
Key-Private Proxy Re-Encryption

Giuseppe Ateniese∗ Karyn Benson∗ Susan Hohenberger∗

November 3, 2008

Abstract

Proxy re-encryption (PRE) allows a proxy to convert a ciphertext encrypted under one key
into an encryption of the same message under another key. The main idea is to place as little trust
and reveal as little information to the proxy as necessary to allow it to perform its translations.
At the very least, the proxy should not be able to learn the keys of the participants or the
content of the messages it re-encrypts. However, in all prior PRE schemes, it is easy for the
proxy to determine between which participants a re-encryption key can transform ciphertexts.
This can be a problem in practice. For example, in a secure distributed file system, content
owners may want to use the proxy to help re-encrypt sensitive information without revealing to
the proxy the identity of the recipients.

In this work, we propose key-private (or anonymous) re-encryption keys as an additional
useful property of PRE schemes. We formulate a definition of what it means for a PRE scheme
to be secure and key-private. Surprisingly, we show that this property is not captured by
prior definitions or achieved by prior schemes, including even the secure obfuscation of PRE by
Hohenberger et al. (TCC 2007). Finally, we propose the first key-private PRE construction and
prove its security under a simple extension of Decisional Bilinear Diffie Hellman assumption and
its key-privacy under the Decision Linear assumption in the standard model.

1 Introduction

In many applications, data protected under one public key pk1 needs to be distributed to a user
with a different public key pk2. It is not always practical for the owner of sk1 to be online to
decrypt these ciphertexts and then encrypt these contents anew under pk2. For example, Alice
might wish to have her mail server forward her encrypted email to Bob while she is on vacation.
However, how can Alice do this without revealing her sk1 to either her mail server or Bob?

As a solution to this key management problem, the concept of proxy re-encryption (PRE) was
introduced [4]. Proxy re-encryption is a cryptosystem with the special property that a proxy, given
special information, can efficiently convert a ciphertext for Alice into a ciphertext of the same
message for Bob. The proxy should not, however, learn either party’s secret key or the contents of
the messages it re-encrypts. The main idea is to place as little trust in the proxy as possible. When
PRE is used for distributed file systems [1], this absence of trust directly reduces the desirability
for an adversary to compromise the distribution server, without compromising functionality.

In addition to hiding the contents of files from the proxy, it is also useful in practice to suppress
as much meta-data as possible. For example, we might want the proxy file server to re-encrypt
∗Johns Hopkins University, {ateniese,benson,susan}@cs.jhu.edu.

1



sensitive files for certain recipients without revealing to the proxy the recipient’s identity. This way,
if the proxy is compromised, the adversary will not be able to extract a list of “who was speaking
privately with whom”. This is highly desirable for many encrypted communication scenarios.

This level of privacy for standard encryption schemes was formalized as key-private (or anony-
mous) encryption in 2001 by Bellare, Boldyreva, Desai and Pointcheval (BBDP) [3]. Intuitively,
they studied encryption schemes where it is impossible to derive the recipient of a message from
the ciphertext and the set of public keys. Consequently, the ciphertext is anonymous; that is, it
cannot be linked to a particular public key and its owner. Fortunately, most public key encryption
schemes already satisfy this property, such as Elgamal, Cramer-Shoup, and RSA-OAEP.

In this work, we introduce the strictly stronger notion of key-private (or anonymous) PRE.
Intuitively, it should be impossible for the proxy and a set of colluding users to derive either the
sender or receiver’s identities from a re-encryption key even when given the public keys and flexible
interaction ability within the system. As we formalize in Section 2.1, achieving key-private PRE is
only possible when the underlying encryption scheme is key-private.

Unfortunately, this condition is far from sufficient. Finding a key-private PRE was a surprisingly
difficult task. Whereas most standard encryption schemes are already key-private under the BBDP
definition, none of the half-dozen existing PRE schemes are key-private under our natural definition
in Section 2. This includes even the recent PRE construction of Hohenberger et al. [9], which was
proven secure under a very strong obfuscation definition. In the next section, we discuss the
problems with each existing scheme and the necessary conditions for realizing key-private PRE.

The main contribution of this work, in addition to our formal definition in Section 2, is the
first realization of a key-private PRE scheme. Our construction is efficient, reasonably simple, and
secure under basic assumptions about bilinear groups in the standard model. Thus, we show, for
the first time, that this natural extension of anonymous encryption is practical and available for
many existing PRE applications, as discussed in Section 1.2.

1.1 The Notion of Key-Private PRE and Prior Constructions

In this section, we examine the half-dozen existing proxy re-encryption schemes and discuss why
they do not satisfy the notion of key-privacy. Let us first sketch the privacy notion wanted. Intu-
itively, we want to capture the strong guarantee that even an active proxy colluding with a set of
malicious users in the system cannot learn from the re-encryption key the identity of the involved
participants nor the contents of their encrypted messages.

Informally, the key-privacy game works as follows. First, the adversary is given the public
keys of all honest users and the keypairs of all corrupt users. Next, the adversary is allowed to
query two oracles an arbitrary number of times. The adversary may either request: (1) to have a
chosen ciphertext under any user i re-encrypted to any user j or (2) to obtain the re-encryption
key that translates ciphertexts from any user i to any user j. These oracles will operate regardless
of the corruption status of i or j. Finally, the adversary must output a challenge pair of honest
users (i∗, j∗), with the restriction that the adversary cannot have asked for this key before. The
challenger will then return either the re-encryption key from i∗ to j∗ or a random key in the key
space. The adversary wins if he can distinguish these cases with non-negligible probability.

Before discussing the problems with specific PRE constructions, let’s get a better sense of what
cannot possibly work. In Section 2.1, we point out that no deterministic re-encryption algorithm
can satisfy the key-privacy definition. To see this, consider the generic attack where an adversary
asks for a re-encryption of ciphertext C under user i to user j to obtain output C ′. The adversary

2



can then challenge on (i, j) and apply the returned re-encryption key to C. Since the re-encryption
algorithm is deterministic, this should result in output C ′ if this is a proper key from i to j and
is unlikely to do so for a random key. Unfortunately, the first four (out of six) prior PRE schemes
have deterministic re-encryption algorithms, and thus cannot be key-private.

