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Abstract

In this work, we consider the task of allowing a content provider to enforce complex access
control policies on oblivious protocols conducted with anonymous users. As our primary appli-
cation, we show how to construct privacy-preserving databases by combining oblivious transfer
with an augmented anonymous credential system. This permits a database operator to restrict
which items each user may access, without learning anything about users’ identities or item
choices. This strong privacy guarantee holds even when users are assigned different access con-
trol policies and are allowed to adaptively make many queries. Our system is based on standard
assumptions in the standard model and, after an initial setup phase, each transaction requires
only constant time.

As a main building block of our work, we show how to augment existing anonymous credential
systems so that, in addition to certifying a user’s attributes, they also store state about a user’s
access history, which is updated with each use of the credential. In addition to adaptive oblivious
transfer, we show that stateful anonymous credentials can be efficiently coupled with protocols
for blind signatures and oblivious keyword search to privately control access on these requests.
Our construction supports a wide range of access control policies, including efficient and private
realizations of the Brewer-Nash (Chinese Wall) and Bell-LaPadula (Multilevel Security) policies,
which are used for financial and defense applications. Overall, our stateful anonymous credential
system provides a balance between the seemingly conflicting goals of access control and user
privacy.

1 Introduction

There is an increasing need to provide privacy to users accessing sensitive information, such as
medical or financial data. The mere fact that a rare disease specialist accesses a certain patient’s
medical record exposes information about the private contents of the record. At the same time,
newly developed regulations governing such sensitive data (e.g., Sarbanes-Oxley, HIPAA) require
content providers to enact strict accounting procedures. These may seem like conflicting goals
since the specialist may wish to hide which patient’s record she is requesting while the database
administrator may wish to ensure that the doctor’s collective accesses do not violate regulations.
The situation becomes even more precarious when a patient uses such a database to look up
information about a potentially sensitive medical condition. In such cases, the patient’s identity, as
well as her access patterns, must remain hidden from the database administrator. The increasing
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trend toward outsourcing and distributing sensitive databases, such as the outsourced medical
database provided by Google Health [32], makes these concerns all the more compelling.

Previous works have proposed to construct privacy-friendly databases using Private Information
Retrieval [25] or Oblivious Transfer [36, 20]. In a k-out-of-N Oblivious Transfer protocol, a content
provider with messages M1, . . . ,MN and a user with indices σ1, . . . , σk ∈ [1, N ] interact in such
a way that at the end the user obtains Mσ1 , . . . ,Mσk without learning anything about the other
messages and the provider does not learn anything about σ1, . . . , σk. This tool leads to privacy-
friendly databases when the user gets her choice of any files with no restrictions. Unfortunately
that scenario rules out many practical database applications. Worse, the previous work in this area
provides no insight as to how access control might ever be incorporated into such a database, since
traditional access control mechanisms assume knowledge of the items being requested.

Thus, to realize a practical “oblivious database” for our users, we must couple it with some
manner of enforceable access controls. We make two design choices that act as guiding principles
for the design of our system. Our first is to maintain all anonymity or privacy guarantees provided
by the oblivious transfer protocol. We reject any solutions that use pseudonyms or allow for some
form of transaction linking, since it is too difficult to infer what compromise to privacy might
result. Secondly, we wish to enforce a strong notion of access control, where the database operator
may limit each access based on the user’s identity, item requested, and even a history of the user’s
previous requests. Finally, we require our solution to be efficient: each transaction should take
constant time, regardless of a user’s access history or the complexity of the access policy which she
must follow.

Contributions. To achieve the goals above, we show how to efficiently couple an adaptive, oblivi-
ous transfer protocol with an anonymous credential scheme [23, 16], in order to provide non-trivial,
real-world access controls for oblivious databases. Specifically, we present an extension to existing
anonymous credential systems to support history-dependent access, by embedding the user’s cur-
rent state into the credential, and dynamically updating that state according to well-defined policies
governing the user’s actions. These stateful anonymous credentials are built on top of well-known
signatures with efficient protocols [35, 16, 17, 6]. Our constructions are secure in the standard
model under basic assumptions, such as Strong RSA. Additionally, we introduce a technique for
efficiently proving that a committed value lies in a hidden range that is unknown to the verifier,
which may be of independent interest.

We then show how our constructions can be used to achieve non-trivial access control policies,
including the Brewer-Nash (Chinese Wall) [11] and Bell-LaPadula (Multilevel Security) [3] model,
which are used in a number of settings, including financial institutions and classified government
systems. In addition, we also show how to combine our anonymous credential system with several
other anonymous and oblivious protocols, like blind signing protocols [16, 17, 33] and searches over
encrypted data [45]. We provide simulation-based security definitions for our stateful anonymous
credentials, as well as an anonymous and oblivious database system with access controls.

Related Work. Several previous works sought to limit anonymous user actions, either directly
within an existing protocol or through the use of anonymous credentials. Aiello, Ishai, and Rein-
gold [1] proposed priced oblivious transfer, in which each user is given a declining balance that
is “spent” on each transfer. However, here user anonymity is not protected, and the protocol is
also vulnerable to selective-failure attacks in which a malicious server induces faults to deduce the
user’s selections [36, 20]. The more general concept of conditional oblivious transfer was proposed
by Di Crescenzo, Ostrovsky, and Rajagopolan [28] and subsequently strengthened by Blake and
Kolesnikov [4]. In conditional oblivious transfer, the sender and receiver maintain private inputs
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(x and y, respectively) to some publicly known predicate q(·, ·) (e.g., the greater than equal to re-
lation on integers). The items in the oblivious transfer scheme are encrypted such that the receiver
can complete the oblivious transfer and recover her data if and only if q(x, y) = 1. In addition,
techniques from e-cash and anonymous credentials have been used to place simple limitations on an
anonymous user’s actions, such as preventing a user from logging in more than once in a given time
period [12], authenticating anonymously at most k times [42], or preventing a user from exchanging
too much money with a single merchant [14]. Rather than providing a specific type of limitation
or restricting the limitation to a particular protocol, our proposed system instead provides a gen-
eral method by which arbitrary access control policies can be implemented to a wide variety of
anonymous and oblivious protocols.

2 Our Model and Definitions

The goal of typical anonymous credential systems is to provide users with a way of proving certain
attributes about themselves (e.g., age, or height) without revealing their identity. Users conduct this
proof by obtaining a credential from some organization, and subsequently “showing” the credential
without revealing their identity. A stateful anonymous credential system adds the additional notion
of credential state, which the user may update over the lifetime of the credential. State updates
are restricted to some well-defined policy dictated by the credential provider. In practice, this may
limit the user to a finite number of states, or a particular ordering of states that must be arrived at
in succession. The update protocol for a stateful credential must oblivious. In other words, it does
not leak information about the credential’s current state beyond what the user chooses to reveal.
As with typical anonymous credential systems, the user’s state and other attributes can be proved
without revealing her identity.

