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Abstract. Efficient zero-knowledge proofs of knowledge (ZK-PoK) are basic building blocks of many
practical cryptographic applications such as identification schemes, group signatures, and secure mul-
tiparty computation. Currently, first applications that essentially rely on ZK-POKs are being deployed
in the real world. The most prominent example is Direct Anonymous Attestation (DAA), which was
adopted by the Trusted Computing Group (TCG) and implemented as one of the functionalities of the
cryptographic chip Trusted Platform Module (TPM).
Implementing systems using ZK-PoK turns out to be challenging, since ZK-PoK are, loosely speaking,
significantly more complex than standard crypto primitives, such as encryption and signature schemes.
As a result, implementation cycles of ZK-PoK are time-consuming and error-prone, in particular for
developers with minor or no cryptographic skills.
To overcome these challenges, we have designed and implemented a compiler with corresponding lan-
guages that given a high-level ZK-PoK protocol specification automatically generates a sound imple-
mentation of this. The output is given in form of Σ-protocols, which are the most efficient protocols
for ZK-PoK currently known. Our compiler translates ZK-PoK protocol specifications, written in a
high-level protocol description language, into Java code or LATEX documentation of the protocol.
The compiler is based on a unified theoretical framework that encompasses a large number of existing
ZK-PoK techniques.Within this framework we present a new efficient ZK-PoK protocol for exponentia-
tion homomorphisms in hidden order groups. Our protocol overcomes several limitations of the existing
proof techniques.
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1 Introduction

A zero-knowledge proof of knowledge (ZK-PoK) is a two-party protocol between a prover and a
verifier, which allows the prover to convince the verifier that he knows some secret values (proof
of knowledge property), without that the verifier learns anything about them (zero-knowledge
property). There are fundamental results showing that all relations in NP have ZK-PoK [GMW91].
The corresponding protocols are of theoretical relevance, but much too inefficient in practice.

Essentially, all efficient ZK-PoK protocols used in practice today are based on so called Σ-
protocols. These are three-move protocols consisting of the first message from the prover, a challenge
uniformly chosen at random by the verifier and the corresponding response from the prover again.
What is typically being proved using basic Σ-protocols is the knowledge of a preimage under a
homomorphism. There are numerous variations of these preimage proofs. For instance, so called
“AND-proofs” allow to prove simultaneous knowledge of multiple preimages under possibly different



homomorphisms. Similarly there are “OR-proofs”, and one can also show that different preimages
fulfill a set of linear relations.

These Σ-protocol based ZK-PoK proof techniques play an important role in applied crypto-
graphy. In fact, many practically oriented applications use such proofs as basic building blocks.
Examples of such applications include identification schemes [Sch91], interactive verifiable compu-
tation [CM99], group signatures [Cam98], secure watermark detection [ARS05], and efficient secure
multiparty computation [LPS08] - just to name a few.

While many of these applications typically only exist on a specification level, a direction of
applied research has produced first applications using ZK-PoKs being deployed in the real world.
One prominent example is Direct Anonymous Attestation (DAA) [BCC04], which was adopted
by the Trusted Computing Group (TCG), an industry consortium of many IT enterprises, as a
privacy enhancing mechanism for remote authentication of computing platforms. Another example
is the idemix anonymous credential system [CH02], which was released by IBM into the Eclipse
Higgins project, an open source effort dedicated to developing software for “user-centric” identity
management.

Up to now, the design and implementation of practical ZK-PoK protocols is done “by hand”.
The security proofs of these protocols consist of, loosely speaking, a handful of standard arguments
and tricks which are repeated in different constellations over and over again. In fact, past experi-
ences, e.g., during the development of the idemix anonymous credential system [CH02] or Direct
Anonymous Attestation [BCC04] have shown that (i) implementation cycles of ZK-PoK are time-
consuming and error-prone, and (ii) it is hard to achieve resilience against design modifications,
i.e., minor changes in the protocol specification can result in substantial implementation work.
Moreover, in practice, protocols are often designed by cryptographers and then implemented by
software engineers. The former typically are not skilled in implementation matters and the latter
have a hard time understanding details and subtleties of ZK-PoK protocols, which are sometimes
indeed rather complex. This can lead to a rupture between design and implementation, which can
eventually lead to implementation errors. In this paper we aim at tackling these challenges.

Our contributions. To overcome theses challenges, we have designed and implemented a compiler
and corresponding languages that given a high-level ZK-PoK protocol specification automatically
generates the implementation of the corresponding Σ-protocol. More precisely, we have designed
a language which is inspired by the widely used Camenisch-Stadler notation [CS97a]. ZK-PoK
protocol specifications in this language are then translated by the compiler either into Java or LATEX
code. The Java code can be integrated into higher level systems that make use of the corresponding
ZK-PoK. The group operations in the generated code are expressed in terms of abstract interfaces.
This allows users of the code to plug their preferred libraries into the protocol code by implementing
our abstract interfaces. By the same mechanism we assert the algebraic extensibility and flexibility
of the code being generated, i.e., to use one’s favorite group one simply implements our abstract
interfaces with that group. The LATEX code can be used for documenting the protocols and also for
verification purposes. To the best of our knowledge, this is the first compiler suite to support the
automatic generation of sound ZK-PoK protocols.

The existing theory and collection of ZK-PoK proof techniques and “tricks” using Σ-protocols
is vast. The problem however is the lack of a unified theory underlying these techniques. To build
our compiler on solid ground, we have developed a unified framework which encompasses a large
number (but probably not all) of existing proof techniques. The basis of the framework are simple



proofs of knowledge of preimages under homomorphisms. More precisely, we have incorporated the
theory by Cramer [Cra96] on special homomorphisms. These are essentially homomorphisms with
a known order co-domain and the homomorphisms of the form φ(w) = we underlying, e.g., the
RSA scheme.

Exponentiation homomorphisms in hidden order groups (i.e., φ : Zl → H : (w1, . . . , wl) 7→
hw1

1 · · ·h
wl
l with h1, . . . , hl being elements of an RSA group) are not special and thus not covered

by Cramer’s theory. Essentially, all ZK-PoK for such homomorphisms are currently based on the
Damg̊ard-Fujisaki (DF) scheme [DF02]. While the DF scheme allows to demonstrate knowledge of
preimages of exponentiation homomorphisms in hidden order groups, it is not a proof of knowledge
in the strict sense, but loosely speaking, something weaker. In fact, the DF scheme is often wrongly
believed to be a proof of knowledge. This is surprising, since the authors of the paper don’t make
this claim, and describe in detail their proper definition of demonstrating knowledge. In fact, the
DF scheme only works for homomorphisms which are generated using an associated setup protocol.

We propose the novel Σexp-protocol, which takes up and extends the ideas underlying the DF
scheme. The Σexp-protocol relies on weaker and simpler setup assumptions than the DF scheme
and works for arbitrary exponentiation homomorphisms. In particular, it does not require that
homomorphisms are generated according to some specific setup protocol, but only an auxiliary
input has to be given to the prover and the verifier. This auxiliary input has to be verified in a setup
protocol once, and can then be used for arbitrary exponentiation homomorphisms with less than an
arbitrary (but fixed) number of base elements. Also, the Σexp-protocol can always be used instead
of the DF scheme. This makes the Σexp-protocol more appropriate for our unified framework. The
Σexp-protocol yields computational proofs of knowledge in the auxiliary string model, i.e., under the
assumption that the prover and verifier are given some appropriately chosen auxiliary information.
This definitional setting is simpler than the rather contrived one, which underlies the DF scheme.
This can potentially lead to a simpler and more modular security analysis of applications relying
on the Σexp-protocol. We believe that the Σexp-protocol is a contribution of independent interest.

Finally, our theoretical framework also describes how to compose the basic protocols for preim-
age proofs mentioned above to obtain “AND” and “AND-OR” proofs, and to prove linear relations
among preimages. Therefore we rely on a selection of existing techniques. The unification of ZK-PoK
for special homomorphisms and hidden order homomorphisms is novel.

The current version of the compiler - as presented in this paper - implements most of the general
framework (excluding the proposed Σexp-protocol) and can already be used to automatically gener-
ate sound ZK-PoKs for many practical applications in known-order groups including Pedersen Com-
mitments/Verifiable Secret Sharing [Ped92], Schnorr Authentication/Signatures [Sch91], proving in
ZK that a number is the product of two safe primes [CM99], Electronic Cash [Bra94,Oka95,CFT98],
Group Signatures [CL04], and Ring Signatures [CDS94]. Also supported are ZK-PoKs of a plain-
text corresponding to a ciphertext or relations between plaintexts under various encryption schemes
such as, RSA [RSA78], Paillier [Pai99], or Damg̊ard-Jurik [DJ01]; these homomorphic encryption
schemes are widely used in e-voting and secure multiparty computation.

Currently, we are working on the extension of our compiler for protocols in hidden order groups.

Related Work. The compiler presented in this paper was started in [Bri04,CRS05]. We have
extended it substantially and present it together with the underlying theoretical framework here.

