byzantine faults. R
now recovers all the polynomials Fi(x) such that i 6∈ Λ by applying RS decoding algorithm on
Yi (received at the end of Phase I) and correcting t−u Byzantine faults. Notice that according
to Theorem 1, RS decoding can correct t − u errors, since each codeword is RS encoded using
a polynomial of degree t. Thus R recovers pad Z (and hence Z` by concatenating Fi(0) for all
i 6∈ Λ) and hence the message m = Γ ⊕ Z`.

3. Otherwise R finds that his original triple (B, p, I) is present in the list of valid triples sent

by S and let (Bj , pj , Ij) is same as (B, p, I). Then R identifies all the wires in FORGEDj

(|FORGEDj | ≤ t) as the corrupted wires in Phase I. Ignoring all information received over

the wires in FORGEDj during Phase I, R reconstruct all the polynomial Fi(x) such that
i 6∈ Λ (actually he can reconstruct all polynomials sent by S). R can do this because now he
has at least t+1 correct values for each Fi(x). After this R recovers the message m in the same
way as described in previous step.

Table 3. Protocol O3PSMT(m, `, n, u, t): ` = n2u, n = 3t− 2u + 1, 0 < u < t
2

field elements by communicating O
(

n3u
2u−t

)
= O

(
n`

2u−t+1

)
field elements, thus

asymptotically satisfying the lower bound given in Theorem 17. Interestingly,
when u = t

2 +Θ(t), then Protocol O6PSMT sends ` field elements securely with
constant factor overhead. Protocol O6PSMT achieves it’s goal by allowing S
and R to share n2u common polynomials each of degree 2u, such that At knows
only t points on each of them. Once this is done, both S and R can generate



an information theoretic pad of length n2u by using EXTRAND algorithm.
S can then blind the message and sends it to R. However, note that S cannot
send the blinded message to R by sending it over the entire top band, as done in
protocol O3PSMT. Because the communication complexity will then become
O(n3u) and hence, it will no longer satisfy the lower bound of Theorem 17. So S
reliably sends the blinded message by using protocol OPRMT given in Section
3, which takes 3 phases. Since here n = 2t + 1 and (n − 2t) + 2u = Ω(t), we
can execute OPRMT. R can recover the message since he knows the pad. Let
C denotes the set of all RS codewords of length N = n + u = 2t + 1 + u encoded
using polynomials of degree 2u ≥ t. Hence the hamming distance between any
two codeword is N − 2u = 2t − u + 1 ≥ t + 1. Protocol O6PSMT is given in
Table 4.

Theorem 21. In Protocol O6PSMT, R correctly recovers m.

Proof: First note that for each codeword Ci, the corresponding N length vector
Yi, possessed by R, differs from Ci only at t locations. This is because At controls
at most t wires from top band and bottom band. With this observation, the
correctness proof of this theorem simply follows from the correctness proof of
Protocol O3PSMT (see theorem 18) and the correctness of EXTRAND. ¤

Theorem 22. In Protocol O6PSMT, m will be information theoretically se-
cure.

Proof: The secrecy of the message follows using similar argument as in Theorem
19 and the correctness of EXTRAND algorithm. ¤

Theorem 23. Protocol O6PSMT sends a message m containing ` = n2u field
elements by communicating O

(
n3u
2u−t

)
= O

(
n`

n−(3t−2u)

)
= O

(
n`

2u−t+1

)
field ele-

ments and hence is communication optimal.

Proof: During Phase I, R sends Q = n2u
2u−t+1 + ut vectors, each of size u,

thus communicating Qu = O( n2u2

2u−t+1 + u2t) field elements. During Phase II,

S communicates Q = n2u
2u−t+1 + ut codewords to R which incurs a commu-

nication cost of Qn = n3u
2u−t+1 + nut field elements. In Phase III, R sends

triple (B, p, I) through the bottom band. This incurs a communication cost of
O(nt.u+1.u+t.u) = O(n2u). In worst case it may happen that over every wire in
bottom band, S receives a distinct valid triple (Bj , pj , Ij). Then communication
complexity of Phase IV for sending the triples using Protocol OPRMT will
be O(n2u). Similarly sending the blinded message Γ of size n2u using protocol
OPRMT results in a communication cost of O(n2u). Hence overall communi-
cation complexity of Protocol O6PSMT is O( n3u

2u−t+1 ). Since the total commu-
nication complexity of O6PSMT satisfies the lower bound given in Theorem
17, it is a communication optimal PSMT protocol. ¤



Protocol O6PSMT(m, `, n, u, t)

Phase I: R to S R selects Q = n2u
2u−t+1 + ut = `

2u−t+1 + ut random u length vectors R1, . . . , RQ such

that Ri = (ri1, . . . , riu). Now R sends jth component of all the vectors along wire bj in bottom band.

Phase II: S to R S receives R̄1, . . . , R̄Q and selects Q codewords C1, . . . , CQ from C such that last u
components of Ci is same as R̄i. This is always possible because every codeword Ci corresponds to a 2u
degree polynomial Fi(x). Now S sends jth component of all the codewords over wire fj in the top band.

Phase III: R to S

1. After receiving information over top band, R possesses N length vector Yi = Ci +Ei corresponding
to codeword Ci such that Yi is different from Ci at most at t locations. Let Y = {Y1, . . . , YQ}.

2. Now R does same computation and communication as in Phase II of Protocol O3PSMT. The only
difference is that here Y contains N = 2t+1+u length vectors {Y1, . . . , YQ} whereas in O3PSMT
Y contains n = 3t − 2u + 1 length vectors {Y1, . . . , YP }. Notice that FindPseudo-basis will still
be able to find out pseudo-basis. This is because the code C used here has a hamming distance of
at least t + 1.