At a high level, the stateful anonymous credential system, which is defined by the tuple of
algorithms (Setup,ObtainCred,UpdateCred,ProveCred), operates as follows. First, the user and
credential provider negotiate the use of a specified policy using the ObtainCred protocol. The
negotiated policy determines the way in which the user will be allowed to update her credential.
After the protocol completes, the user receives an anonymous credential that embeds her initial
state in the policy, in addition to any other user attributes. Next, the user can prove (in zero-
knowledge) that the credential she holds embeds a given state, or attribute, just as she would in
other anonymous credential systems by using the ProveCred protocol. This allows the anonymous
access to some service, while the entity checking the credential is assured of the user’s attributes,
as well as her state in the specified policy – in some cases, as we will show later, these proof can
be done in such a way that the verifying entity learns nothing about the user’s state or attributes.
Finally, when the user wishes to update her credential to reflect a change in her state, she interacts
with the credential provider using the UpdateCred protocol, during which she proves (again, in
zero-knowledge) her current state and the existence of a transition in the policy from her current
state to her intended next state. As with the ProveCred protocol, the provider learns nothing about
the user other than the fact that her state change is allowed by the policy that was previously
negotiated within the ObtainCred protocol.

Policy Model. To represent the policies for our stateful anonymous credential system, we use
directed graphs, which can be thought of as a state machine that describes the user’s behavior over
time. We describe the policy graph Πpid as the set of tags of the form (pid, S → T ), where pid is
the identity of the policy and S → T represents a directed edge from state S to state T . Thus,
the user’s credential embeds the identity of the policy pid and the user’s current state in the policy
graph. When the user updates her credential, she chooses a tag, then proves that the policy id she
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is following is the same as what is provided in the tag and that the tag encodes an edge from her
current state to her desired next state.

These policy graphs can be created in such a way that the users may reach a terminal state,
and therefore would be unable to continue updating (and consequently using) their credential. In
this case, it may be possible for an adversary to perform traffic analysis to infer the policy that
the user is following. To prevent this, we consider the use of null transitions in the graph. The
null transitions occur as self-loops on the terminal states of the policy graph, and allow the user to
update her credential as often as she wishes to prevent such traffic analysis attacks. However, the
updates performed on these credentials only allow the user access to a predefined null resource. The
specifics of this null resource are dependent on the anonymous protocol that the credential system
is coupled with, and we describe an implementation for them in oblivious databases in Section 5.

While these policy graphs are rather simplistic, they can represent complicated policies. For
instance, a policy graph can encode the user’s history with respect to accessing certain resources
up to the largest cycle in the graph. Moreover, we can extend the policy graph tags to include
auxiliary information about the actions that the user is allowed to perform at each state. By doing
so, we allow the graph to dynamically control the user’s access to various resources according to
her behavior and history, as well as her other attributes. In Section 5, we examine how to extend
these policy graphs to provide non-trivial, real-world access control policies for oblivious databases,
as well as a variety of other anonymous and oblivious application.

2.1 Protocol Descriptions and Definitions for Stateful Anonymous Credentials

A stateful anonymous credential scheme consists of four protocols: Setup, ObtainCred, UpdateCred,
and ProveCred. We will now describe their input/output behavior and intended functionality.

Setup(U(1k),P(1k,Π1, . . . ,Πn): The provider P generates parameters params and a keypair
(pkP , skP) for the credential scheme. For each graph Π to be enforced, P also generates a
cryptographic representation ΠC and publishes this value via an authenticated channel. Each
user U generates a keypair and requests that it be certified by a trusted CA.

ObtainCred(U(pkP , skU ,ΠC),P(pkU , skP ,ΠC , S)): U identifies herself to P and then receives her
credential Cred which binds her to a policy graph Π and starting state S.

UpdateCred(U(pkP , skU ,Cred,ΠC , T ),P(skP ,ΠC , D)): U and P interact such that Cred is updated
from its current state to state T , but only if this transition is permitted by the policy Π.
Simultaneously, P should not learn U ’s identity, attributes, or current state. To prevent
replay attacks, P maintains a database D, which it updates as a result of the protocol.

ProveCred(U(pkP , skU ,Cred),P(pkP , E)): U proves possession of a credential Cred in a particular
state. To prevent re-use of credentials, P maintains a database E, which it updates as a
result of the protocol.

A note on our model: In a traditional anonymous credential scheme (e.g., [15]), the user may
“show” its credential to many different organizations. We have simplified our protocol descriptions
to reflect the assumption that a user need only show its credential to the original credential issuer.
This model is sufficient for the applications we consider. We note that our credentials also function
in the multi-organization model.

Security Definitions. Security definitions for anonymous credentials have traditionally been
game-based. Unfortunately, the existing definitions may be insufficient for the applications con-
sidered in this work, as these definitions do not necessarily capture correctness. This can lead
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to problems when we integrate our credential system with oblivious transfer protocols (see e.g.,
[36, 20]). To capture the security requirements needed for our applications, we instead use a
simulation-based definition, in which security of our protocols is analyzed with respect to an “ideal
world” instantiation. We do not require security under concurrent executions, but rather restrict
our analysis to atomic, sequential execution of each protocol. We do so because our constructions,
which employ standard zero-knowledge techniques, require rewinding in their proof of security and
thus are not concurrently secure. An advantage of the simulation paradigm is that our definitions
will inherently capture correctness (i.e., if parties honestly follow the protocols then they will
each receive their expected outputs). Informally, the security of our system is encompassed by the
following two definitions:

Provider Security: A malicious user (or set of colluding users) must not be able to falsely prove
possession of a credential without first obtaining that credential, or arriving at it via an admissable
sequence of credential updates. For our purposes, we require that the malicious user(s) cannot
provide a proof of being in a state if that state is not present in her credential.

User Security: A malicious provider controlling some collection of corrupted users cannot learn
any information about a user’s identity or her state in the policy graph beyond what is available
through auxiliary information from the environment.

Formalizing Definitions. Security for our protocols will be defined using the real-world/ideal-
world paradigm, following the approach of [20]. In the real world, a collection of (possibly cheating)
users interact directly with a provider according to the protocol, while in the ideal world the
parties interact via a trusted party. Informally, a protocol is secure if, for every real-world cheating
combination of parties we can describe an ideal-world counterpart (“simulator”) who gains as much
information from the ideal-world interaction as from the real protocol. We note that our definitions
will naturally enforce both privacy and correctness, but not necessarily fairness. It is possible that
P will abort the protocol before the user has completed updating her credential or accessing a
resource. This is unfortunately unavoidable in a two-party protocol.

Definition 2.1 (Security for a Stateful Anonymous Credential Scheme) Full-simulation se-
curity for stateful anonymous credentials is defined according to the following experiments. Note
that we do not explicitly specify auxiliary input to the parties, but this information can be provided
in order to achieve sequential composition.