Similarly, in Section 2.1, we show that for a PRE scheme to be key-private (that is, one cannot
distinguish the participants from seeing the key), the underlying encryption scheme must also
be key-private in the sense of Bellare, Boldyreva, Desai and Pointcheval [3] (that is, one cannot
distinguish the recipient from seeing the ciphertext). Some of the schemes also fail to have this
property; mainly because they are in a bilinear setting, where the map can be used for this test.

Let us now discuss some specifics of prior schemes.

BBS PRE. Proxy re-encryption was first proposed by Blaze, Bleumer, and Strauss (BBS) [4] in
Eurocrypt 1998. Their scheme, based on Elgamal, works in a group G of prime order p. Anyone
can send a message m ∈ G to user A with public key ga (with g ∈ G) by computing (mgk, (ga)k),
for a random k ∈ Zp. A can delegate to B (with public key gb) her decryption rights by giving
the proxy the value b/a mod p. All ciphertexts for A can be converted to ciphertexts for B by
computing (gak)b/a = gbk and then releasing the ciphertext (mgk, gbk). Unfortunately, this scheme
is trivially not key-private, because its re-encryption algorithm is deterministic. But there is an
even easier attack: the adversary challenges on (A,B) to obtain challenge key r, this key is correct
iff r = b/a. Using the public keys (ga, gb), the adversary can test this as (ga)r = gb.

AFGH PRE. Ateniese, Fu, Green and Hohenberger [1] proposed new PRE schemes that employ
bilinear pairings. Their protocols are unidirectional (a re-encryption key from A to B does not
imply a key from B to A), an improvement over BBS where the keys are bidirectional. Their
schemes require a bilinear map e : G×G→ GT , where g ∈ G and Z = e(g, g) ∈ GT . In their first
scheme, public key for A is ga and similarly B’s public key is gb. The re-encryption key rkA→B
is gb/a. However, this scheme is not key-private, because the adversary can challenge on (A,B) to
obtain key r and then test if r = gb/a as e(ga, r) = e(gb, g). A similar attack also works for their
second scheme. But since both schemes are deterministic, the generic attack also applies here.

CH PRE. Canetti and Hohenberger [7] proposed the first CCA-secure bidirectional PRE scheme
in the standard model. However, even CCA-security does not ensure key-privacy, because the
public keys (e.g., ga, gb) and re-encryption keys (e.g., b/a) are the same as in the BBS PRE, so the
proxy can attack key-privacy here using the same algorithm from BBS. Part of the re-encryption
algorithm of this scheme is also deterministic, and therefore, the generic attack again applies.

LV PRE. Libert and Vergnaud [11] proposed the first CCA-secure unidirectional PRE scheme in
the standard model. To achieve CCA-security, they employ a quite interesting technique whereby
the encryption of the scheme in [1] is randomized by the proxy via a blinding factor that effec-
tively hides the re-encryption key within the re-encryption (which is also followed by a proof of
consistency). Interestingly, their scheme is not key-private even though the re-encryption algorithm
is probabilistic. Indeed, A and B have respectively public keys ga and gb, and the proxy key is
rkA→B = gb/a, just as in AFGH. Thus, as in AFGH [1], the adversary can challenge on (A,B) to
obtain key r and then test if r = gb/a as e(ga, r) = e(gb, g).

HRSV PRE. Recently, Hohenberger, Rothblum, shelat, and Vaikuntanathan [9] presented a CPA-
secure unidirectional PRE in the standard model, with probabilistic algorithms for performing
encryption and generating re-encryption keys. Moreover, HRSV satisfied a very strong security

3



notion, treating the re-encryption key together with the re-encryption algorithm as an obfuscated
re-encryption program. That is, a program whose code is scrambled in such a way that: (1) it still
produces the correct outputs, and yet (2) it is not possible to “reverse engineer” the program to
learn its secrets (i.e., anything that cannot be learned from black-box access to the program.) Inter-
estingly, even their strong obfuscation definition does not imply key privacy and their construction
does not satisfy our definition. To see this, recall that their construction is set in a bilinear group,
where Alice’s public key is of the form (g, ga1 , ga2) and Bob’s public key is of the form (h, hb1 , hb2)
for random g, h ∈ G and random exponents a1, a2, b1, b2. Given these public keys, the adversary can
ask to see the re-encryption key for (A,B) which will be (y, yb1/a1 , yb2/a2), where y ∈ G is chosen
randomly. The adversary can then challenge on (B,A) to obtain a key (r, r1, r2), which if correct,
is of the form (r, ra1/b1 , ra2/b2) for a random r ∈ G. The adversary can then test for correctness
as e(y, r) = e(yb1/a1 , r1) = e(yb2/a2 , r2). Thus, even this obfuscation is not key-private. Indeed,
our notion seems so difficult to satisfy because, unlike the obfuscation definition, we will allow the
adversary broad query powers and the ability to collude with system users.

1.2 Applications

PRE has been proposed for use in email-forwarding [4], secure file systems [1], DRM [13], and
secure mailing lists [10]. All these applications can benefit from the key-privacy property in some
way. In email-forwarding, Alice may not want the mail server to know to whom she is delegating
her decryption rights. This is similar in the real world to a P.O. Box address where mail can be sent
to a physical location but neither the sender nor the carrier may know who the actual recipient is.
Alice can hide the fact that Bob is a delegatee by instructing the server to convert her encrypted
emails via a key-private PRE scheme and to forward the results to an anonymous (or group) email
address (i.e., an address reachable by Bob but that does not contain any identifiable information
on Bob, like a P.O. Box address indeed).