A profound analysis of Σ-protocols for special homomorphisms, the so-called Σφ-protocol, can
be found in [Cra96], and the used composition rules can be found in [CDS94]. A first framework for



boolean formulae containing linear relations was done by Brands [Bra97] and extended by Bresson
and Stern in [BS02] to a larger class of predicates. The idea underlying our proofs for relations
is essentially the same as in [CS97b], where the authors also explain how to obtain efficient proof
systems for such formulae. However, all these frameworks are restricted to exponentiation-based
homomorphisms in known-order groups only. We extend it to unknown order groups as well. The
Σexp-protocol extends work of Damg̊ard-Fujisaki [DF02] and overcomes some of their restrictions;
similar approaches also appear in [BCM05,Ban05].

Provably secure protocols for two-party secure function evaluation (SFE) can be compiled au-
tomatically [MOR03,MNPS04]. Similar to what our compiler does in the context of zero-knowledge
protocols, these compilers allow to specify the function to be evaluated in a high-level language
and automatically compile this into an executable protocol. They use zero-knowledge protocols as
building blocks to prove that players behave honestly. In principle, the verification of the relation
to be proven in zero-knowledge can be expressed as a function to which the prover provides the
secret witness and which is evaluated in a secure way. The protocols generated by our compiler are
much more efficient than this generic approach.

On a lower level, Cryptography Aware language and cOmpiler (CAO) [BNPS05] provides com-
piler support for efficient and secure low-level implementation of cryptographic primitives resistant
against software side-channels [BP05] and applications to elliptic curve cryptography [BMP07].

2 General Framework Description

In this section we present the theoretical framework underlying our compiler. We briefly review
the theory by Cramer [Cra96] on Σ-protocols and proofs of knowledge for special homomorphisms
using the Σφ-protocol in §2.1. On a high level, the class of special homomorphisms consists of
homomorphisms where the co-domain is a known order group and of the power homomorphisms
φ(w) = we in hidden order groups. In the following §2.2 we describe how to compose Σφ-protocols to
obtain simultaneous proofs of knowledge for preimages under multiple homomorphisms (i.e., “AND
composition”), and PoKs for subsets of preimages out of a given set (i.e., “AND - OR composition”).
Finally, in §2.3 we present techniques to prove knowledge of linear relations among preimages of
homomorphisms; these techniques can be combined in a modular way with the “AND” and “AND-
OR” compositions. As a result we obtain a rich language of expressions that can be proved about
preimages of homomorphisms, and a simple unified theory underlying these constructions.

2.1 Σ-protocols and proofs of knowledge for special homomorphisms

By s ∈R S we denote uniform random choice of element s from set S. The cardinality of S is
denoted by #S, and the power set of S by 2S . We write (wi)ni=1 for the vector (w1, . . . , wn). By
(w1, . . . , wn)T we denote the transposed vector. A mapping φ : G → H from an additive group (G,+)
into a multiplicative group (H, ·) is called homomorphism, iff ∀a, b ∈ G : φ(a+ b) = φ(a) · φ(b). By
Im φ we denote the image of φ, i.e., Im φ = {z ∈ H : ∃w ∈ G : z = φ(w)}. Note that Im φ is a
subgroup of H.

Let R be a binary relation and let (x,w) ∈ R, where w is a witness and x an element of the
associated language LR. Informally, a proof of knowledge with knowledge error κ for R is a pair of
interactive algorithms (P,V), such that every (potentially dishonest) prover P∗ who on input x can
make verifier V accept with probability more than κ(x), has to know a w′, such that (x,w′) ∈ R;
further, V always accepts for the honest prover P. For a formal definition we refer to [BG93].



A proof of knowledge in the auxiliary string model with knowledge error κ for relation R is a
proof of knowledge where P and V additionally are given an auxiliary string α, which is chosen
according to some predefined probability distribution. For a formal definition we refer to [Dam00].
We note that auxiliary string proofs of knowledge subsume the plain ones. We call a proof of
knowledge in the plain or the auxiliary string model computational, if we restrict provers to be
probabilistic polynomial-time (PPT) algorithms.

All protocols generated by our compiler fall into the abstract class of Σ-protocols defined next.

Definition 1 (Σ-protocol). Let R denote a binary relation, and consider a (x,w) ∈ R. Let P1,P2,
and V denote arbitrary algorithms and α a (potentially empty) auxiliary string. A protocol between
a prover P := P(x,w, α) and a verifier V := V(x, α) is called a Σ-protocol with challenge set
C = {0, . . . , c+} if it satisfies the following conditions:

– 3-move form: The protocol is of the following form:
• P sets (r, state) := P1(x,w, α), sends r to V and keeps state secret.
• V sends a random challenge c ∈R C to P
• P computes s := P2(x,w, state, c, α), sends s to V who accepts if predicate V(x, r, c, s, α) =
true; otherwise he rejects.

Often r, c, s are referred to as commitment, challenge and response, respectively.
– Completeness: For an honest prover, the verifier always accepts.
– Special honest-verifier zero-knowledge: There is a PPT algorithm S, called the simulator,

which takes (x, c) as input and outputs a triple (r, c, s) the distribution of which is indistinguish-
able from the distribution of real communications between prover and verifier.

If α is the empty string, we will omit it as a parameter.
Concrete instances of a Σ-protocol are obtained by defining the algorithms P1, P2, V, and

proving the protocol properties required by Definition 1.
The significance of this definition is that the 3-move form and the completeness property un-

derly the proof of knowledge property of all Σ-protocols currently being known. The completeness
property of a Σ-protocol trivially corresponds to the completeness property required for a proof of
knowledge.

The 3-move form property is more interesting. In fact, based on this property one can show
that there is an algorithm that, when given rewinding access to an arbitrary convicing prover in
a Σ-protocol, will output two accepting communication triples (r, c′, s′) and (r, c′′, s′′) (i.e., triples
such that V(x, r, c′, s′) = V(x, r, c′′, s′′) = true), satisfying c′ 6= c′′. This property is fundamental,
since all currently existing knowledge extractors for Σ-protocols build upon this property. For a
proof of this property see, e.g., Damg̊ard [Dam04].

Also, from the special honest-verifier zero-knowledge (special HVZK) property the plain HVZK
property of Σ-protocols easily follows. Moreover, there exist techniques that allow to turn a Σ-
protocol into a zero-knowledge or concurrent zero-knowledge protocol, e.g. [Dam00]. The Fiat-
Shamir heuristic allows to transformΣ protocols into non-interactive signatures of knowledge [FS87].

Next we describe a concrete Σ-protocol for homomorphisms with a finite domain.

Definition 2 (Σφ-protocol). Let be given a homomorphism φ : G → H with a finite domain G
and x = φ(w). The Σφ-protocol with prover P(x,w) and verifier V(x) is defined by choosing the
algorithms P1, P2, and V, occurring in the definition of the Σ-protocol, as follows:



– P1(x,w) chooses k ∈R G and sets (r, state) := (φ(k), k).
– P2(x,w, state, c) computes s := k + cw.
– V(x, r, c, s) = true, iff φ(s) = rxc.

For any φ with a finite domain the Σφ-protocol with binary challenge set C = {0, 1} is a Σ-
protocol according to Definition 1 and it can be shown to be a proof of knowledge with knowledge
error 1/2, e.g., [Cra96]. To obtain a sufficiently small knowledge error it needs to be repeated se-
quentially, e.g., 80 repetitions are required to reduce the knowledge error to 1/280. The resulting
proofs are not sufficiently efficient for many practical applications. For so called special homomor-
phisms we can obtain much more efficient proofs, since they allow to obtain a small knowledge
error in a single execution of the Σφ-protocol.

Definition 3 (Special Homomorphism [Cra96]). A homomorphism φ is called special, if there
is a PPT algorithm that on input φ : G → H and x ∈ Im φ outputs (u, v) ∈ G × Z \ {0}, such that
xv = φ(u). For a given φ, the special exponent v being output has to be the same for all x.

Many homomorphisms used in cryptography are special. For example every homomorphism φ,
for which a non-zero multiple v of the order of Im φ is known, is special, since xv = 1 = φ(0) for
all x ∈ Im φ. Especially, if the order of H is known, one can set v := ord(H). There are also special
homomorphisms for which the order of the image is unknown (and in fact hard to compute). For
instance, consider a power homomorphism φ : Z∗n → Z∗n, x 7→ xe where n is an RSA modulus and
e ∈ Z. Then for every x ∈ Im φ the pair (x, e) satisfies xe = φ(x), and thus φ is special. Examples
for efficient protocols relying on special homomorphisms are those given by Schnorr [Sch91] and by
Guillou and Quisquater [GQ88].

For the proof of the following theorem on special homomorphisms we refer to §A.1:

Theorem 1. Let φ be a special homomorphism, and let c+ be smaller than the smallest prime divid-
ing its special exponent v. Then the Σφ-protocol is a Σ-protocol with challenge set C = {0, . . . , c+}
according to Definition 1, and a HVZK proof of knowledge with knowledge error 1/#C for φ.

Notation of ZK-PoKs. We will use the notation introduced in [CS97a] to denote ZK-PoKs. That
is, a term like

ZPK

[
(ω1, ω2) : x1 = φ1(ω1) ∧ x2 = φ2(ω2) ∧ ω1 = aω2

]
means, that knowledge of w1, w2 has to be proven such that x1 = φ1(w1), x2 = φ2(w2) and
w1 = aw2. We will stick to the convention that knowledge of variables denoted by Greek letters has
to be proven, whereas all other quantities are assumes to be publicly known.

2.2 Boolean composition of preimage proofs

In many cryptographic applications simple preimage proofs are not sufficient. Hence we will describe
the techniques used in our compiler to prove knowledge of a subset of preimages. To this end, we will
consider the case of pure AND-proofs, followed by proofs for arbitrary monotone boolean formulae.