Real experiment. The real-world experiment RealP̂,Û1,...,Ûη(η, k,Π1, . . . ,Πη,Σ) is modeled as

k rounds of communication between a possibly cheating provider P̂ and a collection of η possibly
cheating users {Û1, . . . , Ûη}. In this experiment, P̂ is given the policy graph for each user Π1, . . . ,Πη,
and the users are given an adaptive strategy Σ that, on input of the user’s identity and current
graph state, outputs the next action to be taken by the user.

At the beginning of the experiment, all users and the provider conduct the Setup procedure.
At the end of this step, P̂ outputs an initial state P1, and each user Ûi output state U1,i. For each
subsequent round j ∈ [2, k], each user may interact with P̂ to update their credential as required
by the strategy Σ. Following each round, P̂ outputs Pj , and the users output (U1,j , . . . , Uη,j). At
the end of the kth round the output of the experiment is (Pk, U1,k, . . . , Uη,k).

We will define the honest provider P as one that honestly runs its portion of Setup in the first
round, honestly runs its side of the ObtainCred and ProveCred protocols when requested by a user
at round j > 1, and outputs Pk = params. Similarly, an honest user Ui runs the Setup protocol
honestly in the first round, and executes the user’s side of the Setup, ObtainCred and ProveCred
protocols, and eventually outputs the received value Cred along with all messages received.
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Ideal experiment. In experiment IdealP̂ ′,Û ′1,...,Û ′η(η, k,Π1, . . . ,Πη,Σ) the possibly cheating provider

P̂ ′ sends the policy graphs to the trusted party T . In each round j ∈ [1, k], every user Û ′i (following
strategy Σ) may send a message to T of the form (update, i, Si, Ti) to update her credential using
the UpdateCred protocol, or (prove, i, Si) to prove her state using the ProveCred protocol.

• When T receives an update message, it checks Û ′i ’s current state and policy Πi to determine
whether the requested transition is allowed, setting a bit bT = 1 to so indicate. T sends
(update, bT ) to P̂ ′, who responds with a bit bP̂ ′ ∈ {0, 1} to T that indicates whether the
update should succeed or fail. T returns (bP̂ ′ ∧ bT ) to Û ′i .
• For a prove message, T checks that Û ′i (setting bT to so indicate), and relays (prove, S, bT )

to P̂ ′ who responds with a bit bP̂ ′ , and returns (bP̂ ′ ∧ bT ) to Û ′.1 Following each round, P̂ ′
outputs Pj , and the users output (U1,j , . . . , Uη,j). At the end of the kth round the output of
the experiment is (Pk, Vj , U1,k, . . . , Uη,k).

Let `(·), c(·) be polynomially-bounded functions. We now define provider and user security in terms
of the experiments above.

Provider Security. A stateful anonymous credential scheme is provider secure if for every col-
lection of possibly cheating real-world p.p.t. receivers Û1, . . . , Ûη there exists a collection of p.p.t.
ideal-world receivers Û ′1, . . . , Û ′η such that ∀η = `(κ), k ∈ c(κ), Σ, and every p.p.t. distinguisher:

RealP,Û1,...,Ûη(η, k,Π1, . . . ,Πη,Σ)
c
≈ IdealPl,Û ′1, . . . , Û ′η(η, k,Π1, . . . ,Πη,Σ)

User Security. A stateful anonymous credential scheme provides Receiver security if for every
real-world p.p.t. provider P̂ who colludes with some collection of corrupted users, there exists a
p.p.t. ideal-world provider P̂ ′ and users Û ′ such that ∀η = `(κ), k ∈ c(κ), Σ, and every p.p.t.
distinguisher:

RealP̂,U1,...,Uη(η, k,Π1, . . . ,Πη,Σ)
c
≈ IdealP̂ ′,U ′1,...,U ′η(η, k,Π1, . . . ,Πη,Σ)

3 Technical Preliminaries

We recall some basic building blocks, and then introduce a new primitive, hidden range proofs,
which may be of independent interest. For the remainder of the paper, let 1κ be the security
parameter.

Pedersen and Fujisaki-Okamoto Commitments. In Pedersen commitments [39], the public
parameters are a group G of prime order q, and generators (g0, . . . , gm). In order to commit to the
values (v1, . . . , vm) ∈ Zmq , pick a random r ∈ Zq and sets C = Commit(v1, . . . , vm; r) = gr0

∏m
i=1 g

vi
i .

Fujisaki and Okamoto [31] showed how to expand this scheme to composite order groups.

Signatures with Efficient Protocols. Camenisch and Lysyanskaya (CL) [16] designed a sig-
nature scheme with two efficient protocols: (1) a protocol for a user to obtain a signature on the
value(s) in a Pedersen (or Fujisaki-Okamoto) commitment [39, 31] without the signer learning any-
thing about the message(s), and (2) a proof of knowledge of a signature. CL signatures are based

1Note that this reveals the current state S to P̂ ′. In section 5 we discuss techniques that also hide this information.
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on the Strong RSA [2, 31] assumption. We could also use other bilinear signatures with efficient
protocols [6, 17], though we do not make use of these in our construction.

Zero-Knowledge Protocols. We use several standard results for proving statements about dis-
crete logarithms, such as (1) a proof of knowledge of a discrete logarithm modulo a prime [40] or
a composite [31, 29], (2) a proof of knowledge of equality of representation modulo two (possibly
different) prime [24] or composite [19] moduli, (3) a proof that a commitment opens to the product
of two other committed values [18, 21, 10], and (4) a proof of the disjunction or conjunction of any
two of the previous [27]. These composite-based protocols are secure under Strong RSA and the
prime-based ones under the discrete logarithm assumption.

Note that there are several building blocks that are not used in our basic scheme, but which can be
used to provide extended functionality or improved performance. These building blocks include:

Bilinear Groups. Let BMsetup be an algorithm that, on input 1κ, outputs the parameters for
a bilinear mapping as γ = (p,G,GT , e, g ∈ G), where g generates G, the groups G,GT each have
prime order p, and e : G×G→ GT .

Hidden-Range Proofs. Standard techniques [22, 18, 18, 9] allow us to efficiently prove that
a committed value lies in a public integer interval (i.e., where the interval is known to both the
prover and verifier). In our protocols, we sometimes need to hide this interval from the verifier,
and instead have the prover show that a committed value lies between the openings of two other
commitments.

Fortunately, this can be done efficiently as follows. Suppose we wish to show that a ≤ j ≤ b, for
positive numbers a, j, b without revealing them. This is equivalent to showing that 0 ≤ (j − a) and
0 ≤ (b− j). We only need to get these two sums reliably into commitments, and can then employ
the standard techniques since the range (≥ 0) is now public. Using a group G = 〈g〉, where n is a
special RSA modulus, g is a quadratic residue modulo n and h ∈ G. The prover commits to these
values as A = gahra , J = gjhrj , and B = gbhrb , for random values ra, rj , rb ∈ {0, 1}` where ` is a
security parameter. The verifier next computes a commitment to (j − a) as J/A and to (b− j) as
B/J . The prover and verifier then proceed with the standard public interval proofs with respect
to these commitments, which for technical reasons require groups where Strong RSA holds.

