
The Quadratic Residuosity Problem May Be Equivalent to
Factoring

Tibor Jager and Jörg Schwenk

Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

{tibor.jager,joerg.schwenk}@rub.de

November 14, 2008

Abstract. Generic ring algorithms are the class of algorithms running on an algebraic ring, such as
Zn, and working independent of a specific representation of ring elements. We consider the quadratic
residuosity problem, a problem of high relevance for a large number of cryptographic applications,
and show that solving this problem with generic ring algorithms is equivalent to factoring integers.
This provides first formal evidence towards the widely adopted conjecture that solving the quadratic
residuosity problem in Zn is hard, assuming that factoring n is hard. At the same time our results imply
that, in order to solve the quadratic residuosity problem more efficiently than factoring integers, specific
properties of a given representation of ring elements have to be exploited. This result is relevant for the
design of algorithms solving the quadratic residuosity problem. To our best knowledge this is the first
time that a decisional problem of cryptographic interest is shown to be equivalent to the computational
problem “integer factorization” for a certain class of algorithms.

1 Introduction

The security of asymmetric cryptographic systems depends usually on assumptions that certain
computational problems, mostly from number theory and algebra, are intractable. Since it is un-
known whether these assumptions hold in a general model of computation (e.g. the Turing machine
model), restricted models have been considered, e.g. [1–6]. One natural and quite general restricted
model of computation is the model of generic ring algorithms. This model considers a class of algo-
rithms running on an algebraic ring, without exploiting specific properties of a given representation
of ring elements. Such algorithms work in a similar way for an arbitrary representation of ring
elements, thus are generic.

In this work we analyze the quadratic residuosity problem, a famous problem in cryptography
and number theory, with respect to generic ring algorithms. The quadratic residuosity problem
is to decide whether a given element x ∈ Zn is a quadratic residue, i.e. whether there exists
y ∈ Zn such that x ≡ y2 mod n. It is well-known that solving the quadratic residuosity problem
is at most as hard as factoring n. However, it is a long-standing and important open problem
whether solving this problem for all x ∈ Zn is also at least as hard as factoring n. Many important
cryptographic applications rely on the assumption that solving this problem is hard if factoring n
is hard, e.g. the Goldwasser-Micali cryptosystem [7], the Blum-Blum-Shub pseudorandom number
generator [8], encryption schemes secure against adaptive chosen-ciphertext attacks [9], interactive
proof systems [10], and oblivious transfer protocols [11], to mention a few.

In this work we provide first formal evidence that the quadratic residuosity problem is hard
under the factoring assumption, by showing that solving it with generic ring algorithms is equivalent
to factoring integers.

1.1 Related Work

Previous theoretical work considering the fundamental cryptographic assumptions in a restricted
model of computation was targeted especially on the discrete logarithm and the RSA problem. It is
known that solving the discrete logarithm and related problems such as the Diffie-Hellman problem,
and the problem of root extraction in groups of hidden order, is hard with respect to generic group
algorithms [1, 12, 13, 3].

Especially the analysis of the relationship between the RSA problem and factoring integers in
restricted models of computation is strongly related to our work. Brown [4] reduced the factor-
ing problem to solving the low-exponent RSA problem with straight line programs, which are a
subclass of generic ring algorithms. Leander and Rupp [5] augmented this result to generic ring
algorithms, where the considered algorithms may only perform the operations addition, subtraction
and multiplication modulo n, but not multiplicative inversion operations. Recently Aggarwal and
Maurer [6] extended this result from low-exponent RSA to full RSA and to generic ring algorithms
that may also compute multiplicative inverses. Boneh and Venkatesan [2] have shown that there is
no straight line program reducing integer factorization to the low-exponent RSA problem, unless
factoring integers is easy.

The concept of generic ring algorithms has also been applied to study the relationship between
the discrete logarithm and the Diffie-Hellman problem, cf. [14–16].

We are not aware of any formal evidence that the quadratic residuosity problem is intractable
under the factoring assumption, neither in a general model of computation (e.g. the probabilistic
Turing machine model), nor in a restricted model, such as the model of generic ring algorithms.

1.2 Our Contribution

We analyze the quadratic residuosity problem with respect to generic ring algorithms that may
exploit the full algebraic structure of Zn by performing the operations addition, subtraction, mul-
tiplication, and multiplicative inversion modulo n. We consider the general case where n is the
product of at least two different odd primes, thus including the famous special case where n = pq
with p, q prime and p 6= q. We show that solving the quadratic residuosity problem with generic
ring algorithms is equivalent to factoring n. This result has at least the following important inter-
pretations.