AND - proofs. First, we consider the pure AND-proof, i.e., proofs of knowledge of multiple
preimages under possibly different homomorphisms. Using the notation of Camenisch and Stadler



[CS97a] we want to perform the following ZK-PoK:

ZPK

[
(ωi)mi=1 :

m∧
i=1

xi = φi(ωi)
]
. (1)

Here, the φi : Gi → Hi are special homomorphisms. For notational convenience, we will describe the
composition of two proofs only (i.e., m = 2); generalisation to an arbitrary m is straightforward.
This means, we show how to ZPK

[
(ω1, ω2) : x1 = φ1(ω1) ∧ x2 = φ2(ω2)

]
:

To this end, define φ : G1×G2 → H1×H2 by (w1, w2) 7→ (φ1(w1), φ2(w2)). Set w := (w1, w2) and
x := (x1, x2). Then performing ZPK

[
(ω) : x = φ(ω)

]
proves knowledge of the required preimages, if

one chooses c+ smaller than the smallest prime dividing lcm(v1, v2), where vi is the special exponent
of φi.

Lemma 1. Using the AND-composition technique described above yields a special HVZK proof of
knowledge (in the plain model) for the preimages w1, w2 under special homomorphisms φ1, φ2.

Proof (Sketch). Note that φ is special with special exponent lcm(v1, v2). Hence, using Theorem 1
we have that the according Σφ-protocol is a Σ-protocol. ut

Proofs of expressions containing ORs. Let’s now consider AND-OR-proofs, i.e., proofs of
arbitrary monotone boolean formulae. Let be given xi = φi(wi) for i = 1, . . . , n. Let each φi be
special. Further, let be given a monotone access structure Γ on {1, . . . , n}. That is, Γ ⊆ 2{1,...,n}

satisfying that, if A ∈ Γ and A ⊆ B, then B ∈ Γ . We explain how to construct a ZK-PoK for:

ZPK

[
(ωi)ni=1 :

∨
A∈Γ

∧
j∈A

xj = φj(ωj)
]
. (2)

To this end, we use the technique of Cramer, Damg̊ard and Schoenmakers [CDS94], which uses
secret sharing schemes [Sha79,Bla79] to yield efficient HVZK proofs of knowledge for expressions
like (2). These PoKs are perfect HVZK in the plain model. For details we refer to [CDS94].

Our compiler uses Shamir’s secret sharing scheme [Sha79], which allows to realize any threshold
access structure, i.e., there is a k ≤ n, s.t. A ∈ Γ , if and only if #A ≥ k; we stress that this covers
OR-proofs, as an OR can be seen as a threshold scheme with k = 1.

2.3 Relations among preimages

Next we will describe how homogeneous linear relations among the preimages can be proven.
For better understanding, we first consider a simple example, where only one equation has to be
satisfied:

ZPK

[
(ω1, ω2) : x1 = φ1(ω1) ∧ x2 = φ2(ω2) ∧ ω2 = bω1

]
(3)

The idea now is quite simple: first, note that the set Ĝ of pairs satisfying the relation is a subgroup
of G2; that is, Ĝ = {(z, bz) : z ∈ G}. So, define φ : Ĝ → H1 ×H2 as the cartesian product of φ1 and
φ2, and let x := (x1, x2). Then (3) can be proven by performing ZPK

[
(ω) : x = φ(ω)

]
. Note that

r ∈R Ĝ can be drawn efficiently by choosing r1 ∈R G and setting r := (r1, br1). This is essentially
the same idea as in [CS97b], where this technique is used to prove that two discrete logarithms are
equal.



Let us now generalize this to the general case, with an arbitrary number of homomorphisms
and linear relations. Assume one has m homomorphisms φj : Gnj → Hj and a family of sets
Θ ⊆ 2{1,...,m}. For each j, let xj = φj(wj1, . . . , wjnj ). We show how to prove the following statement:

ZPK

[(
(ωj1, . . . , ωjnj )mj=1

)
:
∨
S∈Θ

( ∧
j∈S

xj = φj(ωj1, . . . , ωjnj ) ∧ 0 = AS · ((ωj1, . . . , ωjnj )j∈S)T
)]
.

(4)
Here, for each S ∈ Θ, AS denotes an integer matrix with

∑
j∈S nj columns and as many rows as

linear relation have to be satisfied, of the following form:

AS =


0 0 1 ∗ · · · ∗

0 . .
. ...

...

1 ∗ · · · ∗ · · · ∗

 .

In the following we assume that all φj in (4) are special homomorphisms, for which the special
exponent is a nonzero multiple of ord(Im φ). Then the 4 can be handled using the composition
techniques of §2.2 by additionally performing the following steps for each S ∈ Θ first:

– Let xS := (xj)j∈S be the vector consisting of all images in S.
– Define GS as the subgroup of

∏
j∈S Gnj consisting of all tuples satisfying the linear relations

in (4) within the conjunctive clauses corresponding to S. Because of the form of AS , random
choices can be done efficiently in GS by forward substitution.

– The homomorphism φS : GS →
∏
j∈SHj is set to the cartesian product of all φj with j ∈ S.

Using this approach, expression (4) reduces to an OR-proof among the preimages of the xS :

ZPK

[(
(ωj1, . . . , ωjnj )mj=1

)
:
∨
S∈Θ

xS = φS((ωj1, . . . , ωjnj )j∈S)
]
.

Theorem 2. Let the special exponent vj of φj be a nonzero multiple of the order of Im φj for all
j ∈ {1, . . . ,m}. Then performing the steps described above yields a Σ-protocol to prove knowledge
of preimages satisfying the conditions in (4).

Proof. We show that all φS are special: As vj is a (nonzero) multiple of the order of Im φj , the
same holds for vS :=

∏
j∈S vj and φS . Set u = 0 for all x ∈ Im φS . Then xvS = 1 = φS(0) and the

zero-vector trivially satisfies all homogeneous linear equations. So the claim follows by Lemma 1
and the correctness of the OR-composition by [CDS94]. ut

So far we have restricted the domain of each homomorphism to be Gnj . Yet, the above result
can easily be generalized to the case of arbitrary domains, as long as all preimage within one linear
relation in (4) are elements of the same group. This is already implemented in our compiler.

Further relations. Using the methods described so far, it is possible to prove all statements that
can algebraically be derived from preimage proofs using boolean composition and linear relations.
For instance multiplicative relations can be performed manually with our current compiler:



Example 1 (Multiplicative Relations modulo ord(G)). To prove knowledge of the discrete logarithms
w1, w2, w3 of x1, x2, x3, satisfying w1w2 = w3 mod ord(G) one can perform the following proof:

ZPK

[
(ω1, ω2, ω3) : x1 = gω1 ∧ x2 = gω2 ∧ x3 = gω3 ∧ x3 = xω2

1

]
.

Example 2 (Polynomial Relations modulo ord(G)). As a special case of the previous example one
can show that one preimage is a power of another one, which together with linear relations allows
to prove polynomial relations without constant terms. If in the previous example the relation
w3 = w2

1 + w2 mod ord(G) has to be satisfied, the problem can be reduced to one only containing
linear constraints [CS97a], which can be handled as explained before:

ZPK

[
(ω1, ω2, ω3, µ) : x1 = gω1 ∧ x2 = gω2 ∧ x3 = gω3 ∧ 1 = gµx−ω1

1 ∧ ω3 = µ+ ω2

]
.

Example 3 (Range Proof). As suggested in [CM99] one can proof knowledge of a preimage ω of
x = φ(ω) that lies in a given range, i.e., 2`1 − 2`2 ≤ ω ≤ 2`1 + 2`2 for public constants `1, `2, by
committing to the bits of ω with Pederson’s homomorphic commitment scheme [Ped92] and then
proving that the commitments hide either 0 or 1 and constitute the binary representation of ω.

In the following two sections we describe how our current compiler implements the described
general framework in §3 and give practical examples in §4. Theoretically interested readers can
safely skip these sections and continue reading in §5 how the general framework presented in this
section can be extended to hidden order groups.

3 Implementation of the Compiler

As a proof of concept, we have implemented a compiler that brings the theoretical framework of §2
into practice. That is, the current version of the compiler supports the Σφ-protocol (cf. Definition 2)
for proofs of special homomorphisms, especially including all homomorphisms with known-order
co-domain. Future versions will also be able to prove exponentiation homomorphisms in unknown-
order groups using the techniques described in §5.

The compiler is based on work in [Bri04] and IBM Research and we plan to publish it as an
open source project soon. It translates a high-level protocol specification into a complete, sound
and HVZK Σ-protocol for special homomorphisms using the techniques of §2.2 and §2.3.

The input of the compiler is a protocol specification in a language which is very close to the
intuitive and widely used notation of Camenisch-Stadler [CS97a] with extensions to specify the
underlying algebraic structures precisely.

The output of the compiler is either a human-readable specification of the protocol in LATEX or
JAVA source code for prover and verifier that can be compiled into runnable code. The JAVA code
corresponds to the algorithms of the Σ-protocol for prover and verifier (P1,P2,V) that can easily
be integrated into high-level user applications. Some parameters that can not be inferred by the
compiler automatically (like the size of the challenge set) must be chosen by the user according
to the theory and provided as constructor arguments. The compiler was designed modularly to be
easily extendible with other backends, e.g., to produce C-code for specific embedded platforms.