4 Stateful Anonymous Credentials

We describe how to realize stateful credentials. The state records information about the user’s
attributes as well as her prior access history. We will consider two separate modes for “showing”
a credential. In the first mode, the user exposes her portions of her state during the ProveCred
protocol. This is useful for, say, a DRM application where the user’s goal is to prove that her
software is in a “licensed” state without revealing her name. In mode two, the user uses her
credential to gain access to resources without revealing her state. Specifically, we show how to
tie this credential system to a number of protocols, such as adaptive oblivious transfer and blind
signatures, where the user wants to hide both her name and the item she is requesting, while
simultaneously proving that she has the credentials to obtain the item.

Camenisch-Lysyanskaya Signatures. Our constructions may be implemented with the Strong
RSA signature scheme of Camenisch and Lysyanskaya [16], or with the LRSW-based signatures
of [17]. Both schemes consist of the algorithms (CLKeyGen,CLSign,CLVerify) as well as two proto-
cols, which we describe below. We first define the algorithms:
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CLKeyGen(1κ). On input a security parameter, outputs a keypair (pk , sk).
CLSign(sk ,M1, . . . ,Mn). On input one or more messages and a secret signing key, outputs the

signature σ.
CLVerify(pk , σ,M1, . . . ,Mn). On input a signature, message(s) and public verification key, outputs

1 if the signature verifies, 0 otherwise.

Additionally, the scheme consists of two protocols: (1) a protocol for a user to obtain a signature
on the value(s) in a Pedersen (or Fujisaki-Okamoto) commitment [39, 31] without the signer learning
anything about the message(s), and (2) a proof of knowledge of a signature.

In §5.2 we will use RSA-based CL signatures in conjunction with bilinear groups, e.g., to prove
knowledge of a CL signature on a commitment set in a bilinear group. These proofs can be
conducted efficiently using techniques described in [13].

4.1 Basic Construction

Our construction begins with the anonymous credentials of Camenisch-Lysyanskaya [35, 16, 17],
where the state is embedded as a field in the signature. The core innovation here is a protocol for
performing state updates, and a technique for “translating” a history-dependent update policy into
a cryptographic representation that can be used as an input to this protocol.

The setup, credential granting, and credential update protocols are presented in Figure 1. We will
now briefly describe the intuition behind them.

Setup. First, the credential provider P generates its keypair and identifies one or more access
policies it wishes to enforce. Each policy — encoded as a graph — may be applied to one or more
users. The provider next “translates” the graph into a cryptographic representation which consists
of the graph description, in addition to a separate CL signature corresponding to each tag in the
graph, embedding the graph id, start, and end states. The files are distributed to users via an
authenticated broadcast channel (e.g., by signing and publishing them on a website).

A Note on Efficiency. It is important to emphasize that the “translation” of policy graphs may be
conducted offline, and thus the cost of the online protocols (executed between user and provider)
is constant and independent of the size of the policy. Furthermore, if many users share the same
policy, this will further amortize the cost. Thus, our scheme is practical even for extremely complex
policies containing thousands of distinct states and transition rules.

Obtaining a Credential. When a user U wishes to obtain a credential, he first generates a
keypair that the CA certifies. He then negotiates with the provider to select an update policy to
which the credential will be bound, as well the credential’s initial state. The user next engages in
a protocol to blindly extract a CL signature— under the provider’s secret key— binding the user’s
public key, the initial state, policy id, and two random nonces chosen by the user: an update nonce
Nu and a usage nonce Ns. The update nonce is revealed when the user updates the credential and
the usage nonce is revealed when the user show’s her credential. This signature, as well as the
nonce and state information, form the credential. While the protocol for obtaining a credential, as
currently described, reveals the user’s identity through the use of her public key, we can apply the
techniques found in [15, 16] to provide a randomized pseudonym rather than the public key.

Updating the Credential’s State. When the user wishes to update a credential, she first
identifies a valid tag within the credential’s access policy. She then generates a new pair of nonces
and a commitment embedding these values, as well as the new state. Next, the user sends the
update nonce along with the commitment. The provider records this nonce and the commitment
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into a database — however, if the nonce is already in the database but associated with a different
commitment, the provider aborts the protocol, which prevents the user from re-using an old version
of a credential. By recording the nonce and commitment together, we allow the user to restart
the protocol if it has failed as long as she uses the same commitment. Otherwise, the user and
provider then interact to conduct zero-knowledge proof that: (1) the remainder of this information
is identical to the current credential, (2) the user has knowledge of the secret key corresponding to
this credential, and (3) the policy graph contains a signature on a tag from the previous to the new
state. If these conditions are met, the user obtains a new credential embedding the new state.

Showing (or Privately Proving Possession of) a Credential. The approach to using a
single-show credential (Figure 2) follows [16, 17]. When a user wishes to prove possession of a P
credential to P, he first reveals the credential usage nonce and the current state of the credential.
P must check that this nonce has not been used before. The user then proves knowledge of: (1) a
CL signature embedding this state value and nonce formed under P’s public key, and (2) a secret
key that is consistent with the CL signature.

Single-show vs. multi-show. This is an example of a “single-show” credential. It can be shown only
once, or the verifier will recognize the repeated usage nonce. To restore its anonymity, the user
may return to P and execute the update protocol to replace the usage nonce. This update policy
gives users a way to use a single credential multiple times. One can adapt this scheme to support
k-times anonymous use by using the Dodis-Yampolskiy [30] pseudorandom function to generate the
nonces from a common seed, as shown in [12].

Theorem 4.1 When instantiated with the RSA (resp., bilinear) variant of CL signatures, the
anonymous credential scheme above achieves user, provider, and verifier security (definition 2.1)
under the strong RSA (resp., LRSW) assumption.

Due to space constraints, we omit the proof of Theorem 4.1. However, the proof of Theorem 5.1
naturally includes the security of our credential system.

5 Oblivious Database Access Control

In this section we show how stateful anonymous credentials can be used to control access to oblivious
databases. Recall that an oblivious database permits users to request data items without revealing
their item choices to the database operator (e.g., where the item choices are sensitive as in a medical
databases).

Although we possess efficient building blocks such as k-out-of-N Oblivious Transfer (OT), little
progress has been made towards the deployment of practical oblivious databases. In part, this is
due to a fundamental tension with the requirements of a database operator to provide some form
of access control. In this section, we show that it is possible to embed flexible, history dependent
access controls into an oblivious database, without compromising the user’s privacy. Specifically, we
show how to combine our stateful anonymous credential system with an adaptive Oblivious Transfer
protocol to construct a multi-user oblivious database that supports complex access control policies.
We show how to efficiently couple stateful credentials with the recent standard-model adaptive
OT construction due to Camenisch, Neven and shelat [20]. Our stateful credentials can also be
efficiently coupled with the adaptive OT of Green and Hohenberger [33].