– We provide first formal evidence towards the widely adopted conjecture that solving the quadratic
residuosity problem is hard under the assumption that factoring integers is hard. In addition,
our result may be a step towards a proof in a general model of computation.

– If solving the quadratic residuosity problem is substantially easier than factoring in general,
then our results imply at least that one cannot hope to solve the problem by only using the
elementary ring operations and without essentially factoring the modulus. This is an important
result for the design of algorithms for the quadratic residuosity problem.

Remarkably, to our best knowledge this is the first time that a decisional problem relevant for
cryptographic applications is shown to be equivalent to the computational problem “integer factor-
ization” for a certain class of algorithms.

Our proof technique extends and generalizes a concept introduced by Leander and Rupp [5].
The model of generic ring algorithms considered in [5] captures only the case where n is the product
of exactly two different primes, and does not include algorithms that may compute multiplicative

inverses. Since inverses in Zn can be computed easily with the extended Euclidean algorithm,
excluding this operation appears to be an unfair limitation. We extend the technique of [5] to the
case where n is the product of at least two different primes and, in order to capture a large and
natural class of algorithms, to algorithms that can perform multiplicative inversion operations, and
adapt it to the quadratic residuosity problem. This extension may also be valuable for the study of
other cryptographic assumptions in the generic ring model.

2 Generic Ring Algorithms

Generic ring algorithms are the class of algorithms running on the structure of an algebraic ring,
without exploiting specific properties of a given representation of ring elements. Hence generic ring
algorithms work in a similar way for any representation of ring elements. We adapt the generic
group model of Shoup [1] to formalize the notion of generic ring algorithms. To hide any property
of an explicitly given representation of a ring R, we encode elements of R as random but unique
bit strings, and provide a generic ring oracle O computing the ring operations on encoded ring
elements. Let R be a ring with |R| = n, and let Sn ⊆ {0, 1}dlog2 ne with |Sn| = n. An element of R is
represented by a uniformly random element of Sn. The function mapping elements of R to elements
of Sn is a bijection, which enables an algorithm to check for equality of encoded ring elements by
checking equality of encodings.

Definition 1 (Generic Ring Algorithm). A generic ring algorithm A is a (possibly proba-
bilistic) polynomial-time Turing machine taking as input a r-tuple (E1, . . . , Er) ∈ Srn of randomly
encoded ring elements. The algorithm may query a generic ring oracle to perform computations on
encoded ring elements.

Depending on the particular problem the algorithm might take some additional data as input, such
as the cardinality n of R, for example. We measure the complexity of a generic ring algorithm by
the number of performed ring operations (=oracle queries).

3 Generic Quadratic Residuosity and Factoring

Let us first state a few facts from elementary number theory, as far as required for the following
sections. We refer to [17] for details and a comprehensive treatment. In the following let n =

∏k
i=1 p

ei
i

be the prime factor decomposition of n such that gcd(pi, pj) = 1 for i 6= j.
For n ∈ N we denote with QRn ⊆ Zn the set of quadratic residues modulo n, i.e.

QRn := {x ∈ Zn | x ≡ y2 mod n, y ∈ Zn}.

Definition 2. Let x ∈ Z and n ∈ N.

(i) The Legendre symbol (x | n)L is defined for prime n as

(x | n)L :=

1 if x ∈ QRn and x 6≡ 0 mod n
−1 if x 6∈ QRn

0 if x ≡ 0 mod n.

(ii) The Jacobi symbol (x | n) is defined for n =
∏k
i=1 p

ei
i as

(x | n) :=
k∏
i=1

(x | pi)ei
L .

There exist efficient algorithms computing the Jacobi symbol, even if the factorization of n is
unknown, see [17], for instance. Also note that (x | n) = 1 does not imply that x is a quadratic
residue modulo n if n is composite.

Fact 1 Let x ∈ Z, p prime, and n =
∏k
i=1 p

ei
i be the product of odd primes.

(i) x is a quadratic residue modulo pe, e ∈ N, if and only if (x | p)L = 1.
(ii) x is a quadratic residue modulo n if and only if (x | pi)L = 1 for all i ∈ {1, . . . , k}.

Hence, determining whether a given element x ∈ Zn is a quadratic residue modulo n can be
performed by factoring n and then computing the Legendre symbol for x and each prime factor of
n. Thus the quadratic residuosity problem is at most as hard as factoring n.