In a distributed file system, PRE schemes can be used as an access control mechanism to specify
who can access and read encrypted files [1]. Alice may want Bob to read some of her encrypted
files, thus she instructs the file system to convert those files using a proxy re-encryption key from
Alice to Bob. In a distributed file system, anyone can access those files but only Bob can read
them. If the PRE scheme employed is key-private, nobody can even tell who can access and read
any file in the system.

In [13], Taban, Cárdenas, and Gligor describe a secure and interoperable digital rights man-
agement (DRM) system based on proxy re-encryption and proxy re-signatures [2]. They specify,
implement, and analyze a framework within which different DRM systems can interoperate. Proxy
re-encryption is used by a Domain Interoperability Manager (DIM) that translates DRM packaged
digital content between devices with distinct DRM systems. The DIM is a semi-trusted entity that
is susceptible to compromise, thus encryption is used to ensure privacy of the content and licenses
associated with each DRM system. A key-private PRE scheme would also hide the associations
between the various devices and their respective DRM systems in case of compromise.

In [10], Khurana, Heo, and Pant propose to use proxy re-encryption for SELS (Secure Email List
Services), a system that provides private email discussion lists via encryption. A list is composed
of several members that exchange messages internally or with other members outside the list. To
send a private message to a list (and to its members), it is enough to encrypt the message under
a public-key associated with the list. A List Server (LS) uses a PRE scheme to translate that
encryption into encryptions under the public keys of each member of the list, respectively. If the

4



LS server is ever compromised, the secret keys of the list and its members would remain protected
as well as the content of any messages exchanged within the list. However, the identities of the
members in a list would be exposed by just looking at the re-encryption keys. This may not be
desirable in many contexts and thus a key-private PRE scheme would be preferable whenever the
privacy of list members must be guaranteed.

In [12], Suriadi, Foo and Smith use proxy re-encryption to develop a credential system with
conditional privacy. Their system has many proxies providing keys to parities who wish to remain
anonymous. They use multiple-hops in their key distribution to help maintain anonymity; it would
be possible to instead use a key-private PRE scheme.

2 Key-Private PRE Definitions

We build upon the re-encryption definitions of [1] and [7] to introduce the concept of key privacy.
We begin by specifying the input/output behavior of a proxy re-encryption scheme.

Definition 2.1 (Unidirectional PRE) A unidirectional, proxy re-encryption scheme is a tuple
of algorithms Π = (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) for message space M :

• Setup(1k) → PP . On input security parameter 1k, the setup algorithm outputs the public
parameters PP .
• KeyGen(PP ) → (pk, sk). On input public parameters, the key generation algorithm KeyGen

outputs a public key pk and a secret key sk.
• ReKeyGen(PP, ski, pkj) → rki→j. Given a secret key ski and a public key pkj, where i 6= j,

this algorithm outputs a unidirectional re-encryption key rki→j. The restriction that i 6= j is
provided as re-encrypting a message to the original recipient is impractical.
• Enc(PP, pki,m) → Ci. On input a public key pki and a message m ∈ M , the encryption

algorithm outputs a ciphertext Ci.
• ReEnc(PP, rki→j , Ci)→ Cj. Given a re-encryption key from i to j and a ciphertext for i, the

re-encryption algorithm outputs a ciphertext for j or the error symbol ⊥.
• Dec(PP, ski, Ci) → m. Given a secret key for user i and a ciphertext for i, the decryption

algorithm Dec outputs a message m ∈M or the error symbol ⊥.

A unidirectional PRE scheme Π is correct with respect to domain M if:

• For all (pk, sk) ∈ KeyGen(PP ) and allm ∈M , it holds that Dec(PP, sk,Enc(PP, pk,m)) = m.
• For all pairs (pki, ski), (pkj , skj) ∈ KeyGen(PP ) and keys rki→j ∈ ReKeyGen(PP, ski, pkj),

and m ∈M , it holds that Dec(PP, skj ,ReEnc(PP, rki→j ,Enc(PP, pki,m))) = m.

Next, let’s turn to the standard security definition, simplifying the presentation of [1].

Definition 2.2 (Unidirectional PRE CPA-Security Game) Let 1k be the security parameter.
Let A be an oracle TM, representing the adversary. The PRE-CPA game consists of an execution of
A with the following oracles. The game consists of three phases, which are executed in order. Within
each phase each oracle can be executed in any order, poly(k) times, unless otherwise specified.
Phase 1:

• Public Parameter Generation: The public parameters are generated and given to A. This
oracle is executed first and only once.

5



• Uncorrupted Key Generation: Obtain a new key pair (pk, sk) ← KeyGen(PP ). A is
given pk. Let ΓH be the set of honest user indices.
• Corrupted Key Generation: Obtain a new key pair (pk, sk) ← KeyGen(PP ). A is given

(pk, sk). Let ΓC be the set of corrupt user indices.

Phase 2:

• Re-encryption Key Generation Orkey: On input (i, j) by the adversary, where the key
pairs for i and j were generated in Phase 1, return the key rki→j = ReKeyGen(PP, ski, pkj).
All requests where i = j or where i ∈ ΓH and j ∈ ΓC are ignored (an output of ⊥).
• Re-encryption Orenc: On input (i, j, Ci) where the key pairs for i and j were generated in

Phase 1, return Cj = ReEnc(PP,ReKeyGen(PP, ski, pkj), Ci). All requests where i = j or
where i ∈ ΓH and j ∈ ΓC are ignored (an output of ⊥).
• Challenge Oracle: On input (i,m0,m1), the oracle chooses a random b← {0, 1} and returns

the challenge ciphertext Ci = Enc(PP, pki,mb). This oracle can only be queried once, and it
is required that i ∈ ΓH .

Phase 3:

• Decision: Eventually, A outputs decision b′ ∈ {0, 1}. A wins the game if and only if b = b′.