Phase IV: S to R

1. With respect to the triples received through the bottom band, S performs the same computation
(not communication) as done in Phase III of Protocol O3PSMT. That means S identifies the

valid triples and for each valid triple (Bj , pj , Ij) finds list of corrupted wires FORGEDj . But here
there are following differences: (i) the pad Z is generated in a different manner, (ii) the valid triples,
their corresponding list of corrupted wires and the blinded message are sent in a different manner.

2. Generation of pad Z: S computes Λ = ∪j {Ij |(Bj , pj , Ij) is a valid triple}. Then S executes

Zi = (zi
1, . . . , zi

2u−t+1) = EXTRANDN,2u−t+1(Ci) for each i 6∈ Λ. Since |Λ| ≤ ut and Q =

n2u
2u−t+1 + ut, S has generated at least n2u

2u−t+1 Zis. Hence concatenating all Zi, S obtains a pad Z

of length at least n2u.
3. S merges all the quadruples (Bj , pj , Ij , FORGEDj) such that (Bj , pj , Ij) is a valid triple into a

list called L and sends it to R reliably by executing Protocol OPRMT. If there is no valid triple,
then S simply sends the message “Entire Bottom band is corrupted” over all the wires in top
band. S sends the blinded message Γ = Z`⊕m by executing another instance of Protocol OPRMT
where Z` contains first ` elements from Z. Notice that if n ≥ 2t + 1 and n− 2t + 2u = Ω(t), then
OPRMT can send message reliably with constant factor overhead in three phases. Hence R receives
all information communicated by S at the end of Phase VI.

Local Computation by R At The End of Phase VI:

1. R correctly receives all the information sent by S during Phase IV and computes Λ in the same
manner as done by S.

2. If either R gets the message “Entire Bottom band is corrupted” or if R finds his original triple
(B, p, I) is not present in the list of valid triples sent by S, then R concludes that entire bottom
band is corrupted. Hence in the top band there are at most t − u Byzantine faults. In this case,
R neglects last u components of all Yi and then recovers all the codewords Ci such that i 6∈ Λ by
applying RS decoding algorithm on truncated Yi (of length n received at the end of Phase II) and
correcting t − u Byzantine faults. Notice that according to Theorem 1, RS decoding can correct
t − u errors in truncated Yi, as each Ci is RS encoded using a polynomial of degree 2u. Thus R
computes pad Z in the same way as done by S and recovers m = Γ ⊕ Z`.

3. Else R finds that his original triple (B, p, I) is present in the list of valid triples sent by S and let

(Bj , pj , Ij) be same as (B, p, I). Then R identifies all the wires in FORGEDj as the corrupted

wires (including top and bottom band). Notice that in protocol O3PSMT, a valid FORGEDj

contains only the corrupted wires in the top band while in O6PSMT, it contains all the corrupted
wires including top as well as bottom band. Now ignoring all information communicated over the
wires in FORGEDj , R can easily reconstruct all the codewords Ci such that i 6∈ Λ. This is because
|FORGEDj | ≤ t. Hence N−|FORGEDj | ≥ (t+1+u) ≥ 2u+1 and each codeword Ci is encoded
using a polynomial of degree 2u. After this R recovers the message m in the same way as described
in previous step.

Table 4. Protocol O6PSMT(m, `, n, u, t): n = 2t + 1, t
2
≤ u ≤ t, ` = n2u



6.3 Six Phase Communication Optimal PSMT when u > t and
n ≥ 2t + 1

In protocol O6PSMT, if u = t and n = 2t + 1 = Θ(t), then from Theorem 23,
the protocol securely sends ` = n2u = Θ(n3) field elements by communicating
O(n3) field elements. Hence, if u > t and n ≥ 2t + 1, then S and R can execute
protocol O6PSMT by considering only the first 2t + 1 wires in the top band
and first t wires in the bottom band, thus resulting in a six phase communication
optimal PSMT protocol, which sends ` field elements with a communication
complexity of O(`). Thus, we have the following theorem:

Theorem 24. Suppose there exists n ≥ 2t + 1 wires in the top band and u > t
wires in the bottom band. Then there exists a six phase PSMT protocol tolerating
At, which securely sends ` (` = n3) field elements by communicating O(`) field
elements.

7 Conclusion and Open Problems

In this paper we have proved the lower bound on the communication complex-
ity of PSMT protocols in directed networks, which is done for the first time.
Moreover, we have shown that our bounds are asymptotically tight by design-
ing communication optimal PSMT protocols, which are first of their kind. The
summary of our results (marked with *) is given in the following Table. It would

# Phases Characterization Lower Bound

1 n ≥ 3t + 1 [5, 4] Ω( n`
n−3t

) [6]

2 If 0 < u ≤ t then n ≥ 3t− u + 1* Ω( N`
N−3t

); N = n + u*

If u > t then n ≥ 2t + 1* Ω( n`
n−2t

)*

3 If 0 < u ≤ t then n ≥ max(3t− 2u + 1, 2t + 1) [4] Ω( n`
n−(3t−2u)

)*

If u > t then n ≥ 2t + 1 [4] Ω(`)*

be interesting to reduce the phase complexity of our six phase PSMT proto-
col. Our protocols achieve optimality only if the message is of some minimum
specific length. It would be interesting to design PSMT protocols, which are
communication optimal for message of any length.
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