Note that x ∈ QRn and gcd(x, n) = 1 implies (x | n) = 1. Let

Jn := {x ∈ Zn | (x | n) = 1}

be the set of elements of Zn having Jacobi symbol 1. Given a non-zero element x ∈ Zn\Jn it is easy
to decide that x is not a quadratic residue by computing the Jacobi symbol.

Remark 1. The cardinality |Jn| of the set of elements having Jacobi symbol 1 depends on whether
n is a square in N.

|Jn| =

{
φ(n)/2, if n is not a square in N,
φ(n), if n is a square in N,

where φ(·) is the Euler totient function. In the sequel we assume that n is not a square (otherwise
finding a factor of n is clearly easy), and use the equation |Jn|

|Zn| = φ(n)
2n whenever required in the

sequel, however, assuming factoring n is hard it should be safe to approximate |Jn|
|Zn| = φ(n)

2n ≈
1
2 .

The probability that a uniformly random element x←r Jn is a quadratic residue in Zn depends
on the number of distinct prime factors of n and their multiplicity. Let

Π ′(n) := Pr[x ∈ QRn | x←r Jn] =
|QRn|
|Jn|

denote the probability that a uniformly random element of Jn is a quadratic residue in Zn. If
x ←r Jn is chosen uniformly random, then there exists a trivial algorithm determining whether x
is a quadratic residue by guessing. This algorithm has success probability

Π(n) := max{Π ′(n), 1−Π ′(n)}.

3.1 The Generic Quadratic Residuosity Problem

In the sequel let n be the product of at least two different primes. We formalize the generic quadratic
residuosity problem in terms of a game between an algorithm A and an oracle OQR.

Game 0 (Original Game). The oracle OQR takes as input an integer n ∈ N and a uniformly
random element x ←r Jn, and keeps two internal lists L ⊆ Zn and E ⊆ Sn as internal state to
maintain the assignment of encodings to ring elements. Let Li and Ei denote the i-th element of L
and E, respectively, then Ei is the encoding of Li. The oracle implements the internal procedures
invertible(), compute(), and encode(), which are defined as follows.

– The invertible()-procedure takes L ∈ L as input, and returns true if L ∈ Z∗n and false if
L 6∈ Z∗n.

– The encode()-procedure is called each time an element is appended to L. The procedure checks
whether there exists a list element Li, i ∈ {1, . . . , |L| − 1}, such that

L|L| ≡ Li mod n.

For the first i where this holds, the oracle sets E|L| := Ei. If there is no such i, a new encoding
E|L| ←r Sn\E is chosen at random from the set of unused encodings and appended to E.

– The compute()-procedure takes a triple (i, j, ◦) ∈ {1, . . . , |L|}×{1, . . . , |L|}×{+,−, ·, /} as input.
If ◦ = /, then the the procedure invertible(Lj) is called; if invertible(Lj) = false then
the error symbol ⊥ is returned. Otherwise the procedure computes λ = Li ◦ Lj , appends λ to
L, and calls the encode()-procedure.

Moreover, the oracle implements the public accessible functions init() and query(), which may be
called by the algorithm A. The public functions are defined as follows.

– When the init()-function is called, the lists L and E are set to the empty list. Then the elements
1 ∈ Zn and x are appended to L, i.e. L1 := 1 and L2 := x, each time calling the encode()-
procedure. The init()-function returns the triple (n,E1, E2).

– The query()-function takes as input a triple (E′, E′′, ◦) ∈ E × E × {+,−, ·, /}. It determines
the smallest i, j ∈ {1, . . . , |L|} such that Ei = E′ and Ej = E′′ and calls compute(i, j, ◦). If
compute(i, j, ◦) =⊥, then the query function returns ⊥. Otherwise the encoding E|L| of the
computed element is returned.

At the beginning of the game the algorithm calls the init()-function and receives (n,E1, E2) as
input. Then it may call the query()-function to perform computations on encoded ring elements.
We assume that the algorithm calls the query()-function at most m times.

We say that A wins the game, if x ∈ QRn and AOQR(n,E1, E2) = 1, or x 6∈ QRn and
AOQR(n,E1, E2) = 0.

Definition 3 (Generic Quadratic Residuosity Problem). Given (n,E1, E2) and access to
oracle OQR such that L1 = 1 and L2 = x for x←r Jn. Output 1 if x ∈ QRn, else output 0.