Next, we describe the semantics of the input language using a practical running example. We
discuss two more practical examples to demonstrate the broad applicability of our compiler in §4.
The complete EBNF specifying the syntax of the input language formally is given in Appendix B.



3.1 Overview

As running example we show how our compiler can be used to automatically generate protocols to
prove relations between plaintexts encrypted with the Damg̊ard-Jurik crypto system [DJ01]. The
running example proves that ciphertext xa is either an encryption of 0 or 1 and that prover knows
the plaintext of ciphertexts xb and xc being encryptions of the same message µ, i.e.,

ZPK

[
(µ, (ρi)4

i=1) : (xa = E(0, ρ1) ∨ xa = E(1, ρ2)) ∧ xb = E(µ, ρ3) ∧ xc = E(µ, ρ4)
]
.

with E(., .) denoting the encryption function and ρi randomization parameters.

// Declarations

Group Zn, Zm*;

GroupElement g,x_a,x_b,x_c,rho_[0..3],mu;

Homomorphism phi_[0..3];

IntegerConstant n;

// Assignments

AssignGroupMember(Zn, mu);

AssignGroupMember(Zm*,{g,x_a,x_b,x_c,rho_[0..3]});

// Definitions

DefineHomomorphism(phi_0, (rho_0) |-> (rho_0^n));

DefineHomomorphism(phi_1, (rho_1) |-> (rho_1^n));

DefineHomomorphism(phi_2, (mu,rho_2) |-> (g^mu * rho_2^n));

DefineHomomorphism(phi_3, (mu,rho_3) |-> (g^mu * rho_3^n));

// Protocol Specification

SpecifyProtocol [

Relation = ([(x_a)=phi_0(rho_0)] || [(x_a*g^(-1))=phi_1(rho_1)])

&& ([(x_b)=phi_2(mu,rho_2)] && [(x_c)=phi_3(mu,rho_3)]);

Target = LATEX;

Layout = COMPACT;

]

The LATEX output generated by our compiler is given in Appendix C.

As in the example, all input files are composed of four parts for Declarations (cf. § 3.2), Assign-
ments (cf. §3.3), Definitions (cf. §3.4), and Protocol Specification (cf. §3.5) in the given order that
are described in the following sections.

Line comments starting with // can be inserted at any place, statements are terminated with
’;’, and arrays are used as shortcut, e.g., rho_[0..3] is equivalent to rho 0,rho 1,rho 2,rho 3.

3.2 Declarations

Each variable must be declared as Group, GroupElement, Homomorphism, or IntegerConstant
before usage. The order of declarations is arbitrary. For convenience, multiple variables separated
with ’,’ can be declared in the same line.

Most relevant groups are already pre-defined in the compiler while abstraction allows users to
add arbitrary groups.

Pre-defined finite additive (Zm) resp. multiplicative (Z∗m) groups modulo m are defined as
uppercase Z followed by a letter for the modulus and an optional * to indicate the multiplicative
group, i.e., Group Zn; declares group (Zn,+) resp. Group Zm*; declares group (Z∗m, ∗). In the
implementation, the corresponding modulus is given as constructor parameter, e.g., m would be
set to n2 in the running example when used for Paillier crypto system.



Alternatively, abstract groups like Group (G,+) or Group(H,*) can be declared for which an
abstract class is generated that allows easy integration of arbitrary groups like elliptic curve groups.
The first parameter is the name of the group whereas second parameter denotes whether the group
is written additively (+) or multiplicatively (*).

Other declarations have the structure <Type> <VariableName>;, where <Type> is either
GroupElement, Homomorphism, or IntegerConstant and <VariableName> has to start with a letter
followed by letters, numbers or underscores (_).

The pre-defined parameter names shown in Table 1 in the appendix are reserved for code
generation and hence can not be used as variable names. Alternatively, pre-defined parameter
names can be changed in the ParameterNames section described later.

3.3 Assignments

In this section of the input file, each group element must be assigned to one group declared before.
Single group elements can be assigned with AssignGroupMember(Zn,mu);. Multiple group elements
are grouped in braces like AssignGroupMember(Zm*,{g,x a,...}); in the running example.

3.4 Definitions

Homomorphisms can be defined either concrete or abstract. They must already have been declared
before.

Concrete definition maps elements explicitly from domain to co-domain, e.g.,
DefineHomomorphism(phi 2, (mu,rho 2) |-> (g^mu*rho 2^n));
for homomorphism φ2 : (µ, ρ2) 7→ gµ · ρ2

n in the running example.
The mapping can consist of group elements (i.e., g) and integer constants (i.e., n) defined before

as well as integer numbers (i.e., 1 in the definition of φ1). It must be semantically correct, e.g., only
combines group elements of the same group with its group operation. For concrete homomorphisms
a class is generated that implements the homomorphism using the corresponding group operations.

Alternatively, abstract definition, e.g., DefineHomomorphism(phi, G 1 # G 2 -> H 1 # H 2);,
specifies only the domain (G1 × G2) and the co-domain (H1 × H2) of the homomorphism φ :
G1 × G2 → H1 × H2. An interface is generated that can be instantiated with a corresponding
implementation of an arbitrary complex homomorphism.

3.5 Protocol Specification

The protocol specification is encapsulated in a block SpecifyProtocol [ . . . ] and contains the
specification of the protocol in the order given in this section. Relation and Target must be
specified whereas Constraints, ParameterNames and Layout are optional.

Relation (cf. §2.2). Group elements must be related to homomorphisms together with an optional
access structure. The relation can be given either in boolean or enumerative description as follows.

Boolean description is close to Camenisch-Stadler notation [CS97a], e.g., the relation in the
running example directly corresponds to (xa = φ0(ρ0) ∨ xa/g = φ1(ρ1)) ∧ xb = φ2(µ, ρ2) ∧ xc =
φ3(µ, ρ3). It consists of literals encapsulated in [...] that relate preimages via homomorphisms
to images. The access structure is specified as monotone boolean operators AND (&&) resp. OR
(||) between the literals and is compiled into AND- resp. OR-proofs. Additionally, arithmetic
expressions, i.e., semantically correct expressions (cf. previous section) on publicly known values
(images, integer constants and integers), can be defined on the left-hand side of the literals, e.g.,
[(x_a^(5*n))=phi_0(rho_3)].



Alternatively, enumerative description allows more detailed specification of the access structure.
The relation of the running example is equivalent to

Relation [

CommonInput = {(phi_0,(x_a)),(phi_1,(x_a*g^(-1))),(phi_2,(x_b)),(phi_3,(x_c))};

PreimageInput = {(rho_0),(rho_1),(mu,rho_2),(mu,rho_3)};

AccessStructure = {{phi_0,phi_2,phi_3},{phi_1,phi_2,phi_3}};

]

in enumerative description. The common input and the preimage input are both ordered lists
of tuples that correspond to each other in number and position. Each tuple of the common input
consists of the name of the homomorphism (e.g., phi_i)) followed by the list of its publicly known
images (e.g., (x_i)). Each tuple of the preimage input is the list of private preimages (e.g., (rho_0),
(rho_1), (mu,rho_2), resp. (mu,rho_3)) of the homomorphism defined in the same position of
the common input. Hence, the first position of the example above specifies that xa = φ0(ρ0). The
access structure is given as a set of qualified sets that describes its disjunctive normal form (DNF).
If an honest prover knows all preimages of one qualified set, e.g., the preimages of φ0, φ2 and φ3

or those of φ1, φ2 and φ3 in the example, the honest verifier will accept the proof. The compiler
automatically generates a combination of AND and OR-proofs corresponding to the DNF of the
specified access structure.

If the access structure is not specified, an abstract class is generated to allow arbitrary imple-
mentation of monotone access structures. We have implemented a threshold access structure based
on Shamir’s Secret Sharing [Sha79] to efficiently prove knowledge of k out-of n preimages [CDS94].

Constraints (cf. §2.3). Homogenous linear relations between preimages can be expressed as con-
straints, e.g., Constraints = (w 1=3*w 2+w 3)&&(w 4=-w 1)&&(w 5=w 6);. For multiplicatively writ-
ten groups with group operation * the first constraint would be written as (w_1=w_2^3*w_3), the
second as w_4=w_1^(-1).

All preimages in one constraint must belong to the same group and the left hand side must
always be a single variable. Multiple constraints can be connected with && and are valid globally
for all homomorphisms that depend on the corresponding preimages.

If linear combinations of the same preimages are re-used in multiple homomorphisms, e.g., m in
the running example, they are automatically converted into an explicit constraint, i.e., the input in
the running example is internally changed to:
Relation =...&&([(x b)=phi 2(mu phi 2,rho 2)]&&[(x c)=phi 3(mu phi 3,rho 3)]);

Constraints = (mu phi 2=mu phi 3);.
The order of constraints is important in order to avoid cyclic dependencies. If a preimage is

assigned on the left hand side of a constraint it must only be used on the right hand side of later
constraints only (in left-to-right order). E.g. the order in Constraints = (omega 1=omega 2) &&
(omega 3=omega 1); is correct while swapping the two constraints would be invalid. For simplicity,
the compiler assigns the variables from left to right so each variable has to be assigned before its
value is used in a later assignment. Naturally, cyclic assignments like (omega 1=omega 2) &&
(omega 2=omega 1) are impossible with this notation. Future versions of the compiler might find
a correct ordering of assignments automatically but still detect cyclic assignments.