Linking Policies to Database Items. To support oblivious database access, we extend our
policy graphs to incorporate tags of the form (pid, S → T, i), where pid is the policy, S → T is
the edge, and i is the message index that is allowed by that tag. Each edge in the graph may be
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Setup(U(1k),P(1k,Π1, . . . ,Πn)): The provider P generates parameters for the CL signature,
as well as for the Pedersen commitment scheme.

Party P runs CLKeyGen twice, to create the CL signature keypairs (spkP , sskP) and
(gpkP , gskP). It retains (pkP , skP) = ((spkP , gpkP), (sskP , gskP)) as its keypair. The
provider’s public key pkP must be certified by a trusted CA.

Each party U selects u $← Zq and computes the keypair (pkU , skU ) = (gu, u). The user’s
public key pkU must be certified by a trusted CA.

Next, for each policy graph Π, P generates a cryptographic representation ΠC .

1. P parses Π to obtain a unique policy identifier pid.
2. For each tag t = (pid, S, T ) in Π, P computes a signature σS→T ←

CLSign(gskP , (pid, S, T )).
3. P sets ΠC ← 〈Π,∀t : σS→T 〉 and publishes this value via an authenticated channel.

ObtainCred(U(pkP , skU ,ΠC),P(pkU , skP ,ΠC , S)): On input a graph Π and initial state S,
U first obtains ΠC . U and P then conduct the following protocol:

1. U picks random show and update nonces Ns, Nu ∈ Zq and computes
A← Commit(skU , Ns, Nu).

2. U conducts an interactive proof to convince P that A correlates to pkU .
3. U and P run the CL signing protocol on committed values so that U obtains the state

signature σstate ← CLSign(sskP , (skU , Ns, Nu, pid, S)) with pid, S contributed by P.
4. U stores the credential Cred = (ΠC , S, σstate, Ns, Nu).

UpdateCred(U(pkP , skU ,Cred,ΠC , T ),P(skP ,ΠC , D)): Given a credential Cred currently in
state S, U and P interact to update the credential to state T :

1. U parses Cred = (ΠC , S, σstate, Ns, Nu) and identifies a signature σS→T in ΠC that
corresponds to a transition from state S to T (if none exists, U aborts).

2. U selects N ′
s, N

′
u

$← Zq and computes A← Commit(skU , N ′
s, N

′
u, pid, T ).

3. U sends (Nu, A) to P. P looks in the database D for a pair (Nu, A
′ 6= A). If no such

pair is found, then P adds (Nu, A) to D. Otherwise P aborts.
4. U proves to P knowledge of values (skU , pid, S, T,N ′

s, N
′
u, Ns, σstate, σS→T ) such that:

(a) A = Commit(skU , N ′
s, N

′
u, pid, T ).

(b) CLVerify(spkP , σstate, (skU , Ns, Nu, pid, S)) = 1.
(c) CLVerify(gpkP , σS→T , (pid, S, T )) = 1

5. If these proofs do not verify, P aborts. Otherwise U and P run the CL signing protocol
on committed values to provide U with σ′state ← CLSign(sskP , A).

6. U stores the updated credential Cred′ = (ΠC , T, σ′state, N
′
s, N

′
u).

Figure 1: Basic algorithms for obtaining and updating a stateful anonymous credential.
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ProveCred(U(pkP , skU ,Cred),P(pkP , E)): User U proves knowledge of the Cred as follows:

1. U parses Cred as (ΠC , S, σstate, Ns, Nu), and sends its usage nonce Ns to P (who aborts
if Ns ∈ E).

2. Otherwise, U continues with either:

• (mode one) Sending her current credential state S to P in the clear.
• (mode two) Sending a commitment to S.

3. U then conducts an interactive proof to convince P that it possesses a CL signature
σstate embedding Ns, S, and that it has knowledge of the secret key skU .

4. P adds Ns to E.

Figure 2: Basic algorithm for proving knowledge of a single-show anonymous credential.

associated with one or more tags, which correspond to the items that can be obtained from the
database when traversing that edge. As described in Section 2, we place null transitions on each
terminal state that allow the user to update her credential and access a predefined null message.
The set of all tags, both legitimate and null, are signed by the database and published. Figure 3
shows an example policy for a small database. The interested reader can view a complete discussion
of some of the non-trivial access control policies allowed by our credential system in Appendix C.

I

II

III

IVV

1,3,4
5

1

2

2

1,3,4

3

Figure 3: Sample access policy for a small oblivious database. The labels on each transition
correspond to the database item indices that can be requested when a user traverses the edge, with
null transitions represented by unlabeled edges.

5.1 Protocol Descriptions and Security Definitions for Oblivious Databases

Our oblivious database protocols combine the scheme of Section 4.1 with a multi-receiver oblivious
transfer OT protocol. Each transaction is conducted between one of a collection of users and a
single database server D. We now describe the protocol specifications.

Setup(U(1k),D(1k,Π1, . . . ,Πn): The database D generates parameters params for the scheme. As
in the basic credential scheme, it generates a cryptographic representation ΠC for each policy
graph, and publishes those values via an authenticated channel. Each user U generates a
keypair and requests that it be certified by a trusted CA.

OTObtainCred(U(pkD, skU ,ΠC),D(pkU , skD,ΠC , S)): U registers with the system and receives a
credential Cred which binds her to a policy graph Πid and starting state S.

OTAccessAndUpdate(U(pkD, skU ,Cred, t),D(skD, E)): U requests an item at index i in the database
from state S by selecting a tag t = (pid, S → T, i) from the policy graph. The user then up-
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dates her credential Cred, in such a way that D does not learn her identity, her attributes, or
her current state. Simultaneously, U obtains a message from the database at index i. At the
end of a successful protocol, U updates the state information in Cred, and D updates a local
datastore E.

Security. We informally describe the security properties of an oblivious database system, with a
formal definition given in Appendix A.

Database Security: No (possibly colluding) subset of corrupted users can obtain any collection of
items that is not specifically permitted by the users’ policies.

User Security: A malicious database controlling some collection of corrupted users cannot learn
any information about a user’s identity or her state in the policy graph, beyond what is available
through auxiliary information from the environment.

5.2 The Construction

In our model, many users share access to a single database. To construct our protocols, we extend
the basic credential scheme of Section 4.1 by linking it to the adaptive OT protocol of Camenisch
et al. [20]. The database operator commits to a collection of N messages, along with a special null
message at index N + 1. It them distributes these commitments (e.g., via a website). Each user
then registers with the database using the OTObtainCred protocol, and agrees to be bound by a
policy that will control her ability to access the database.

To obtain items from the database, the user runs the OTAccessAndUpdate protocol, which
proves (in zero knowledge) that its request is consistent with its policy. Provided the user does not
violate policy, the user is assured that the database operator learns nothing about its identity, or
the nature of its request. Figure 4 describes the protocol.

Theorem 5.1 The scheme described in Figure 4 satisfies definition A.1 under the q-PDDH, q-
SDH, and Strong RSA assumptions.