3.2 The Equivalence of Generic Quadratic Residuosity and Factoring

There exist efficient generic algorithms solving the quadratic residuosity problem in Zn given the
factorization of n =

∏k
i=1 p

ei
i , e.g. by checking whether (x(pi−1)/2 − 1) · n/pi ≡ 0 mod n for all

i ∈ {1, . . . , k}. Thus, in order to prove the equivalence of the quadratic residuosity problem and
factoring integers with respect to generic ring algorithms, we are left with proving the following
theorem.

Theorem 1. Let n ∈ N be the product of at least two different odd primes. Suppose there exists
a generic ring algorithm A performing m ring operations and solving the quadratic residuosity
problem in Zn with probability Π(n) + ε. Then there exists an algorithm B performing at most
O(m4) operations in Zn and O(m3) gcd-computations on dlog2 ne-bit numbers, and finding a factor
of n with probability at least

ε

4(m2 + 5m+ 6)

(
φ(n)
n

)2

.

Remark 2. Suppose there is an algorithm solving the generic quadratic residue problem for arbitrary
n. Then n can be factored completely by first running B on n. If B outputs a factor n1 of n, run a
new instance of B on n1 (unless n1 is a prime power) and n2 = n/n1 (unless n2 is a prime power).
Repeating this procedure at most dlog2 ne times yields the factorization of n, since n has at most
dlog2 ne prime factors.

4 Proof of Theorem 1

Outline. We replace the generic ring oracle OQR with a simulator Osim. To make this step more
comprehensible and easier to verify, we introduce the simulator by a sequence of games [18]. That
is, we make gradual modifications to the oracle described in Game 0 by modifying in Game i
the generic ring oracle from Game i − 1 for i ∈ {1, . . . , 4}. The actual simulation oracle Osim is
introduced in Game 4. An interaction of A with Osim is indistinguishable from an interaction with
the original oracle OQR, unless a simulation failure F occurs. Let Ssim denote the event that A
wins in the simulation game. Then it follows that the success probability Π(n) + ε in the original
game is upper bounded by Pr[Ssim] + Pr[F]. We derive an upper bound on Pr[Ssim] and describe
a factoring algorithm B running A as a subroutine such that Pr[F] is essentially a lower bound on
the success probability of B.

4.1 Introducing a Simulation Oracle

Game 1. We modify the internal representation of ring elements. The notion of the introduced
representation is that an element L ∈ Zn is stored as a tuple (N,D) ∈ Zn × Z∗n such that L ≡
ND−1 mod n. The list L is now defined as L ⊆ Zn × Z∗n. For a tuple Li ∈ L we denote with Ni

the first and with Di the second component, i.e. Li = (Ni, Di). We have to make the following
modifications to the internal procedures and public functions of OQR.

– The init()-function appends the elements (1, 1) ∈ Zn × Z∗n and (x, 1) to L, each time calling
the encode()-procedure. The function returns the triple (n,E1, E2).

– The invertible()-procedure takes Lj ∈ L as input, and returns true if Nj ∈ Z∗n and false if
Nj 6∈ Z∗n.

– The compute()-procedure takes a triple (i, j, ◦) ∈ {1, . . . , |L|}×{1, . . . , |L|}×{+,−, ·, /} as input.
If ◦ = /, then the the procedure invertible(Lj) is called; if invertible(Lj) = false then the
error symbol ⊥ is returned. Otherwise the result λ is computed as follows.

λ :=

(NiDj +NjDi, DiDj) , if ◦ = +,
(NiDj −NjDi, DiDj) , if ◦ = −,

(NiNj , DiDj) , if ◦ = ·,
(NiDj , DiNj) , if ◦ = /.

The result is appended to L.
– The encode()-procedure checks whether there exists a list element Li, i ∈ {1, . . . , |L| − 1}, such

that
N|L|D

−1
|L| ≡ NiD

−1
i mod n.

For the first i where this holds, the oracle sets E|L| := Ei. If there is no such i, a new encoding
E|L| ←r Sn\E is chosen uniformly random from the set of unused encodings.

Game 2. We make a simple change to the encode()-procedure. To check whether a newly computed
ring element L|L| has already been computed, the oracle tests whether there exists Li ∈ L, i ∈
{1, . . . , |L| − 1}, such that

(N|L|Di −NiD|L|) ≡ 0 mod n.

Note that this equality test is equivalent to testing

N|L|D
−1
|L| ≡ NiD

−1
i mod n,

since Di ∈ Z∗n for all i ∈ {1, . . . , |L|}.