ParameterNames. Pre-defined parameter names can be changed from their default name given
in Table 1 in the appendix to avoid conflicts with user-defined variable names like
ParameterNames{VarRandom=u; VarChallenge=z;}.



Target. The back-end of the compiler used for output generation can be specified as target.
Target = JAVA; generates JAVA source code for prover and verifier that can be compiled into
runnable code, Target = LATEX; a human-readable summary of the protocol in LATEX.

Layout. The layout of the LATEX output (Target = LATEX;) is set to compact mode by specifying
Layout = COMPACT; or verbose mode if Layout is omitted. Compact mode puts together multiple
homomorphisms to visualize the protocol specification in a more compact way.

4 Examples

We describe two real-world applications demonstrating the broad applicability of our compiler in
practice. For lack of space, only the input specifications are given here while the corresponding
LATEX outputs generated by the compiler can be found in the appendix.

4.1 Group Signature Scheme

A group signature scheme allows members of a group to sign messages s.t. the signature does not
reveal their identity. Only a designated group manager is able to identify the group member who
issued a given signature. Camenisch and Lysyanskaya [CL04] propose an efficient group signature
scheme that extends the approach of [CS97a] to known order groups of prime order q with bilinear
maps. The example demonstrates how our compiler can be used to automatically generate the
Σ-protocol underlying their signature proof of knowledge

SPK

[
(µ, ρ, ν) : vρs = vxv

µ
xy ∧ c1 = gν ∧ c2 = hν ∧ c3 = yν1g

µ ∧ c4 = (y2y
H
3 )ν

]
(m)

where H := H(c1||c2||c3). The first clause proving knowledge of a CL signature [CL02] is rewritten
as vx = vρsv

−µ
xy in the protocol specification. The generated LATEX output is given in Appendix D.

// Declarations

Group Zq, (G,*);

GroupElement g,h,mu,rho,nu,v_x,v_s,v_xy,H,y_[1..3],c_[1..4];

Homomorphism phi_[0..4];

// Assignments

AssignGroupMember(Zq, {mu,rho,nu,H});

AssignGroupMember(G, {g,h,v_x,v_s,v_xy,y_[1..3],c_[1..4]});

// Definitions

DefineHomomorphism(phi_0, (rho,mu) |-> (v_s^rho * v_xy^(-1*mu)));

DefineHomomorphism(phi_1, (nu) |-> (g^nu));

DefineHomomorphism(phi_2, (nu) |-> (h^nu));

DefineHomomorphism(phi_3, (nu,mu) |-> (y_1^nu * g^mu));

DefineHomomorphism(phi_4, (nu) |-> ((y_2*y_3^H)^nu));

// Protocol Specification

SpecifyProtocol [

Relation = [(v_x) = phi_0(rho,mu)] && [(c_1) = phi_1(nu)] &&

[(c_2) = phi_2(nu)] && [(c_3) = phi_3(nu,mu)] && [(c_4) = phi_4(nu)];

Target = LATEX;

]

4.2 Ring Signature Scheme

The second example demonstrates automatic generation of the proofs from a basic ring signature
scheme [CDS94] based on a Schnorr signature [Sch91]. Ring signatures are group signatures without
a group manager who can unveil the identity of the issuer of a ring signature. A ring signature can



be issued by proving knowledge of one secret key wj of the n public keys x1, . . . , xn associated to
the members of the group with the following signature proof of knowledge

SPK

[
(w1, . . . , wn) : x1 = gw1 ∨ · · · ∨ xn = gwn

]
(m).

The example generates the underlying Σ-protocol for n = 3 members.

// Declarations

Group Zq, Zp*;

GroupElement g,x_[1..3],w_[1..3];

Homomorphism phi_[1..3];

// Assignments

AssignGroupMember(Zq, {w_[1..3]});

AssignGroupMember(Zp*, {g,x_[1..3]});

// Definitions

DefineHomomorphism(phi_1, (w_1) |-> (g^w_1));

DefineHomomorphism(phi_2, (w_2) |-> (g^w_2));

DefineHomomorphism(phi_3, (w_3) |-> (g^w_3));

// Protocol Specification

SpecifyProtocol [

Relation [

CommonInput = {(phi_1,(x_1)), (phi_2,(x_2)), (phi_3,(x_3))};

PreimageInput = {(w_1),(w_2),(w_3)};

AccessStructure = {{phi_1},{phi_2},{phi_3}};

]

Target = LATEX;

Layout = COMPACT;

]

AccessStructure allows specification of an arbitrary access structure of signers who are quali-
fied to sign on the group’s behalf. If AccessStructure is omitted it is generated as abstract class.
Instantiation with the implemented threshold access structure yields a ring signature scheme where
valid signatures can be issued by cooperation of at least k of the n members of the group [CDS94].

The generated LATEX output is given in Appendix E.

5 Extension to Hidden Order Groups

The Σφ-protocol as defined in §2 can only be used efficiently if the underlying homomorphism is
special. To overcome this limitation, we introduce a novel protocol (the Σexp-protocol) in §5.1, which
yields efficient proofs of knowledge for exponentiation homomorphisms in hidden order groups. The
Σexp-protocol extends ideas of the Damg̊ard-Fujisaki proof scheme [DF02] and overcomes several
limitations of it. In §5.2 and §5.3 we show how the framework given in §2 can be extended to cover
the Σexp-protocol as well, and we show how to combine the techniques for Σφ- and Σexp-protocols.

The Σexp-protocol is not yet implemented in the compiler described in §3 and §4, but the
implementation will take place in near future. We present the Σexp-protocol here and extend the
general framework of §2 to hidden order groups, which we think is of independent interest.

5.1 An efficient protocol for exponentiation homomorphisms in hidden order
groups

We first note that the Σφ-protocol is only defined for homomorphisms with a finite domain. It is thus
not applicable for exponentiation homomorphisms φE = gw1

1 . . . gwl
l in hidden order groups (e.g.,



when g1, . . . , gl are elements of an RSA group); these are mappings of the form φE : Zl → H, having
an infinite domain. In this case, the soundness property is not satisfied any more. Yet this is only
a technical issue, since the Σφ-protocol can be easily modified to also work for exponentiations in
hidden order groups, e.g. [Ban05]. The more fundamental problem is that the resulting Σ-protocol
is only known to be a proof of knowledge when the challenge set is chosen to be C = {0, 1}. The
resulting proofs are thus not sufficiently efficient for most practical applications.

There are ways around this problem. Bangerter et al [BCM05] discuss protocols and techniques
which allow to obtain efficient proofs for homomorphisms in hidden order groups. Yet, the soundness
of these techniques relies on rather strong assumptions (i.e., the random oracle model) and most of
all are not based on the Σ-protocol and thus do not fit into our framework. The most widely used
technique is the Damg̊ard-Fujisaki (DF) scheme [DF02]. It allows to demonstrate knowledge of a
commitment in RSA groups (and other hidden order groups) using aΣ-protocol. On a high level, the
scheme consits of a setup protocol where prover and verifier jointly generate a commitment function.
Then, once the prover has committed to some value, he uses a Σ-protocol to demonstrate knowledge
of that value to the verifier. The commitment being used is the exponentiation homomorphism
φE = gw1

1 gw2
2 . However, the DF scheme can be extended to work for multi-exponentiation with

more than two base elements.

It is important to note that the DF scheme, as the authors state explicitly, is not a proof of
knowledge, but loosely speaking something weaker. That is the Σ-protocol used in the DF scheme
only demonstrates knowledge for homomorphisms which were priorly generated in the setup phase.
Since the setup protocol is rather inefficient, using the DF scheme is only suitable when setup costs
can be neglected. In practice, when the DF scheme is used as a sub-protocol of some higher-level
application, this is typically the case when the setup protocol is run during system initialization,
but not while the system is in interactive use. This in turn means that all homomorphisms for
which the DF scheme is to be applied to, need to be known a priori at initialization time.

To overcome these restrictions we present a novel protocol, called Σexp which allows to obtain
efficient statistical HVZK proofs of knowledge in the auxiliary string model. It works for any
exponentiation homomorphism φE = gw1

1 . . . gwl
l , in particular in hidden order groups, in the case

that the order of Im φE does not contain small prime factors. The protocol extends ideas found in
the DF scheme. That is, the soundness of our protocol also relies on the strong RSA assumption and
our protocol requires a setup phase similar to the DF scheme. Compared to the DF scheme it has
two main advantages. First, the setup protocol only needs to be run once and for all and then our
scheme can be used as an efficient proof of knowledge for arbitrary exponentiation homomorphisms
(that do not contain more than an arbitrary but fixed number of base elements). Second, our
protocol is a proof of knowledge in the auxiliary string model. Technically, this is a simpler and
easier to grasp definitional setting than the rather contrived one underlying the DF scheme. This
can potentially lead to a simpler and more modular security analysis of applications relying on
our protocol. Loosely speaking, our scheme is more flexible than the DF scheme and works for a
larger class of exponentiation homomorphisms, and thus it is more appropriate for the theoretical
framework underlying our compiler, and probably also for other practical applications as well.