Definition 2.3 (Unidirectional PRE CPA Security) Given security parameter 1k, a PRE
scheme is Unidirectional PRE CPA secure for domain M of messages if is it correct for M and ∀
p.p.t. adversaries A, ∃ a negligible function ε such that A wins the unidirectional PRE-CPA game
with probability at most 1

2 + ε(k).

Remark 2.4 As in many prior re-encryption papers [1, 7, 11], we work in a static corruption
model, where the adversary must chose to either corrupt a party or not at the time the party’s
keypair is generated. Indeed, the problem of handling dynamic corruptions for any encryption
scheme is a classically difficult problem. This rules out allowing the adversary to query Orkey from
an honest to a corrupt user, since this action would corrupt the honest user. Moreover, we also
disallow adversarial queries to Orenc from honest to corrupt users, as in [1], since such access could
simulate a decryption oracle which we do not consider in CPA-secure constructions.

Next, we turn to the issue of what it means for a re-encryption key to be key-private. Informally,
we want a proxy to be unable to identify either the delegator i or the delegatee j when given the
re-encryption key rk i→j and flexible interaction with the system (e.g., other re-encryption keys,
access to re-encryption oracles, etc.) To capture this idea, we say that the proxy is allowed to
choose (i, j) and then cannot distinguish the valid key rk i→j from a random value in the key space.
An essential observation is that for key privacy in re-encryption to make any sense it must be the
case that the underlying encryption scheme be key-private. Otherwise, the adversary could easily
distinguish rk i→j from random, by generating an ciphertext using pk i, applying the re-encryption
key, and then determining if the resulting ciphertext corresponds to pk j or not.

Definition 2.5 (Unidirectional PRE Key-Privacy Game) Let k be the security parameter.
Let A be an oracle TM, representing the adversary. The PRE Key-Privacy Game consists of an
execution of A with the same oracles as before unless specified below. There are three phases.
Phase 1:

6



• The adversary is given the public parameters, and then may request uncorrupted or corrupted
key pairs to be created, as before.

Phase 2:

• Re-encryption Key Generation Orkey: On input (i, j) by the adversary, where the key
pairs for i and j were generated in Phase 1, return the key rki→j = ReKeyGen(PP, ski, pkj).
The oracle will only produce a single re-encryption key for (i, j). If i = j then the error
symbol ⊥ is returned. Note that there is no longer the restriction that i 6∈ ΓH or j 6∈ ΓC .
• Re-encryption Orenc: On input (i, j, Ci) where the key pairs for i and j were generated by

KeyGen, return either Cj = ReEnc(PP,ReKeyGen(PP, sk i, pk j), Ci) or ⊥ if i = j.
• Challenge Oracle: This oracle can only be challenged once. On input (i, j), the oracle

chooses a bit b ← {0, 1} and then returns the value ReKeyGen(PP, sk i, pk j) if b = 1 and a
random key in the key space otherwise. The constraints are that Orkey must not have been
queried for (i, j) before, i 6= j and i, j ∈ ΓH .

Phase 3:

• Decision: Eventually, A outputs decision b′ ∈ {0, 1}. We say that A wins the game if and
only if b = b′.

Definition 2.6 (Unidirectional PRE Key Privacy) For security parameter 1k, a PRE scheme
is key-private if ∀ p.p.t. adversaries A, ∃ a negligible function ε such that A wins the unidirectional
PRE Key-Privacy Game with probability at most 1

2 + ε(k).

2.1 Impossibility Results for Key-Private Re-Encryption

Before seeing the construction, we lay out some necessary, but not sufficient, conditions for satisfying
the above definition in two simple lemmas.

Lemma 2.7 Any bidirectional or unidirectional re-encryption scheme (Setup,KeyGen,ReKeyGen,Enc,
ReEnc,Dec), where the ReEnc algorithm is deterministic cannot satisfy key-privacy (Definition 2.6).

Proof. Suppose ReEnc is deterministic. An adversary A wins the key-privacy game as follows:

1. Ask for a set of uncorrupted parties to be generated; obtain the public parameters and keys.
2. Choose a random m in the message space and compute c = Enc(PP, pk1,m).
3. Query the re-encryption oracle Orenc(1, 2, c) to obtain the response c′.
4. Challenge on identities (1, 2) and obtain the challenge key s.
5. Using s, run the deterministic algorithm ReEnc(PP, s, c)→ c′.
6. If c = c′, output 1, else output 0.

It is easy to see that A succeeds with overwhelming probability. 2

This lemma immediately rules out almost all prior PRE constructions [4, 1, 7] as candidates for
key privacy. Nor is it obvious how to transform these constructions into key-private schemes. The
schemes by Libert and Vergnaud [11] and Hohenberger et al. [9] employ probabilistic re-encryption
algorithms, but they still admit key-privacy attacks. Thus, a probabilistic re-encryption algorithm
is a necessary, but not sufficient condition.

7



Lemma 2.8 Any bidirectional or unidirectional re-encryption scheme (Setup,KeyGen,ReKeyGen,Enc,
ReEnc,Dec) satisfying the key-privacy (Definition 2.6) implies that (Setup,KeyGen,Enc,Dec) is a
key-private encryption scheme according to the standard definition [3].

In other words, it is not possible for a PRE scheme to be key-private, unless its underlying
encryption is key-private. Bellare, Boldyreva, Desai and Pointcheval [3] introduced key-private
encryption, where an adversary cannot distinguish the intended recipient from the ciphertext.
More formally, the adversary is given two public keys pk0, pk1, chooses a message m, is given an
encryption of m under one of the two keys b ∈ {0, 1} chosen at random, and finally issues a guess
b′ ∈ {0, 1}. The security notion requires that all efficient adversaries cannot achieve b = b′ with
probability non-negligibly better than random guessing.