Game 3. Observe that, for any Li ∈ L, the elements Ni and Di are computed by performing a
sequence of addition, subtraction and multiplication operations on 1 and x.Thus, the elements Ni

and Di can be seen as polynomial functions of x.
Now we replace the element x with a wildcard character X and define L ⊆ Zn[X]× Zn[X]. We

make the following modifications to the internal and public procedures of OQR.

– The init()-function appends the elements (1, 1) and (X, 1) to L, each time calling the encode()-
procedure.

– The invertible()-procedure takes Lj ∈ L as input, and returns true if Nj(x) ∈ Z∗n and false
if Nj(x) 6∈ Z∗n.

– The compute()-procedure performs all computations component-wise in Zn[X]× Zn[X].
– The encode()-procedure checks whether there exists a list element Li, i ∈ {1, . . . , |L| − 1}, such

that
(N|L|Di −NiD|L|)(x) ≡ 0 mod n.

Note that Li(x) ∈ L corresponds to the element Ni(x)/Di(x) = Ni(x)Di(x)−1. We refer to an
element Li(X) = Ni(X)/Di(X) as rational function in X over Zn.

Game 4 (Simulation Game). We replace the oracle OQR with a simulator Osim. The simulator
is defined exactly like the oracle described in Game 3, except for the following modification. In
Game 3 the computed polynomials are evaluated with x by the encode() and the invertible()-
procedure, where x is the random element of Jn that OQR has received as input at the beginning
of the game. In order to make all computations of A independent of x, we replace these procedures
with procedures that evaluate the polynomials with randomly sampled elements. More precisely,
when A calls the query()-function for the k-th time, then the oracle samples a uniformly random
element xk ←r Jn. The procedures encode() and invertible() are modified as follows.

– The invertible()-procedure returns true if Nj(xk) ∈ Z∗n and false if Nj(xk) 6∈ Z∗n.

– The encode()-procedure checks whether there exists a list element Li, i ∈ {1, . . . , |L| − 1}, such
that

(N|L|Di −NiD|L|)(xk) ≡ 0 mod n.

Note that all computations of A are independent of x in the simulation game.

4.2 Probability of Simulation Failure

It is straightforward to verify that Games 1-3 are equivalent to Game 0 (the original game) in the
sense that the modified oracles are equivalent to the original oracle, hence Games 0-3 are perfectly
indistinguishable. Let us compare the oracle Osim introduced in Game 4 with the oracle described
in Game 3.

We say that a simulation failure occurs, if an interaction of A with Osim is not perfectly
indistinguishable from an interaction with OQR, i.e. the input-output behavior of Osim differs from
the input-output behavior of OQR. We denote this event with F. Note that a simulation failure
implies that at least one of the following events has occurred.

1. The invertible()-procedure in Game 4 simulates the invertible()-procedure from Game 3
perfectly, unless there exist Lj ∈ L such that the algorithm has queried a division by Lj in the
k-th step, and it holds that

(Nj(xk) ∈ Z∗n and Nj(x) 6∈ Z∗n) or (Nj(xk) 6∈ Z∗n and Nj(x) ∈ Z∗n) .

We denote this event with F1.
2. Let δk := (NiDj −NjDi) be the difference polynomial computed by the simulator to check for

equality of elements after the k-th query of A. The encode()-procedure in Game 4 simulates
the encode()-procedure from Game 3 perfectly, unless there exists δk, k ∈ {1, . . . ,m}, such that

(δk(xk) ≡ 0 mod n and δk(x) 6≡ 0 mod n) or (δk(xk) 6≡ 0 mod n and δk(x) ≡ 0 mod n) .

We denote this event with F2.

Since a simulation failure implies that events F1 or F2 have occurred, the probability of simulation
failure F is bounded by

Pr[F] ≤ Pr[F1] + Pr[F2].

In the sequel we will derive bounds on Pr[F1] and Pr[F2] separately.

4.3 Relating the Simulation Failure Probability to Factoring

For z ∈ Zn[X] let us consider the probability of finding a non-trivial factor of n by sampling
x←r Zn and computing gcd(n, z(x)). This probability is given by

γ(z) := Pr[gcd(n, z(x)) 6∈ {1, n} | x←r Zn].

Bounding the Probability of F1. For z ∈ Zn[X] let π1(z) denote the probability

π1(z) := Pr[z(x) ∈ Z∗n and z(x′) 6∈ Z∗n | x, x′ ←r Jn].