The idea underlying the Σexp-protocol is as follows: in the setup phase, we generate a DF
commitment function ϑ and then pass it on as auxiliary input to the Σexp. In the protocol we let
the prover commit to the preimage of the homomorphisms φE whose knowledge he wants to prove.
Then we run a variant of the Σ-protocol which proves that the committed values are equal to the



preimage of φE . The soundness of the scheme then essentially follows from the soundness of the
DF scheme.

Let us first describe how to generate the auxiliary ϑ-function. By m we denote an arbitrary but
fixed positive integer. Now, one chooses a safe prime modulus n (i.e., n = (2p+ 1)(2q + 1), where
p, q, (2p + 1), and (2q + 1) are primes) and generator g of the sub-group of quadratic residues of
Z∗n. Finally, choose uniform random elements g1, . . . , gm from 〈g〉, and define ϑ(x1, . . . , xm+1) =
gx1

1 · . . . · gxm
m · gxm+1 .

Given an exponentiation homomorphism φE : Zl → H let G denote an arbitrary finite subset of
Zl, which is defined by the integer parameters T1, . . . , Tl as follows:

G := {−T1, . . . , T1} × · · · × {−Tl, . . . , Tl}. (5)

The Ti can be chosen arbitrarily large and are only needed to control the size of the prover’s random
choices to ensure that the protocol is statistically HVZK, if −Ti ≤ wi ≤ Ti holds for all i = 1, . . . , l.

Using an additional security parameter ks > 0, we associate the following set with G:

G′ := {−2ksc+T1, . . . , 2ksc+T1} × · · · × {−2ksc+Tl, . . . , 2ksc+Tl}. (6)

We note that the security parameter ks controls the tightness of statistical HVZK property of
the Σexp-protocol which we define next.

Definition 4 (Σexp-protocol). Let be given an exponentiation homomorphism φE : Zl → H,
x = φE(w), and ϑ(z1, . . . , zm+1) = gz11 · . . . ·g

zl
l ·g

zl+1 which is generated as described above. A Σexp-
protocol with challenge set C = {0, . . . , c+} consists of (P,V) performing the joint computation
described in Figure 1.

P(x,w, ϑl+1) V(x, ϑl+1)

P1 w ∈R {0, 2ksn}; x := ϑl+1(w,w)

r ∈R G′

r ∈R {−22ksc+n, 22ksc+n}
t := φE(r)

t := ϑl+1(r, r) -(x, t, t)

P2 s := r + cw � c c ∈R C = {0, . . . , c+}

s := r + cw -(s, s) V if φE(s) = txc,

and ϑl+1(s, s) = txc,

then output true; else output false

Fig. 1. Description of the Σexp-protocol

Now, the following holds:

Theorem 3. Under the strong RSA assumption, the Σexp-protocol with challenge set C = {0, . . . , c+}
is a statistical special HVZK computational proof of knowledge in the auxiliary string model for any
exponentiation homomorphism φE, if c+ is smaller than the smallest prime dividing the order of
Im φE. The knowledge error is 1/#C + 1/p(|x|), where p() is an arbitrary but fixed polynomial.
Especially, the Σexp-protocol is a Σ-protocol according to Definition 1.



For a proof of the theorem we refer to Appendix A.2. Finally, let us sketch how to choose the
auxiliary ϑ-function in practice. Most importantly, we observe that one can choose ϑ once and
then use the Σexp-protocol for any exponentiation homomorphism using the same ϑ. There are
essentially three possible ways to choose ϑ. One is to use the setup protocol of the DF scheme.
That is, the verifier chooses ϑ as outlined above and sends it to the prover. Then it uses a rather
inefficient variant of the Σ - protocol with binary challenges to prove that g1, . . . , gl ∈ 〈g〉. This
prove is necessary to assert that ϑ is a hiding commitment function and thus essential for the
zero-knowledge property of our protocol. In a real world implementation using the Σexp-protocol
one would rather either hardcode ϑ into the system (like other system parameters) or let a trusted
third party publish ϑ along with a certificate vouching that it was generated correctly.

5.2 Boolean Composition of Σexp-protocols

Analogously to §2.2 we show how Σexp-protocols can be combined by boolean operators, cf. (1)
and (2).

AND-proofs. We want to briefly discuss the AND-composition of two Σexp-protocols. Let be given
x1 = φE1(w1) = hw11

11 · · ·h
w1l1
1l1

and x2 = φE2(w2) = hw21
21 · · ·h

w2l2
2l2

. For a direct protocol composition,
one would now run the setup phase twice to obtain ϑl1+1 and ϑl2+1. In the following we show how
this can be optimized to avoid unneeded overhead.
By Gi and G′i we denote the sets described in (5) resp. (6) for φE1 and φE2 . Note that elements in
G1 and G′1 have l1 components, whereas those in G2 and G′2 have l2. As auxiliary input let be given
ϑl+1, with l := l1 + l2. In contrast to a parallel execution of the protocols, the prover commits to
all his random choices (and preimages, resp.) at once, instead of computing a commitment for the
random choices (resp., preimages) of each φEi . More precisely, the protocol looks like this:

– In P1, the prover draws random choices r ∈R {−22ksc+n, 22ksc+n} and w ∈R {0, 2ksn}, as well
as ri ∈R G′i for i = 1, 2. Then he commits to r1, r2 as usual by ti := φEi(ri).
Now, in contrast to a parallel execution, he commits to (w1, w2) simultaneously, blinding it using
w, by x := ϑl+1(w1, w2,w). Analogously, he computes t := ϑl+1(r1, r2, r). The tuple (x, (t1, t2), t)
is sent to the verifier.

– The remaining steps now are a straightforward adaption of the protocol in Figure 1: having
received the challenge c, in P2 the prover computes responses s1 := r1 + cw1 and s2 := r2 + cw2.
He sets s := r + cw and sends ((s1, s2), s) to the verifier, who checks that φEi(si) = tix

c
i for

i = 1, 2, and that ϑl+1(s1, s2, s) = txc.

Lemma 2. If c+ is smaller than the smallest prime dividing ord(Im φE1) or ord(Im φE2), the
above composition yields a computational proof of knowledge (in the auxiliary string model) of the
preimages of x1, x2 under φE1 resp. φE2, that satisfies statistical special HVZK property.

The proof is a direct adaption of the proof of Theorem 3 and hence omitted.
If an expression like (1) contains special homomorphisms as well as exponentiation homomorphisms
in hidden order groups, the AND-composition is done for the occurring homomorphisms of each
class separately, and then the resulting Σ-protocols are run in parallel using the same challenge c.
The following result then follows from Lemma 1 and Lemma 2:

Theorem 4. Let c+ ∈ Z be smaller than the smallest prime dividing one special exponent of
φ1, . . . , φm1 or one of the orders of Im φm1+1, . . . , Im φm. Then applying the described composition
techniques and running the resulting protocols in parallel yields a statistical HVZK, computational



proof of knowledge (in the auxiliary string model) with challenge set C := {0, . . . , c+} and knowledge-
error κ = 1/#C + 1/p(|x|), where p() is an arbitrary but fixed polynomial.

Proofs of expressions containing ORs. For proofs of expressions containing ORs, the corre-
sponding technique given in §2.2 can be applied without changes: for the results of [CDS94] there
has to be a HVZK proof of knowledge in form of a Σ-protocol for each predicate in an expression
like (2). This is the case here, if one chooses the Σφ-protocol for all special homomorphisms, and
the Σexp-protocol for all exponentiation homomorphisms in hidden order groups. A computational,
statistical HVZK, proof of knowledge in the auxiliary string model is obtained, if c+ is chosen as,
e.g., in Theorem 4.

We are aware that the performance of the output of our compiler can be enhanced by skillfully
applying AND-compositions before using this technique. We will consider this in future versions.

5.3 Relations among preimages

Essentially the same technique as described in detail in §2.3 also works for linear constraints among
the preimages of exponentiation homomorphisms in the Σexp-protocol. Again the idea is to perform
an AND-composition within each AND-term in an expression like (4), but to restrict the sets for
the random choices. A small technical issue arises because the sets for random choices are no groups
any more, see (6). Hence, in the example given at the beginning of this section, it could happen
that br1 is not in this set any more. Yet, this problem is easy to overcome: one only has to check
that for each component wi the parameter Ti is chosen large enough, what can be done very fast
because of the form of AS . In the given example this means that T2 ≥ |b|T1, where |b| denotes the
absolute value of b.

If in (4) special homomorphisms appear as well as exponentiation homomorphisms, the con-
structions are run separately for them.

6 Conclusion and Future Work

We have presented a compiler that given a high-level ZK-PoK protocol specification automati-
cally generates a sound implementation of the corresponding Σ-protocol. The initial version of the
compiler can already be used for many practical applications as given in the introduction, but is
currently restricted to automatic generation of proofs for special homomorphisms, i.e., the frame-
work given in §2. Future work will contain the Σexp-protocol together with the theory explained
in §5 and protocols as suggested in [DF02,BCM05] to allow proofs in unknown order groups as
well, which in turn will enable to generate more efficient proofs for complex statements like efficient
interval proofs.

In order to increase the flexibility of the existing tool, predefined and user-written macros will
be supported, which are translated into the input language by a precompiler. Such macros could for
example simplify the realization of complex algebraic relations among the preimages. Additionally
to Zn and Z∗n, other commonly used groups such as groups over elliptic curves and homomorphisms
like multiexponentiation homomorphisms could be predefined.