We provide a proof of Theorem 5.1 in Appendix B.

5.3 Extensions to Compact Access Policies in Practice

Extension #1: Equivalence Classes. In the scheme presented thus far, a tag in the policy
graph must be defined on every item index in the database. However, there are cases where many
items may have the same access rules applied, and therefore we can reduce the number tags used by
referring to the entire group with a single tag. A simple solution is to replace specific item indices
with general equivalence classes in the graph tags. The OT database can be easily re-organized to
support this concept by renumbering the item indices (previously [1, N ]) using values of the form
(c||i) ∈ Zq where c is the identity of the item class, and || represents concatenation. During the
OTAccessAndUpdate protocol, U can obtain any item (c||i) by performing a zero-knowledge proof
on the first half of the selection index, which shows that the user’s selected tag contains the class c.

Extension #2: Encoding Contiguous Ranges. An alternative approach requires the database
operator to arrange the identities of objects in the same class so that they fall in contiguous ranges.
In this case, we will label the graph edges with ranges of items rather than single values. The
credentials will also replace the value i with an upper and lower bound for the range that the
holder of the credential is permitted to access. We make a slight change to the OTAccessAndUpdate
protocol so that rather than proving equality between the requested object and the object present
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Setup(U(1k),D(1k)): When the database operator D is initialized with a database of messages
M1, . . . ,MN+1, it conducts the following steps:

1. D selects parameters for the OT scheme as γ = (q,G,GT , e, g)← BMsetup(1κ), h
$← G, x

$← Zq, and
H ← e(g, h). D generates two CL signing keypairs (spkD, sskD) and (gpkD, gskD), and U generates
her keypair (pkU , skU ) as in the Setup protocol of Figure 1.

2. For i = 1 to (N + 1), D computes a ciphertext Ci = (Ai, Bi) as:

(a) If i ≤ N , then Ai = g
1

x+i and Bi = e(h,Ai) ·Mi.
(b) If i = (N + 1), compute Ai as above and set Bi = e(h,Ai).

3. For every graph Π to be enforced, D generates a cryptographic representation ΠC as follows:

(a) D parses Π to obtain a unique policy identifier pid.
(b) For each tag t = (pid, S, T, i) with i ∈ [1, N + 1], D computes the signature σS→T,i ←

CLSign(gskP , (pid, S, T, i)). Finally, D sets ΠC ← 〈Π, ∀t : σS→T,i〉.

4. D sets pkD = (spkD, gpkD, γ,H, g
x, C1, . . . , Cn) and skD = (sskD, gskD, h). D then publishes each

ΠC and the OT parameters pkD via an authenticated channel.

OTObtainCred(U(pkD, skU ,ΠC),D(pkU , skD,ΠC , S)): When user U wishes to join the system, it negotiates
with D to agree on a policy Π and initial state S, then:

1. U picks a random show nonce Ns ∈ Zq and computes
A← Commit(skU , Ns).

2. U conducts an interactive proof to convince D that A correlates to pkU , and D conducts an interactive
proof of knowledge to convince U that e(g, h) = H.a.

3. U and P run the CL signing protocol on committed values so that U obtains the state signature
σstate ← CLSign(sskP , (skU , Ns, pid, S)) with pid, S contributed by P.

4. U stores the credential Cred = (ΠC, S, σstate, Ns).

OTAccessAndUpdate(U(pkD, skU ,Cred, t),D(pkD, E)): When U wishes to obtain the message indexed by
i ∈ [1, N + 1], it first identifies a tag t in Π such that t = (pid, S → T, i).

1. U parses Cred = (ΠC , S, σstate, Ns), and parses ΠC to find σS→T,i.

2. U selects N ′s
$← Zq and computes A← Commit(skU , N

′
s, pid, T ).

3. U then sends Ns to D. D checks the database E for (Ns, A
′ 6= A), and if it finds such an entry it

aborts. Otherwise it adds (Ns, A) to E.
4. U parses Ci = (Ai, Bi). It selects a random v ← Zq and sets V ← (Ai)

v. It sends V to D and proves
knowledge of (i, v, skU , σS→T,i, σstate, pid, S, T,N ′s) such that the following conditions hold:

(a) e(V, y) = e(g, g)ve(V, g)−i.
(b) A = Commit(skU , N

′
s, pid, T ).

(c) CLVerify(spkP , σstate, (skU , Ns, pid, S)) = 1.
(d) CLVerify(P, σS→T,i, (pid, S, T, i)) = 1.

5. If these proofs verify, U and D run the CL signing protocol on committed values such that U obtains
σ′state ← CLSign(sskD, A). U stores the updated credential Cred′ = (ΠC , T, σ

′
state, N

′
s).

6. Finally, D returns U = e(V, h) and interactively proves that U is correctly formed (see [20]). U
computes the message Mi = U1/v.

aThis proof can be conducted efficiently in four rounds as in [20].

Figure 4: An access-controlled oblivious database based on the Camenisch, Neven and shelat
adaptive oblivious transfer protocol [20]. The database operator and users first run the Setup
portion of the protocol. Each user subsequently registers with the database using OTObtainCred,
and requests individual database items using OTAccessAndUpdate.

13



in the tag, the user now proves that the requested object lies in the range described in the user
selected tag, as described by the hidden range proof technique in Section 3. Notice that while this
approach requires that the database be reorganized such that classes of items remain in contiguous
index ranges, it can be used to represent more advanced data structures, such as hierarchical classes.

6 Other Applications of Stateful Anonymous Credentials

Oblivious IBE Key Extraction. Identity-Based Encryption (e.g., [8, 26]) is a form of public-key
encryption where users can substitute an arbitrary string— for example, a name or email address—
in place of a traditional public key. In an IBE deployment, the corresponding decryption keys are
generated by a trusted party known as the Private Key Generator (PKG).

Under normal circumstances, the user cannot hide its identity from the PKG. Indeed, this can
be problematic, since the PKG must verify that a user is authorized to obtain a key for a given
identity. In some anonymous communication scenarios, however, it can be desirable to anonymously
grant temporary decryption keys to users without learning the user’s identity.

Green and Hohenberger [33] propose a means by which a user can blindly extract a decryption
key from a PKG, such that the PKG does not learn the identity extracted. These techniques can
also be extended to allow for partially-blind extraction, where a portion of the identity is known to
the PKG, which is useful when keys also embed some known, restricted information, such as the
time period during which they will be valid. Unfortunately, these techniques deprive the PKG of
the ability to control which keys are given out. Using our stateful anonymous credential system, we
can realize efficient solutions for blind, yet controlled, access to the IBE keys for the Boneh-Boyen
IBE [5] and the Waters IBE [44].

Oblivious (Blind) Signatures. As observed by Moni Naor, there is a connection between decryp-
tion keys in IBE schemes and digital signatures.2 Specifically, the decryption key corresponding to
an identity pid in any full-secure IBE scheme is a signature on the message pid where the signature
verification key is the master public key of the IBE scheme. Thus, the blind key extraction protocol
for the Waters IBE [44] is also a blind signature scheme for the Waters signature. Fortunately, we
can put efficient access controls on top of this, as well.