The probability of F1 is bounded by

Pr[F1] = Pr
[(
Nj(x′) ∈ Z∗n and Nj(x) 6∈ Z∗n

)
or
(
Nj(x′) 6∈ Z∗n and Nj(x) ∈ Z∗n

)
| x, x′ ←r Jn

]
= Pr[

(
Nj(x′) ∈ Z∗n and Nj(x) 6∈ Z∗n

)
| x, x′ ←r Jn]

+ Pr[
(
Nj(x′) 6∈ Z∗n and Nj(x) ∈ Z∗n

)
| x, x′ ←r Jn]

=2 Pr[
(
Nj(x′) ∈ Z∗n and Nj(x) 6∈ Z∗n

)
| x, x′ ←r Jn]

≤2
∑
Lj∈L

π1(Nj).

Lemma 1. Let n ∈ N such that n has at least two different prime factors. For z ∈ Zn[X] holds
that

4
(

n

φ(n)

)2

γ(z) ≥ π1(z).

Proof (Sketch). Using that Zn ∼= Zpe1
1
× · · · ×Zpek

k
by the Chinese Remainder Theorem, we express

Pr[γ′(z)] and Pr[π1(z)] in terms of Pr[z(x) ≡ 0 mod pi | x←r Zn] for i ∈ {1, . . . , k}. The resulting
inequality is proven by complete induction. The claim follows, since γ(z) ≥ γ′(z). A full proof is
given in Appendix A.

There are at most m + 2 rational functions in the list L, thus the probability of failure F1 is
bounded by

Pr[F1] ≤ 2
∑
Lj∈L

π1(Nj) ≤ 8
(

n

φ(n)

)2 ∑
Lj∈L

γ(Nj) ≤ 8(m+ 2)
(

n

φ(n)

)2

γ1,

where γ1 := maxLj∈L{γ(Nj)}. Note that γ1 is a lower bound on the probability that n can be
factored by sampling x←r Zn and computing gcd(n,Nj(x)) for all Li ∈ L.

Bounding the Probability of F2. For z ∈ Zn[X] and x, x′ ←r Jn let π2(z) denote the probability

π2(z) := Pr[z(x) ≡ 0 mod n and z(x′) 6≡ 0 mod n | x, x′ ←r Jn].

Let ∆ := {(NiDj − NjDi) | Li, Lj ∈ L, i > j} ⊆ Zn[X] be the set of all possible difference
polynomials computed by the simulator to check for equality of elements. Then the probability of
failure F2 is bounded by

Pr[F2] ≤ 2
∑
δ∈∆

π2(δ).

Lemma 2. Let n ∈ N such that n has at least two different prime factors. For z ∈ Zn[X] holds
that

4
(

n

φ(n)

)2

γ(z) ≥ π2(z).

Proof (Sketch). Similar to the proof of Lemma 1, we express Pr[γ′(z)] and Pr[π1(z)] in terms of
Pr[z(x) ≡ 0 mod pei

i | x ←r Zn] for i ∈ {1, . . . , k}. The resulting inequality is proven by complete
induction. The claim follows, since γ(z) ≥ γ′′(z). A full proof is given in Appendix B.

Let γ2 := maxδ∈∆{γ(δ)}. Note that, since there are at most m + 2 rational functions in L, it
holds that |∆| ≤ (m+ 2)(m+ 1)/2. Hence the probability of failure F2 is bounded by

Pr[F2] ≤ 2
∑
δ∈∆

π2(δ) ≤ 8
(

n

φ(n)

)2∑
δ∈∆

γ(δ) ≤ 4(m2 + 3m+ 2)
(

n

φ(n)

)2

γ2.

Also note that γ2 is a lower bound on the probability that n can be factored by sampling x←r Zn
and computing gcd(n, δ(x)) for all δ ∈ ∆.

4.4 The Probability of Success in the Simulation Game

All computations are independent of x, hence the success probability of any algorithm is at most
Π(n).

Pr[Ssim] ≤ Π(n).

4.5 The Probability of Success in the Original Game

Applying the inequality Π(n) + ε ≤ Pr[Ssim] + Pr[F], we obtain that the success probability of
algorithm A in the original game is bounded by

Π(n) + ε ≤ Pr[Ssim] + Pr[F]
≤ Pr[Ssim] + Pr[F1] + Pr[F2]

≤ Π(n) + 4
(

n

φ(n)

)2 (
(2m+ 4)γ1 + (m2 + 3m+ 2)γ2

)
≤ Π(n) + 4

(
n

φ(n)

)2

(m2 + 5m+ 6)γ.

where γ := max{γ1, γ2}.