For a PRE scheme to be key-private, the proxy cannot distinguish the intended recipient from
the ciphertext even when given access to re-encryption keys and re-encryption oracles. To see this,
consider that otherwise an adversary A can win the key-privacy game as follows:

1. Ask for n uncorrupted parties to be generated; obtain the public parameters and keys.
2. Challenge on identities (1, 2) and obtain the challenge key s.
3. Choose a message m, encrypt m under pk i using s to obtain output c.
4. If c is a ciphertext for pk2, output 1, else output 0.

The BBS PRE uses Elgamal (in a non-bilinear setting) as its encryption base and thus satisfies
anonymous encryption via Bellare et al. [3], although it is ultimately not a key-private PRE. Thus,
this condition is also necessary, but not sufficient.

3 A Key-Private PRE Scheme

3.1 Algebraic Setting

Bilinear Groups. We write G = 〈g〉 to denote that g generates the group G. Let BSetup be
an algorithm that, on input the security parameter 1k, outputs the parameters for a bilinear map
as (q, g,G,GT , e), where G,GT are of prime order q ∈ Θ(2k) and 〈g〉 = G. The efficient mapping
e : G × G → GT is both: (Bilinear) for all g ∈ G and a, b ∈ Zq, e(ga, gb) = e(g, g)ab; and
(Non-degenerate) if g generates G, then e(g, g) 6= 1. We consider the following assumptions.

Decisional Bilinear Diffie-Hellman (DBDH) [6]: Let BSetup(1k) → (q, g,G,GT , e), where
〈g〉 = G. For all p.p.t. adversaries A, there exists a negligible function ε such that the following
probability is less than or equal to 1/2 + ε(k):

Pr[a, b, c, d← Zq; x1 ← e(g, g)abc; x0 ← e(g, g)d; z ← {0, 1}; z′ ← A(g, ga, gb, gc, xz) : z = z′].

Extended Decisional Bilinear Diffie-Hellman (EDBDH) [1]: Let BSetup(1k)→ (q, g,G,GT ,
e), where 〈g〉 = G. For all p.p.t. adversaries A, there exists a negligible function ε such that the
following probability is less than or equal to 1/2 + ε(k):

Pr[a, b, c, d← Zq; x1 ← e(g, g)abc; x0 ← e(g, g)d; z ← {0, 1};

z′ ← A(g, ga, gb, gc, e(g, g)bc
2
, xz) : z = z′].

8



Decision Linear [5]: Let BSetup(1k) → (q, g,G,GT , e), where 〈g〉 = G. Let h, f be random
generators in G. For all p.p.t. adversaries A, there exists a negligible function ε such that the
following probability is less than or equal to 1/2 + ε(k):

Pr[x, y, r ← Zq; q1 ← fx+y; q0 ← f r; z ← {0, 1}; z′ ← A(g, h, f, gx, hy, qz) : z = z′].

3.2 The Construction

Scheme Π = (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) is described as follows:

Setup (Setup): Run BSetup(1k) → (q, g,G,GT , e), where 〈g〉 = G. Choose a random generator
h ∈ G. Compute Z = e(g, h), and set the public parameters PP = (g, h, Z). In the following,
we assume that all parties have PP .

Key Generation (KeyGen): Choose random values a1, a2 ∈ Zq and set the public key as pk =
(Za1 , ga2) with secret key sk = (a1, a2).

Re-Encryption Key Generation (ReKeyGen): A user A with secret key (a1, a2) can delegate to
a user B with public key (Zb1 , gb2) as:

1. Select random values r, w ∈ Zq.
2. Compute rkA→B = ((gb2)a1+r, hr, e(gb2 , h)w, e(g, h)w) = (gb2(a1+r), hr, Zb2w, Zw).

Encryption (Enc): To encrypt a message m ∈ GT under public key pkA = (Za1 , ga2), do:

1. Select random value k ∈ Zq.
2. Compute the ciphertext (gk, hk,m · Za1k).

We note that, as in prior schemes [1], it is possible to use this same public key to produce a
ciphertext that cannot be re-encrypted, and thus only opened by the holder of skA by selecting
a random k ∈ Zq and outputting the Elgamal ciphertext (e(ga2 , h)k,m ·Zk) = (Za2k,m ·Zk).
We refer to this as a first-level ciphertext, and re-encryptable ones as second-level ciphertexts.

Re-Encryption (ReEnc): Given a re-encryption key rkA→B = (R1, R2, R3, R4) = (gb2(a1+r), hr,
Zb2w, Zw), it is possible to convert a second-level ciphertext CA = (α, β, γ) for A into a
first-level ciphertext for B as follows:

1. Verify that the ciphertext is well-formed, by checking that it uses consistent randomness
in its first two parts as: e(α, h) = e(g, β). If this does not hold, output ⊥ and abort.

2. Otherwise, there exists some k ∈ Zq and m ∈ GT such that α = gk, β = hk and
γ = m · Za1k, and thus, (α, β, γ) is a valid encryption of this m under pkA = (Za1 , ga2).

3. Compute t1 = e(R1, β) = e(gb2(a1+r), hk) = Zb2k(a1+r).
4. Compute t2 = γ · e(α,R2) = m · Za1k · e(gk, hr) = m · Za1k · Zrk = m · Zk(a1+r).
5. Select a random w′ ∈ Zq.
6. Re-randomize t1 by setting t′1 = t1 ·Rw

′
3 = Zb2k(a1+r) · (Zwb2)w

′
= Zb2(k(a1+r)+ww′).

7. Re-randomize t2 by setting t′2 = t2 ·Rw
′

4 = m · Zk(a1+r) · (Zw)w
′

= m · Zk(a1+r)+ww′ .
8. Publish CB = (t′1, t

′
2) = (Zb2y,m · Zy), where y = k(a1 + r) + ww′.

Decryption (Dec): Given secret key (a1, a2), to decrypt a first-level ciphertext (α, β), compute
m = β/α1/a2 ; and to decrypt a second-level ciphertext (α, β, γ), output ⊥ if e(α, h) 6= e(g, β),
otherwise output m = γ/e(α, h)a1 .