In the theoretical framework in §2 we give conditions under which the output protocol is a
HVZK proof of knowledge. Those can easily be checked manually for special homomorphisms,
which are currently implemented in the compiler. Yet, this issue becomes more challenging when
the input language of the compiler gets more comprehensive. Thus it is preferable that incorrect
inputs (that would result in unsound protocols) are spotlighted automatically. For this reason, an
automated formal verification of the output will be implemented.



Last, transformations of the generated Σ-protocols to signature schemes [FS87] or concurrent
zero-knowledge [Dam00] that are also secure against malicious verifiers could be automated easily.

Acknowledgements. The authors would like to thank Thomas Briner who wrote the initial version
of the compiler as well as Wilko Henecka who extended the compiler substantially for their support.
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A Proofs

A.1 Proof of Theorem 1

Proof. 3-move form and completeness follow from the definition.
For special HVZK consider the following simulator: on input c ∈ C, choose s ∈R G and set
r := φ(s)x−c. Hence, the Σφ-protocol is a Σ-protocol according to Definition 1.
For proof of knowledge property consider the following: using standard rewinding arguments,
e.g. [Dam04], it is possible to obtain two accepting communication triples (r, c′, s′) and (r, c′′, s′′)
with c′ 6= c′′ within the allowed running time of the knowledge extractor as defined by [BG93].
Dividing the corresponding verification equations yields xc

′−c′′ = φ(s′ − s′′). Since φ is special,
xv = φ(u). We have gcd(c′ − c′′, v) = 1, as c+ is smaller than the smallest prime dividing v. So,
a, b ∈ Z, s.t. a(c′ − c′′) + bv = 1 can be found efficiently with extended Euclidean algorithm and by
using the homomorphic property of φ we obtain w′ := a(s′ − s′′) + bu as a preimage. ut
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A.2 Proof of Theorem 3

Proof. The first two properties of a Σ-protocol, i.e., 3-move-form and completeness, are clear. Only
the special HVZK and the proof of knowledge properties remain to show.

Let’s start with special HVZK : To this end we consider the following simulator S for the Σexp-
protocol on input c ∈ C: Choose w′ ∈R {0, . . . , 2ksn} and set x′ := gw

′
. Choose s′ ∈ G′, and

s′ ∈R {−22ksc+n, 22ksc+n}. Set t′ := φE(s′)x−c and t′ := ϑl+1(s′, s′)x′−c. The output of S is then
given by ((x′, t′, t′), c, (s′, s′)).

We now have to verify that the distribution of these tuples is statistically indistuingishable from
the verifier’s real view ((x, t, t), c, (s, s)).

Both (t, t) and (t′, t′) are uniquely determined by the other values. So it is sufficient to show that
the distributions of Pr(x′, s′, s′|c, w) and Pr(x, s, s|c, w) are statistically indistinguishable. To do so,
we write Pr(x′, s′, s′|c, w) = Pr(s′, s′|x′, c, w)Pr(x′|c, w) and Pr(x, s, s|c, w) = Pr(s, s|x, c, w)Pr(x|c, w),
resp..

The distributions of x and x′ do not depend on c and w, as their choices do not depend on the
secret preimage or the challenge. So we have to show that Pr(x) and Pr(x′) are statistically close.
Since w ∈R {0, . . . , 2ksn}, which is an interval much larger than the order of g (upper bounded by
n), we have that x = gw1

1 · · · g
wl
l · g

w is statistically close to the uniform distribution on 〈g〉. On the
other hand, with the same argument, the same holds for x′ = gw

′
.

So it remains to show that Pr(s′, s′|x′, c, w) and Pr(s, s|x, c, w) are statistically close. First, note
that the components of s are distributed independently; so the following holds: Pr(s, s|x, c, w) =
Pr(s1|c, w1) · · ·Pr(sl|c, wl)Pr(s|x, c) and analogously for Pr(s′, s′|x′, c, w). Each si is uniform and
random on

{−2ksTi + cwi, . . . , cwi + 2ksTi}

and each s′i is uniform and random on

{−2ksTi, . . . , 2ksTi}.

So the statistical difference of the distributions is 2cwi/(2ks+1Ti) for each i = 1, . . . , l, and therefore
negligible in the security parameter ks. Similarly, the difference of s and s′ is negligible in ks. As l
is polynomially bounded in ks, the sum of these differences is negligible.

Let’s turn to the proof of knowledge property now: using standard rewinding arguments we
obtain two accepting communication triples, say ((x, t, t), c′, (s′, s′)) and ((x, t, t), c′′, (s′′, s′′)), with
c′ 6= c′′, within the allowed running time of a knowledge-extractor [BG93]. By dividing the corre-
sponding verification equations we obtain

φE(∆s) = x∆c and ϑl+1(∆s,∆s) = x∆c

where ∆c := c′′ − c′, and analogously for ∆s,∆s. According to [CS03] ∆c|∆si for all i, and ∆c|∆s,
as otherwise the prover could factor the RSA-modulus n efficiently. So we have

w′ = (∆s1/∆c, . . . ,∆sl/∆c)

as a preimage, where the division in the exponent holds over the integers.
Particularly, the Σexp-protocol is a Σ-protocol according to Definition 1. ut



B EBNF Syntax Definition of the Input Language

The syntax of the compiler’s input language is specified by the following EBNF:

Input ::= Declaration { Declaration } Assignment { Assignment } Definition { Definition } Pro-
tocol.

Declaration ::= GroupDeclaration | ((’GroupElement’ | ’Homomorphism’ | ’IntegerConstant’)
IdentList )’;’.

GroupDeclaration ::= ’Group’ GroupList ’;’.
GroupList ::= Group { ’,’ Group }.
Group ::= (’(’ Ident [ ArrayNotation ] ’,’ (’+’ | ’*’) ’)’) | (’Z’ Letter { ’*’ }).
IdentList ::= Ident [ ArrayNotation ] { ’,’ Ident [ ArrayNotation ] }.
ArrayNotation ::= ’[’ Number ’.’ ’.’ Number ’]’.
Ident ::= Letter { Letter | Number | ’_’ }.
Letter ::= ’A’ | ’B’ | . . . | ’Z’ | ’a’ | . . . | ’z’.
Number ::= ’0’ | . . . | ’9’ { ’0’ | . . . | ’9’ }.
Definition ::= HomomorphismDefinition’;’.
HomomorphismDefinition ::= ’DefineHomomorphism’ HomomorphismDefinitionList.
HomomorphismDefinitionList ::= ’(’ Ident ’,’ ( AbstractStructure | ConcreteStructure ) ’)’ {

’,’ ’(’ Ident ’,’ ( AbstractStructure | ConcreteStructure ) ’)’ }.
ConcreteStructure ::= ( Ident | ( ’(’ IdentList ’)’) ) ’|->’ ’(’ Expression { ’,’ Expression } ’)’.
IdentList ::= Ident [ ArrayNotation ] [ ’,’ IdentList ].
Expression ::= TermList.
TermList ::= Term [ (’+’| ’-’) TermList ].
Term ::= FactorList.
FactorList ::= Factor [ (’*’| ’/’) FactorList ].
Factor ::= ExponentList.
ExponentList ::= Exponent [ ’^’ ExponentList ].
Exponent ::= Ident | Number | (’(’ Expression ’)’).
AbstractStructure ::= GroupStructure ’->’ GroupStructure.
GroupStructure ::= ( Ident | (’Z’ Letter) | (’Z’ Letter ’*’) ) [ ’ # ’ ( Ident | (’Z’ Letter { ’*’})) ].
Assignment ::= ’AssignGroupMember’ GroupMemberAssignmentList ’;’.
GroupMemberAssignmentList ::= ’(’ Ident ’,’ ( Ident | ( ’{’ Ident [ ArrayNotation ] [ ’,’ Ident

[ ArrayNotation ] ’}’ ) ’)’ ’,’ [ GroupmemberAssignList ].
Protocol ::= ’SpecifyProtocol’ ’[’ Relation [ Constraints ] [ VariableNames ] Target [ Layout ] ’]’.
Relation ::= ’Relation’ EnumerativeDescription | BooleanDescription.
EnumerativeDescription ::= ’[’ CommonInput PreImageInput [ AccessStructure ].
CommonInput ::= ’CommonInput’ ’=’ ’{’ CommonInputTuple [ ’,’ CommonInputTuple ] ’}’ ’;’.
CommonInputTuple ::= ’(’ Ident ’,’ ’(’ Expression { ’,’ Expression } ’)’ ’)’.
PreImageInput ::= ’PreimageInput’ ’=’ ’{’ PreImageInputTuple { ’,’ PreImageInputTuple } ’}’

’;’.
PreImageInputTuple ::= ’(’ Ident { ’,’ Ident } ’)’.
AccessStructure ::= ’AccessStructure’ ’=’ ’{’ QualifiedSet { ’,’ QualifiedSet } ’}’.
QualifiedSet ::= ’{’ Ident { ’,’ Ident } ’}’.
BooleanDescription ::= ’=’ BooleanTermList.
BooleanTermList ::= BooleanTerm [ ’||’ BooleanTermList ].