4.6 The Factoring Algorithm

Consider the following factoring algorithm B that runs A on an arbitrary instance of the generic
quadratic residuosity problem. Algorithm B records the sequence of queries thatA issues, i.e. records
the same list L of polynomials as the simulation oracle. When algorithm A calls the procedure
query() for the k-th time, submitting the parameters (Ei, Ej , ◦) for some i, j ∈ {1, . . . , k + 2},
algorithm B picks a uniformly random element xk ←r Zn and proceeds as follows.

1. If ◦ = /, compute gcd(n,Nj(xk)).
2. For each Li ∈ L, i ∈ {1, . . . , k − 1}, compute gcd(n, (NkDi −NiDk)(xk)).

Success probability of B. Note that B finds a factor of n by proceeding this way with probability
at least γ. Using that

Π(n) + ε ≤ Π(n) + 4
(

n

φ(n)

)2

(m2 + 5m+ 6)γ

we obtain that the success probability of this algorithm is at least

γ ≥ ε

4(m2 + 5m+ 6)

(
φ(n)
n

)2

.

Running time of B.

1. Computing gcd(n,Nj(xk)) takes O(m) operations in Zn to evaluate Nj(xk) and one gcd-
computation on dlog2 ne-bit numbers.

2. Note that |L| ≤ m+ 2, hence the algorithm has to evaluate at most (m+ 2)(m+ 1)/2 = O(m2)
difference polynomials (NkDi−NiDk)(xk) and perform O(m2) gcd-computations on dlog2 ne-bit
numbers. Each difference polynomial can be evaluated by performing O(m) operations in Zn.

These steps are performed at most m times. In addition, the algorithm has to maintain the list
L, which takes time and space O(m). Summing up we see that the algorithm B performs O(m4)
operations in Zn and O(m3) gcd-computations on dlog2 ne-bit numbers. ut

Acknowledgements. We thank Andy Rupp and Sven Schäge for helpful discussions.

References

1. Shoup, V.: Lower bounds for discrete logarithms and related problems. In Walter Fumy, ed.: Advances in
Cryptology - EUROCRYPT 1997. Volume 1233 of Lecture Notes in Computer Science. (1997) 256–266

2. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In Nyberg, K., ed.: EUROCRYPT.
Volume 1403 of Lecture Notes in Computer Science., Springer (1998) 59–71

3. Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction and signature schemes in general groups.
[19] 256–271

4. Brown, D.R.L.: Breaking RSA may be as difficult as factoring. Cryptology ePrint Archive, Report 2005/380
(2005) http://eprint.iacr.org/.

5. Leander, G., Rupp, A.: On the equivalence of RSA and factoring regarding generic ring algorithms. In Lai, X.,
Chen, K., eds.: ASIACRYPT. Volume 4284 of Lecture Notes in Computer Science., Springer (2006) 241–251

6. Aggarwal, D., Maurer, U.: Factoring is equivalent to generic RSA. Cryptology ePrint Archive, Report 2008/260
(2008) http://eprint.iacr.org/.

7. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2) (1984) 270–299
8. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM J. Comput.

15(2) (1986) 364–383
9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key

encryption. [19] 45–64
10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput.

18(1) (1989) 186–208
11. Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In Cramer, R., ed.: EUROCRYPT.

Volume 3494 of Lecture Notes in Computer Science., Springer (2005) 78–95
12. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55(2)

(1994) 165–172

13. Maurer, U.M.: Abstract models of computation in cryptography. In Smart, N.P., ed.: IMA Int. Conf. Volume
3796 of Lecture Notes in Computer Science., Springer (2005) 1–12

14. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to cryptography (extended ab-
stract). In Koblitz, N., ed.: CRYPTO. Volume 1109 of Lecture Notes in Computer Science., Springer (1996)
283–297

15. Maurer, U., Raub, D.: Black-box extension fields and the inexistence of field-homomorphic one-way permutations.
In Kurosawa, K., ed.: ASIACRYPT. Volume 4833 of Lecture Notes in Computer Science., Springer-Verlag (2007)
427–443

16. Altmann, K., Jager, T., Rupp, A.: On black-box ring extraction and integer factorization. In Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I., eds.: ICALP (2). Volume 5126 of Lecture
Notes in Computer Science., Springer (2008) 437–448

17. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press (2005)
18. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs (2006) URL:

http://eprint.iacr.org/2004/332.
19. Knudsen, L.R., ed.: Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and