Fortunately, this scheme is practical and multi-purpose. Public keys can be used either for re-
encryption purposes or for regular Elgamal encryptions. For completeness, we show in Appendix A
that the CPA-security of the first-level ciphertexts holds under DBDH.

9



3.3 Security Analysis

We first argue that the above scheme is secure and then that it is key-private.

Theorem 3.1 (CPA Security) Under the EDBDH assumption in G, scheme Π is a unidirec-
tional PRE CPA-secure scheme for message domain GT according to Definition 2.3.

The main difficulty in the proof of Theorem 3.1 is ensuring that the reduction can properly
answer all the re-encryption key and re-encryption queries asked by A. Here, it will be more
intuitive to work with the following assumption implied by EDBDH:

Definition 3.2 Modified Extended Decisional Bilinear Diffie-Hellman (mEDBDH): Let
BSetup(1k)→ (q, g,G,GT , e), where 〈g〉 = G. For all p.p.t. adversaries A, there exists a negligible
function ε such that the following probability is less than or equal to 1/2 + ε(k):

Pr[s, t, u, v ← Zq; x1 ← e(g, g)st/u; x0 ← e(g, g)v; z ← {0, 1};
z′ ← A(g, gs, gt, gu, e(g, g)t/u, xz) : z = z′].

Lemma 3.3 If the EDBDH assumption holds in G, then so does the mEDBDH assumption.

Proof. Suppose adversary B can decide mEDBDH, we can construct B′ that solves the EDBDH
problem. On input (g, ga, gb, gc, e(g, g)bc

2
, Q), B′ sends (gc, ga, gb, g, e(g, g)bc

2
, Q) to B and returns

the same answer. To see this is a perfect simulation let y = gc. Then ga = ya/c = yα, similarly
gb = yb/c = yβ and g = y1/c = yγ . The value of e(y, y)βγ

2
= e(g, g)c

2(b/c)(1/c)2 = e(g, g)b/c.
Similarly, the value of e(y, y)αβγ = e(g, g)c

2(a/c)(b/c)(1/c) = e(g, g)ab/c. 2

We now proceed with the proof of Theorem 3.1.

Proof. Suppose A breaks the CPA-security of our PRE construction with probability 1/2 +µ, then
we create an adversary B who breaks the mEDBDH assumption with probability 1/2+µ/2. Recall
that mEDBDH asks when given (g, gs, gt, gu, e(g, g)t/u, Q) is Q = e(g, g)st/u. Given a mEDBDH
instance ∆, B handles oracle queries from A as:

• Public Parameter Generation B sets up the global parameters forA by selecting a random
n ∈ Zq and setting (g, h, Z) = (g, gn, e(g, g)n).
• Uncorrupted Key Generation B chooses random x, y ∈ Zq and outputs the public key

pk = ((e(g, g)t/u)nx, (gu)y), where the secret key is implicitly defined as sk = (tx/u, uy).
• Corrupted Key Generation B choose random xi, yi ∈ Zq, and outputs pki = (Zxi , gyi)

and ski = (xi, yi).
• Re-encryption Key Generation On input (i, j) to Orkey, output the following:

– If (1) i is uncorrupted and j is corrupted or (2) i = j, output ⊥.
– If i and j are corrupted, pick random r, w ∈ Zq and output (gyj(xi+r), hr, e(gyj , h)w, Zw).
– If i and j are both uncorrupted, select a random r, w ∈ Zq and output ((gt)yjxi ·

(gu)yjr, hr, e((gu)yj , h)w, Zw). The first term of the re-encryption key from Alice to
Bob looks like (gb2)a1+r = (guyb)txa/u+r = gtxayb · guybr.

– If i is corrupted and j is uncorrupted, select a random r, w ∈ Zq and output the key
((gu)yj(xi+r), hr, e((gu)yj , h)w, Zw).

10



• Re-encryption On input (i, j, Ci = (α, β, γ)) to Orenc, output the following:

– If (1) i is uncorrupted and j is corrupted, (2) i = j or (3) e(α, h) 6= e(g, β), output ⊥.
– Otherwise, there exists some k ∈ Zq and m ∈ GT such that α = gk, β = hk and
γ = m · Ztxik/u if i is honest or γ = m · Zkxi if i is corrupted.

– If i and j are both corrupted, recover m = γ/e(g, β)xi , then select a random r ∈ Zq and
output (Zyjr,m · Zr).

– If i and j are both uncorrupted, select random r, w ∈ Zq and output (e(gtyjxi · guyjr, β) ·
e(gu, h)yjw, γ ·e(α, hr) ·Zw) = (e(gtyjxi ·guyjr, hk) ·e(gu, h)yjw,m ·Zkxit/u ·e(gk, hr) ·Zw).

– If i is corrupted and j is uncorrupted, recover m = γ/e(g, β)xi , then select a random
r ∈ Zq and output (e(gu, h)yjr,m · Zr).

• Challenge Oracle Challenges are of the form (i,m0,m1) where i is the index of an un-
corrupted user. B responds by choosing random d ∈ {0, 1} and outputting the ciphertext:
(gs, (gs)n,md ·Qnxi).
• Decision A will submit a guess of d′ ∈ {0, 1}. If d = d′ then B outputs 1 (is a mEDBDH

instance) otherwise it outputs 0 (not a mEDBDH instance).

By construction, the public parameters and all uncorrupted keys, corrupted keys, re-encryption
keys, and re-encryptions are correct and distributed properly. As to the challenge ciphertext, we
have two cases. In the case that Q = e(g, g)st/u, then the challenge ciphertext is a proper encryption
of md. A will output d′ such that d = d′ with probability 1

2 + µ. Consequently, B will determine
that ∆ was a mEDBDH instance and answer 1 with the same probability. When Q is random,
independent of s, t and u then the challenge ciphertext reveals no information about md. A will
guess that d = d′ with probability of exactly 1

2 , and B will correctly output 0 (not a mEDBDH)
with the same probability. The probability that ∆ is a valid mEDBDH instance is 1

2 , and B will
output the correct answer with probability: (1

2)(1
2 + µ) + (1

2)(1
2) = 1

2 + µ
2 . We apply Lemma 3.3 to

establish the result. 2

Theorem 3.4 (Key Privacy) Under the Decision Linear assumption in G, scheme Π is a uni-
directional PRE key-private scheme according to Definition 2.6.