Imagine several scenarios in which this is truly exciting: a signer can now specify a policy under
which he is willing to blindly sign messages, and then can enforce this policy without violating
any of the user’s privacy or even learning her identity. This leads to practical data timestamping
services (e.g., [43, 41]) that do not learn anything about what a user is signing, or even who
originated a specific request. Alternatively, blind signatures can be useful for forensic purposes: a
device can be required to obtain a signature each time it undertakes a controversial action, and
use these signatures to convince a later investigator that each action was in fact allowed by policy.
Additionally, our access controls can also be placed onto the blind signing protocols of the Strong
RSA [16] and bilinear [17] signatures of Camenisch and Lysyanskaya, as well as the short bilinear
signatures of Boneh and Boyen [6]. These are all schemes secure in the standard model.

Oblivious Keyword Search. IBE key extraction can also be used to implement public-key
searchable encryption [38, 7, 45], which permits users to search a collection of encrypted files
for those matching a particular keyword. For example, Waters et al. [45] describe a searchable
encrypted audit log in which a third party auditor is granted the ability to independently search
the encrypted log for specific keywords. In these schemes, the scope of the user’s searches is

2This observation was credited to Naor by Boneh and Franklin [8].
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generally limited by a trusted authority, which generates “search trapdoors” for particular words
at the searcher’s request. Unfortunately, this trusted party necessarily learns the details of each
search term, which may be problematic in circumstances where the pattern of trapdoor requests
reveals sensitive information. Using the blind key extraction techniques described above, Green and
Hohenberger [33] discuss how an authority can blindly deliver search trapdoors without learning
which terms are being monitored. Again, our techniques can help regulate which key word searches
are allowed.
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A Security Definitions for Oblivious Databases with Access Con-
trols

Our security definition for an oblivious database extends Definition 2.1 by incorporating the concept
of a message database M1, . . . ,MN held by the database D.

Definition A.1 (Security for Oblivious Databases with Access Controls) Security is de-
fined according to the following experiments. As before, we do not explicitly specify auxiliary
input to the parties, but this information can be provided in order to achieve sequential composi-
tion.
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Real experiment. The real-world experiment RealD̂,Û1,...,Ûη(η,N, k,Π1, . . . ,Πη,M1, . . . ,MN ,Σ)

is modeled as k rounds of communication between a possibly cheating database D̂ and a collection
of η possibly cheating users {Û1, . . . , Ûη}. In this experiment, D̂ is given the policy graph for each
user Π1, . . . ,Πη, a message database M1, . . . ,MN and the users are given an adaptive strategy Σ
that, on input of the user’s identity and current graph state, outputs the next action to be taken
by the user.

At the beginning of the experiment, the database and users conduct the Setup and OTObtainCred
protocols. At the end of this step, D̂ outputs an initial state S1, and each user Ûi output state U1,i.
For each subsequent round j ∈ [2, k], each user may interact with D̂ to request an item i as required
by the strategy Σ. Following each round, D̂ outputs Sj , and the users output (U1,j , . . . , Uη,j). At
the end of the kth round the output of the experiment is (Sk, U1,k, . . . , Uj,k).

We will define the honest database D as one that honestly runs its portion of Setup in the
first round, honestly runs its side of the OTObtainCred and OTAccessAndUpdate protocols when
requested by a user at round j > 1, and outputs Sk = params. Similarly, an honest user Ui runs
the Setup protocol honestly in the first round, and executes the user’s side of the OTObtainCred,
OTAccessAndUpdate protocols, and eventually outputs the received value Cred along with all mes-
sages received.

Ideal experiment. In experiment IdealD̂′,Û ′1,...,Û ′η(η,N, k,Π1, . . . ,Πη,M1, . . . ,MN ,Σ) the possibly

cheating database D̂′ sends the policy graphs to the trusted party T . In each round j ∈ [1, k], every
user Û ′ (following strategy Σ) selects a message index i ∈ [1, N +1] and sends a message containing
the user’s identity and (i, S, T ) to T . T then checks the policy graph corresponding to that user
to determine if the action is permitted, and sends D̂′ a bit b1 indicating the outcome of this test.
D̂′ then returns a bit b2 determining whether the transaction should succeed. If b1 ∧ b2, then T
returns Mi to Û ′i , otherwise it returns ⊥. Following each round, D̂′ outputs Pj , and the users output
(U1,j , . . . , Uη,j). At the end of the kth round the output of the experiment is (Pk, U1,k, . . . , Uη,k).

Let `(·), c(·) be polynomially-bounded functions. We now define database and user security in terms
of the experiments above.

Database Security. A stateful anonymous credential scheme is database-secure if for every collec-
tion of real-world p.p.t. receivers Û1, . . . , Ûη there exists a collection of p.p.t. ideal-world receivers
Û ′1, . . . , Û ′η such that ∀N = `(κ), N = d(κ), k ∈ c(κ), PF, Σ, and every p.p.t. distinguisher:

RealD,Û1,...,Ûη(η,N, k,Π1, . . . ,Πη,M1, . . . ,MN ,Σ)
c
≈ IdealD,Û ′1,...,Û ′η(η,N, k,Π1, . . . ,Πη,M1, . . . ,MN ,Σ)

User Security. A stateful anonymous credential scheme provides Receiver security if for every
real-world p.p.t. database D̂ and collection of dishonest users, there exists a p.p.t. ideal-world
sender D̂′ such that ∀N = `(κ), η = d(κ), k ∈ c(κ), PF, Σ, and every p.p.t. distinguisher:

RealD̂,U1,...,Uη(η,N, k,Π1, . . . ,Πη,M1, . . . ,MN ,Σ)
c
≈ IdealD̂′,U ′1,...,U ′η(η,N, k,Π1, . . . ,Πη,M1, . . . ,MN ,Σ)

B Proof Sketch of Theorem 5.1

We now sketch a proof of Theorem 5.1. Our sketch will refer substantially to the original proof of
Camenisch et al. [20]. We note that our proof will consider two components: (1) the security of the
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underlying OT scheme (which is based on the proof of [20]), and a separate proof of the anonymous
credential scheme.

Proof sketch. Our sketch separately considers User and Database security.

User Security. Let us assume that an adversary has corrupted a database D and some subset
of the users Û1, . . . , ÛN . In this model, corruptions will be static. We show that for every such
adversary, we can construct a simulator such that the output of the ideal experiment conducted
with the simulator will be indistinguishable from the output of the real experiment.

Our simulator operates as follows. First, D outputs the parameters for the credential system, the
cryptographic representation of each graph, and pk , C1, . . . , CN . If these parameters are incorrectly
formed, the simulator aborts. The simulator next generates a credential key for each uncorrupted
user and negotiates with D to join the system under an appropriate policy. When D executes
the proof of knowledge that H = e(g, h) with some uncorrupted user, our simulator rewinds to
extract the value h (this extraction succeeds with all but negligible probability). For i = 1 to N ,
the simulator decrypts Ci using h to obtain Mi. This collection of plaintexts is sent to the trusted
party T .