BooleanTerm ::= BooleanFactorList.
BooleanFactorList ::= BooleanFactor [ ’&&’ BooleanFactorList ].
BooleanFactor ::= HomomorphismRelation | (’(’ BooleanTermList ’)’).
HomomorphismRelation ::= ’[’ ImageHomRelationTuple ’=’ Ident ’(’ PreImageHomRelation-

Tuple ’)’ ’]’.
PreImageHomRelationTuple ::= Ident { ’,’ Ident }
ImageHomRelationTuple ::= ’(’ Expression ’)’.
Constraints ::= ’Constraints’ ’=’ ConstraintEquation { ’&&’ ConstraintEquation } ’;’.
ConstraintEquation ::= ’(’ Ident ’=’ ConstraintTuple { (’+’| ’-’ | ’*’ | ’/’) ConstraintTuple } ’)’.
ConstraintTuple ::= [ ’-’ ] ( (Number ’*’ Ident) | (Ident ’^’ Number) ).
VariableNames ::= ’ParameterNames’ ’{’ VariableNameDefinition { VariableNameDefinition }

’}’.
VariableNameDefinition ::= ( ’VarRandom’ | ’VarCommit’ | ’VarChallenge’ | ’VarResponse’ |

’VarPreimage’ | ’VarImage’ | ’VarHomomorphism’ | ’SecretSharingScheme’ | ’AccessStructure’
| ’QualifiedSet’ | ’ChallengeMax’ ) ’=’ Ident ’;’.

Target ::= ’Target’ ’=’ ’JAVA’ | ’LATEX’ ’;’.
Layout ::= ’Layout’ ’=’ ’COMPACT’ ’;’.

Table 1. Pre-defined variable names

Protocol Element Default Name Description

VarRandom r Randomly chosen preimage of prover
VarCommit t Commitment of prover
VarChallenge c Challenge of verifier
VarResponse s Response of prover
VarPreimage w Compact mode: preimage
VarImage x Compact mode: image
VarHomomorphism zeta Compact mode: homomorphism
SecretSharingScheme Theta Secret sharing scheme
AccessStructure Gamma Access structure
QualifiedSet A Qualified set
ChallengeMax c plus Challenge maximum c+ for c ∈R [0..c+]



C Generated output of running example in §3

C.1 Protocol Inputs

Homomorphisms as defined in Input File
φ0 : Z∗m → Z∗m, ρ0 7→ ρ0

n

φ1 : Z∗m → Z∗m, ρ1 7→ ρ1
n

φ2 : Zn × Z∗m → Z∗m, (µ, ρ2) 7→ gµ · ρ2
n

φ3 : Zn × Z∗m → Z∗m, (µ, ρ3) 7→ gµ · ρ3
n

Homomorphisms as used in Protocol
ψ0 = φ0 × φ2 × φ3

ψ1 = φ1 × φ2 × φ3

Common Input
Z : c+, n
Z∗m : g, xa, xb, xc
Secret Sharing Scheme Θ,Z∗m,Zn
Preimage Input
Zn : µ
Z∗m : ρ0, ρ1, ρ2, ρ3

Qualified Set A

Access Structure(
(ρ0) ∧ (µ, ρ2) ∧ (µ, ρ3)

)
∨
(

(ρ1) ∧ (µ, ρ2) ∧ (µ, ρ3)
)

Constraints on Preimages
µφ3 = 1 · µφ2

Relation
φ0 : xa = ρ0

n

φ1 : xa · g−1 = ρ1
n

φ2 : xb = gµ · ρ2
n

φ3 : xc = gµ · ρ3
n



C.2 Protocol in compact Notation

Round 1, Prover:
For each ζi ∈ {ψ0, ψ1} with yζi = ζi(xζi) :

– if secret xζi is known:
ρζi ∈R dom(ζi)
tζi := ζi(ρζi)

– if secret xζi is unknown:
sζi ∈R dom(ζi)
ci ∈R [0, c+]
tζi := ζi(sζi) · y

ci
ζi

tζi
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGA

Round 2, Verifier:
c ∈R [0, c+]

c
DGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

Round 3, Prover:
(c0, c1) := complete(c, {[ci]Ā}, Γ ∗(n))
For each ζi ∈ {ψ0, ψ1} with yζi = ζi(xζi) :

– if secret xζi is known:
sζi := ρζi + (−xζi) · ci

sζi , ci
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGA

Round 4, Verifier:
Check whether

• s1,3
?= 1 · s1,1

Check for each ζi ∈ {ψ0, ψ1} with yζi = ζi(xζi) whether

• tζi
?= ζi(sζi) · y

ci
ζi

Check whether isConsistent(c, {[ci]}, Γ ∗(n)) returns true



D Generated output of example in §4.1

D.1 Protocol Inputs

Homomorphisms as defined in Input File
φ0 : Z2

q → G, (ρ, µ) 7→ vs
ρ · vxy(−1·µ)

φ1 : Zq → G, ν 7→ gν

φ2 : Zq → G, ν 7→ hν

φ3 : Z2
q → G, (ν, µ) 7→ y1

ν · gµ

φ4 : Zq → G, ν 7→ (y2 · y3
H)ν

Homomorphisms as used in Protocol
ψ0 = φ0 × φ1 × φ2 × φ3 × φ4

Common Input
G : c1, c2, c3, c4, g, h, vs, vx, vxy, y1, y2, y3

Zq : H
Z : c+

G, Secret Sharing Scheme Θ,Zq
Preimage Input
Zq : µ, ν, ρ
Qualified Set A

Access Structure(
(ρ, µ) ∧ (ν) ∧ (ν) ∧ (ν, µ) ∧ (ν)

)
Constraints on Preimages
µφ3 = 1 · µφ0

νφ2 = 1 · νφ1

νφ3 = 1 · νφ1

νφ4 = 1 · νφ1

Relation
φ0 : vx = vs

ρ · vxy(−1·µ)

φ1 : c1 = gν

φ2 : c2 = hν

φ3 : c3 = y1
ν · gµ

φ4 : c4 = (y2 · y3
H)ν



D.2 Protocol in verbose Notation

Round 1, Prover:
r0,0 ∈R Zq
r0,1 ∈R Zq
r0,2 ∈R Zq
r0,5 := r0,1 · 1
r0,3 := r0,2 · 1
r0,4 := r0,2 · 1
r0,6 := r0,2 · 1
t0,0 := (vsr0,0 · vxy(−1·r0,1))
t0,1 := (gr0,2)
t0,2 := (hr0,3)
t0,3 := (y1

r0,4 · gr0,5)
t0,4 := ((y2 · y3

H)r0,6)

t0,0, t0,1, t0,2, t0,3, t0,4
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGA

Round 2, Verifier:
c ∈R [0, c+]

c
DGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

Round 3, Prover:
(s0,0, s0,1) := (r0,0, r0,1) + ((−((ρ, µ)))) · c
s0,2 := r0,2 + ((−(ν))) · c
s0,3 := r0,3 + ((−(ν))) · c
(s0,4, s0,5) := (r0,4, r0,5) + ((−((ν, µ)))) · c
s0,6 := r0,6 + ((−(ν))) · c

s0,0, s0,1, s0,2, s0,3, s0,4, s0,5, s0,6

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGA



Round 4, Verifier:
Check whether

• s0,5
?= 1 · s0,1

• s0,3
?= 1 · s0,2

• s0,4
?= 1 · s0,2

• s0,6
?= 1 · s0,2

Check whether

• t0,0
?= (vss0,0 · vxy(−1·s0,1)) · vxc

• t0,1
?= (gs0,2) · c1

c

• t0,2
?= (hs0,3) · c2

c

• t0,3
?= (y1

s0,4 · gs0,5) · c3
c

• t0,4
?= ((y2 · y3

H)s0,6) · c4
c

E Generated output of example in §4.2

E.1 Protocol Inputs

Homomorphisms as defined in Input File
φ1 : Zq → Z∗p, w1 7→ gw1

φ2 : Zq → Z∗p, w2 7→ gw2

φ3 : Zq → Z∗p, w3 7→ gw3

Homomorphisms as used in Protocol
φ1 = φ1

φ2 = φ2

φ3 = φ3

Common Input
Z : c+

Z∗p : g, x1, x2, x3

Secret Sharing Scheme Θ,Z∗p,Zq
Preimage Input
Zq : w1, w2, w3

Qualified Set A

Access Structure(
(w1)

)
∨
(

(w2)
)
∨
(

(w3)
)

Relation
φ1 : x1 = gw1

φ2 : x2 = gw2

φ3 : x3 = gw3



E.2 Protocol in compact Notation

Round 1, Prover:
For each ζi ∈ {φ1, φ2, φ3} with yζi = ζi(xζi) :

– if secret xζi is known:
rζi ∈R dom(ζi)
tζi := ζi(rζi)

– if secret xζi is unknown:
sζi ∈R dom(ζi)
ci ∈R [0, c+]
tζi := ζi(sζi) · y

ci
ζi

tζi
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGA

Round 2, Verifier:
c ∈R [0, c+]

c
DGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

Round 3, Prover:
(c0, c1, c2) := complete(c, {[ci]Ā}, Γ ∗(n))
For each ζi ∈ {φ1, φ2, φ3} with yζi = ζi(xζi) :

– if secret xζi is known:
sζi := rζi + (−xζi) · ci

sζi , ci
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGA

Round 4, Verifier:
Check for each ζi ∈ {φ1, φ2, φ3} with yζi = ζi(xζi) whether

• tζi
?= ζi(sζi) · y

ci
ζi

Check whether isConsistent(c, {[ci]}, Γ ∗(n)) returns true
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