The key-privacy proof is more difficult than that of CPA security. In particular, here we must
be able to correctly re-encrypt ciphertexts for a special pair of users (I, J) even though we may not
be able to compute a valid re-encryption key from I to J . To do this, we designed our encryption
scheme in such a way that there is a “back door” for decryption, which in some cases, allows us to
decrypt and then encrypt (thus simulating re-encryption) even when we cannot directly compute
the re-encryption key needed to run the real re-encryption algorithm.

Proof. We show that if an adversaryA can break the key-privacy game with probability 1/2+µ, then
we can construct an adversary B who can break the Decision Linear assumption with probability
roughly 1

2 + µ
4n2 , where n is the number of honest users. (This loose bound comes from letting

the adversary dynamically pick its pair of honest users to challenge on. In prior key-privacy
definitions [3], the adversary was restricted to a single pair.)

Given a Decision Linear input ∆′ = (g, h, f, gx, hy, Q ?= fx+y), B handles oracle queries from A
as follows. Let n be the bound on the number of uncorrupted users which A will ask to be created.
B randomly chooses two as special users I and J , out of these n, and predicts that A will challenge

11



on identities (I, J). B will proceed to set up things, so that the valid re-encryption key from I to
J will be (fx+y, hy). At a high-level, if A challenged on (I, J) then his response will be used to
help B, and if A challenges on anything else B will abort. Fortunately, we will see that B does not
abort with probability ≥ 1/2n2.

Assuming (I, J) are chosen, let’s see how B proceeds:

• Public Parameter Generation B sets up the parameters of A as (g, h, Z) = (g, h, e(g, h)).
• Uncorrupted Key Generation

– If this is the key for special user I, then select random a ∈ Zq and output (e(gx, h), ga).
– If this is the key for special user J , then select random b ∈ Zq output (Zb, f). Denote
f := gs, for some s ∈ Zq.

– Otherwise select random mi, ni ∈ Zq and output (Zmi , gni).

• Corrupted Key Generation Select random mi, ni ∈ Zq and output the public key as
(Zmi , gni), as well as the private key pair (mi, ni).
• Re-encryption Key Generation Given a request to encrypt from i to j, B checks to see

if (i, j) = (I, J). If i is corrupted, this computation can be done by A. B selects a random
r ∈ Zq and does:

– If B produced a re-encryption key from i to j before or i = j, output ⊥.
– If i is I and j is J , then abort. (This means (I, J) will not be the challenge pair.)
– If i is I and j is other, then output ((gx)ni · gnir, hr, e(gx, h)w, Zw).
– If i is J and j is I, then output (ga(b+r), hr, Zaw, Zw).
– If i is J and j is other, then output ((gnj )b+r, hr, Znjw, Zw).
– If i is other and j is I, then output (ga(mi+r), hr, Zaw, Zw).
– If i is other and j is J , then output (fmi+r, hr, e(f, h)w, Zw).
– If i is other and j is other, then output (gnj(mi+r), hr, Znjw, Zw).

• Re-encryption On input (i, j, Ci),

– Check that Ci = (α, β, γ) is properly formed by testing if e(α, h) = e(g, β). If this check
fails or i = j, output ⊥.

– If (i, j) is (I, J), then decrypt Ci using gx as m = γ/e(gx, β). Choose a random r ∈ Zq
and output (e(f, h)r,m · Zr) = (Zsr,m · Zr). This is a key step in the proof.

– Otherwise obtain a re-encryption key (ζ, η, θ, λ) of the same form as the re-encryption
oracle (duplications allowed). The ciphertext is then re-encrypted and re-randomized by
selecting a random w′ ∈ Zq and the output is (e(ζ, β) · θw′ , γ · e(α, η) · λw′).

• Challenge Oracle Challenges are of the form (i, j) where i and j are indices of uncorrupted
users which have not been queried before. If (i, j) is (I, J), B outputs (Q, hy). Otherwise, B
aborts and makes a random guess.
• Decision A will submit a guess of d ∈ {0, 1}. If d = 1, then B outputs 1 (is a Decision Linear

instance), otherwise it outputs 0 (not a Decision Linear instance).

The public parameters, key generation algorithm, and all responses of Orkey and Orenc are
correct and properly distributed. When B does not abort on the challenge and A does not detect
improper queries, we have two cases. If Q = fx+y, then the challenge is a valid re-encryption key
for (I, J) and A will output 1 (a good re-encryption key) with probability 1

2 +µ. B will output the
correct answer (is Decision Linear instance) with the same probability. If Q is random, then A will

12



output the correct answer of 0 (not a valid re-encryption key) with probability 1
2 . B outputs the

same answer, so it will correctly determine that ∆′ is not a Decision Linear instance with the same
probability. Given that each case occurs with probability 1/2 when B does not abort and B does
not abort with probability ≥ 1

2n2 , the total probability of B’s success is ≥ 1
2 + 1

2n2 · µ2 . 2

4 Conclusions and Open Problems

We formalized the notion of key-privacy for proxy re-encryption schemes, where even the proxy
performing the translations cannot distinguish the identities of the participating parties. We dis-
cussed why none of the six or more existing PRE schemes satisfy this simple privacy notion. We
then presented the first construction under standard assumptions in the standard model. Our
construction is efficient enough for several practical PRE applications, such as [1, 13, 10, 12].