Whenever an uncorrupted user queries T to obtain message i (according to a state transition
defined in their policy), T verifies that this request is permitted by policy and updates its view
of the user’s state. Next, it notifies our simulator which runs the OTAccessAndUpdate protocol on
an arbitrary (uncorrupted) user’s policy under index N + 1 (this is the “dummy” transition and is
always permitted by the credential system). If this protocol succeeds, the simulator sends a bit 1
to T which returns Mi to the user.

Claim. The transcript produced by this simulator is indistinguishable from the transcript produced
by the real experiment. This is true for following reasons:

1. The probability that the simulator incorrectly extracts h (or fails to extract it) is negligible.
2. The probability that the adversary distinguishes a protocol executed on an arbitrary user/dummy

index is negligible: this is due to (a) the witness-indistinguishability property of the credential
proofs of knowledge, and (b) the element V transmitted to D during OTAccessAndUpdate is
indistinguishable from a random element.

Note that the we need not argue the unforgeability of the anonymous credential scheme here,
since we consider only actions taken by the uncorrupted user.

Database Security. Let us assume that an adversary has corrupted some subset of the users
Û1, . . . , ÛN (corruptions are static). We show that for every such adversary, we can construct
a simulator such that the output of the ideal experiment conducted with the simulator will be
indistinguishable from the output of the real experiment.

Our simulator operates as follows. First, it generates the public and privacy parameters for
the credential scheme along with the cryptographic representation of the policies provided by T .
It generates the parameters for the OT scheme pk , sk as normal, but sets the plaintext for each
database element to a dummy value (the identity element) and produces ciphertexts C1, . . . , CN
(and generates the dummy message C(N+1) as normal). It sends these parameters to each corrupted
user, and to each user proves that H = e(g, h).

Whenever a corrupted user initiates the OTAccessAndUpdate protocol with D, the simulator
verifies that the user’s request (including ZK proofs) verifies, and that neither Nu or Ns has been
seen before. If so, it rewinds and uses the extractors for the ZK proofs to learn the user’s identity,
the index of the message i being requested, the blinding factor v, and the user’s current and previous
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credential state S, T . The server transmits the user’s identity values (i, S, T ) to T which verifies
that they satisfy the policy (updating the policy state in the process). If T returns ⊥, then D aborts
the protocol with the user. Otherwise if T returns Mi, then the simulator parses Ci = (Ai, Bi) and
returns U = (Bv

i )/Mi. The simulator uses rewinding to simulate the proof and convince the user
that U has been correctly formed.

Claim. The transcript produced by this simulator is indistinguishable from the transcript produced
by the real experiment. This claim rests on the following points:

1. The false message collection C1, . . . , C(N+1) is indistinguishable from the real message by
the semantic security of the encryption scheme, which holds under the q-PDDH assumption
(see [20] for the full argument).

2. The simulated proof of U ’s structure is indistinguishable from a correct real proof.
3. The simulator never queries T on a tuple (i, S, T ) that violates the user’s policy. This reduces

to the unforgeability of the CL signature (which is in turn based on Strong RSA or LRSW).
Specifically, to violate policy, a user must satisfy one of the following conditions:

(a) Prove knowledge of a signature σδ that it was not given, or
(b) Prove knowledge of a signature σS→T that it was not given. In either case, the simulator

can use the extractor for the proof system to obtain the forged signature and win the
CL signature forgery game.

(c) Misuse the CL signing protocol such that it receives a signature that is not equivalent
to a signature on the commitment A (or mispresent the structure of A).

�

C Access Control Models

A number of access control models can be used to describe access permissions for resources through
the use of our stateful credential system and its extensions. The most widely used form of access
controls are discretionary access control systems [37], where access permissions are applied arbi-
trarily as they are needed. For instance, a systems administrator can describe a list of resources
that a given user can access, otherwise known as a capabilities list [34]. Such an access model is
trivially achieved in our credential system as a separate graph for each user with a single state and
a self loop with tags for each of the contiguous ranges of resources that the user can access.

Mandatory access control models, however, are far more interesting because of their use of
the user’s access history to enforce an access policy. These history-dependent access controls are
difficult to capture with typical capabilities or access list implementations due to their dynamic
nature. Here, we describe two non-trivial access control models used in real-world systems, the
Brewer-Nash [11] and Bell-LaPadula [3] models, and provide an example policy graph for each in
Figures 5 and 6, respectively.

Brewer-Nash Model. The Brewer-Nash model [11], otherwise known as the Chinese Wall, is a
mandatory access control model that is widely used in the financial services industry to prevent an
employee from working on the finances of two companies that are in competition with one another.
Intuitively, the resources in the system are first divided into groups based on the company they are
associated with, called datasets. These datasets are further grouped into conflict of interest classes
such that all of the companies that are in competition with one another have their datasets in the
same class. The model ensures that once a user chooses an object from a dataset in a given class,
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Figure 5: Example access graphs for the
Brewer-Nash model. The user receives one
access graph per class, where each access
graph allows access to at most one of the
datasets di,j for the associated conflict of in-
terest class i.

cw -- cw i        m  

cr -- cr 1       i 

vi

Figure 6: Example access graph for a user
with security level i in the Bell-LaPadula
model. The graph allows read access to all
resources in classes cr1 through cri and write
access to all objects in classes cwi to cwm.

that user has unrestricted access to all objects in the selected dataset, but no access to objects in
any other dataset in that class. In Figure 5, we denote the jth dataset in class i as di,j , which we
can succinctly represent in our access graphs using either the class label extension, or hidden range
proof extension from Section 5.3.

Bell-LaPadula Model. Another well-known mandatory access control model is the Bell-LaPadula
model [3], which is a Multilevel Security model. The Bell-LaPadula model is designed with the
intent of maintaining data confidentiality in a classified computer system, and it is typically used
in high security environments. In this security model, resources, and users are labeled with a
security level (e.g., top secret, secret, etc.). The security level labels are strictly ordered and
provide a hierarchy that describes the sensitivity of information. The two basic properties of the
Bell-LaPadula model state that a user cannot read a resource with a security level greater than her
own, and she cannot write to resources with a security level less than her own. Therefore, the model
ensures that information from highly sensitive objects cannot be written to low security objects by
using the user as an intermediary. In Figure 6, we denote the security levels as the integers 1, . . . ,m.
Furthermore, we split the access tags into separate read and write access controls through the use
of separate indices. Therefore, a user with security level i gets a graph with tags cwi , . . . , c

w
m that

allow her to write to any resource with a higher security level, and tags cr1, . . . , c
r
i that allow her

to read any resource with a lower security level. Again, these ranges of resources can be succinctly
represented by the extensions of Section 5.3.
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