Our construction realizes CPA-security. It would be interesting to realize key-private CCA-
secure PRE. However, some basic approaches, such as applying the CPA-to-CCA transformation
of Fujisaki and Okamoto [8] do not appear to maintain the key-privacy properties. It was also
surprising that the definition of obfuscation, as in [9], does not capture key-privacy. It would be
very interesting to know if a secure obfuscation of PRE could be realized when allowing the proxy
and users to collude and allowing all the re-encryption and re-encryption key queries admitted here,
as they would be in a real system. Unfortunately, these types of collusions and interactions appear
to break the security of the construction of [9] even without considering key-privacy.

Acknowledgments

The authors gratefully acknowledge the support of NSF grant CNS-0716142. Susan Hohenberger
also acknowledges support from a Microsoft New Faculty Fellowship.

References

[1] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved Proxy Re-
encryption Schemes with Applications to Secure Distributed Storage. In NDSS, pages 29–43,
2005.

[2] Giuseppe Ateniese and Susan Hohenberger. Proxy re-signatures: new definitions, algorithms,
and applications. In ACM Conference on Computer and Communications Security, pages
310–319, 2005.

[3] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in
public-key encryption. In ASIACRYPT, pages 566–582, 2001.

[4] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy
cryptography. In EUROCRYPT ’98, volume 1403 of LNCS, pages 127–144, 1998.

[5] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, pages
41–55, 2004.

13



[6] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing. In
CRYPTO ’01, volume 2139 of LNCS, pages 213–229, 2001.

[7] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In ACM
CCS, pages 185–194. ACM, 2007.

[8] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Advances in Cryptology CRYPTO 99, volume 1666, page 79, 1999.

[9] Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod Vaikuntanathan. Securely
obfuscating re-encryption. In TCC ’07, volume 4392 of LNCS, pages 233–252, 2007.

[10] Himanshu Khurana, Jin Heo, and Meenal Pant. From proxy encryption primitives to a de-
ployable secure-mailing-list solution. In ICICS, pages 260–281, 2006.

[11] Benoit Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy re-
encryption. In PKC ’08, volume 4939 of LNCS, pages 360–379, 2008.

[12] Suriadi Suriadi, Ernest Foo, and Jason Smith. Conditional privacy using re-encryption. In
IFIP International Workshop on Network and System Security, 2008.

[13] Gelareh Taban, Alvaro A. Cárdenas, and Virgil D. Gligor. Towards a secure and interoper-
able DRM architecture. In DRM ’06: Proceedings of the ACM workshop on Digital rights
management, pages 69–78. ACM, 2006.

A Proof of Theorem A.1

Theorem A.1 If the DBDH assumption holds in G, then the first-level ciphertext of the Section 3.2
scheme is CPA-secure.

Proof. Suppose A breaks the CPA-security of our PRE construction with probability 1/2 +µ, then
we create an adversary B who breaks the DBDH assumption with probability 1/2 + µ/2. Recall
that DBDH asks when given (g, ga, gb, gc, Q), where a, b, c ∈ Zq, is Q = e(g, g)abc.

Given a DBDH instance ∆, B handles oracle queries from A as:

• Public Parameter Generation B sets up the global parameters of A as (g, h, Z) =
(g, gc, e(g, gc)).
• Uncorrupted Key Generation B chooses random xi, yi ∈ Zq, and outputs pki=(Zxi ,

(ga)yi).
• Corrupted Key Generation B chooses random xi, yi ∈ Zq, and outputs pki=(Zxi , gyi)

and ski=(xi, yi).
• Re-encryption Key Generation On input (i, j) to Orkey check if i and j are corrupted

and output the following:

– If i is uncorrupted and j is corrupted, or i = j, output ⊥.
– If i and j are both corrupted, pick random r, w ∈ Zq and output (gyj(xi+r), hr, e(gyj , h)w,
Zw).

– Otherwise select a random r, w ∈ Zq and output ((ga)yj(xi+r), hr, e(gayj , h)w, Zw).

14



• Re-encryption On input (i, j, Ci = (α, β, γ)) to Orenc check if i and j are corrupt and output
the following:

– If (1) i is uncorrupted and j is corrupted, (2) i = j or (3) e(α, h) 6= e(g, β), output ⊥.
– Otherwise, there exists some k ∈ Zq and m ∈ GT such that α = gk, β = hk and
γ = m · Zxik.

– If i and j are both corrupted, recover m = γ/e(g, β)xi , then select a random r ∈ Zq and
output (Zyjr,m · Zr).

– In all other cases, recover m = γ/e(g, β)xi , then select a random r ∈ Zq and output
(e(ga, h)yjr,m · Zr) = (Zayjr,m · Zr).

• Challenge Oracle Challenges are of the form (i,m0,m1) where i is the index of an un-
corrupted user. B responds by choosing random d ∈ {0, 1} and outputting the first-level
ciphertext: (Qyi ,md · e(gb, h)).
• Decision When A submits a guess of d′ ∈ {0, 1}. If d = d′ then B outputs a 1 meaning ∆ is

a DBDH tuple, otherwise 0 meaning ∆ is not a DBDH tuple.

By construction, the public parameters and all uncorrupted keys, corrupted keys, re-encryption
keys, and re-encryptions are correct and distributed properly. As to the challenge ciphertext, we
have two cases. In the case that Q = e(g, g)abc, then the challenge ciphertext is (Zabyi , md · Zb)
whichis a proper encryption of md. A will output d′ such that d = d′ with probability 1

2 +
µ. Consequently, B will determine that ∆ was a DBDH instance and answer 1 with the same
probability. When Q is random, independent of a, b and c then the challenge ciphertext reveals no
information about md. A will guess that d = d′ with probability of exactly 1

2 , and B will correctly
output 0 (not a DBDH) with the same probability. The probability that ∆ is a valid DBDH
instance is 1

2 , and B will output the correct answer with probability: (1
2)(1

2 + µ) + (1
2)(1

2) = 1
2 + µ

2 .
2

15