Applications of Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings.
In Knudsen, L.R., ed.: EUROCRYPT. Volume 2332 of Lecture Notes in Computer Science., Springer (2002)

A Proof of Lemma 1

For a polynomial z ∈ Zn[X], and t ∈ N let

ν(t, z) :=
|{x ∈ Zn | z(x) ≡ 0 mod t}|

n

denote the probability that z(x) ≡ 0 mod t for uniformly random x←r Zn.
A factor of n is found by sampling x ←r Zn and computing gcd(n, z(x)) if (but not only if)

there exist prime pi and pj dividing n such that z(x) ≡ 0 mod pi and z(x) 6≡ 0 mod pj . Using that
Zn ∼= Zpe1

1
×· · ·×Zpek

k
by the Chinese Remainder Theorem, the success probability of this algorithm

can be expressed as

γ′(z) :=1−
k∏
i=1

Pr[z(x) ≡ 0 mod pi | x←r Zn]−
k∏
i=1

Pr[z(x) 6≡ 0 mod pi | x←r Zn]

=1−
k∏
i=1

ν(pi, z)−
k∏
i=1

(1− ν(pi, z)) .

Note that γ(z) ≥ γ′(z).
The probability π1(z) can be expressed in terms of ν(·, ·) as

π1(z) = Pr[z(x′) ∈ Z∗n ∧ z(x) 6∈ Z∗n | x, x′ ←r Jn]
= Pr[z(x) ∈ Z∗n | x←r Jn] Pr[z(x) 6∈ Z∗n | x←r Jn]

≤ Pr[z(x) ∈ Z∗n | x←r Zn] Pr[z(x) 6∈ Z∗n | x←r Zn]
(
|Zn|
|Jn|

)2

= Pr[z(x) ∈ Z∗n | x←r Zn] (1− Pr[z(x) ∈ Z∗n | x←r Zn])
(

2n
φ(n)

)2

=

(
k∏
i=1

(1− ν(pi, z))−
k∏
i=1

(1− ν(pi, z))
2

)(
2n
φ(n)

)2

,

where we use that

Pr[z(x) ∈ Z∗n | x←r Zn] ≥ Pr[z(x) ∈ Z∗n | x←r Jn]
|Jn|
|Zn|

and

Pr[z(x) 6∈ Z∗n | x←r Zn] ≥ Pr[z(x) 6∈ Z∗n | x←r Jn]
|Jn|
|Zn|

.

We prove Lemma 1 by showing that

(
2n
φ(n)

)2

γ′(z) ≥

(
k∏
i=1

(1− ν(pi, z))−
k∏
i=1

(1− ν(pi, z))
2

)(
2n
φ(n)

)2

.

This inequality is equivalent to

1−
k∏
i=1

ν(pi, z)−
k∏
i=1

(1− ν(pi, z)) ≥
k∏
i=1

(1− ν(pi, z))−
k∏
i=1

(1− ν(pi, z))
2

which in turn is equivalent to(
1−

k∏
i=1

(1− ν(pi, z))

)2

≥
k∏
i=1

ν(pi, z).

Lemma 3. For k ∈ N and µi ∈ [0, 1] with i ∈ {1, . . . , k} holds that

(
1−

k∏
i=1

(1− µi)

)k
≥

k∏
i=1

µi.

Proof. The proof proceeds by induction on k ∈ N. The case k = 1 is obvious. The step k → k + 1
proceeds as follows.(

1−
k+1∏
i=1

(1− µi)

)k+1

=

(
1−

k+1∏
i=1

(1− µi)

)k(
1−

k+1∏
i=1

(1− µi)

)

≥

(
1−

k∏
i=1

(1− µi)

)k
(1− (1− µk+1))

hyp.
≥

k∏
i=1

µi · µk+1 =
k+1∏
i=1

µi

4

The claim follows since
(

1−
∏k
i=1(1− µi)

)2
≥
(

1−
∏k
i=1(1− µi)

)k
for k ≥ 2.

B Proof of Lemma 2

The proof proceeds very similar to the proof of Lemma 1 Observe that n can be factored by sampling
x ←r Zn and computing gcd(n, z(x)) if (but not only if) there exist pei

i and p
ej

j dividing n such
that z(x) ≡ 0 mod pei

i and z(x) 6≡ 0 mod pej

j . Using the notation from the proof of Lemma 1, the
success probability of this algorithm can be expressed as

γ′′(z) :=1−
k∏
i=1

Pr[z(x) ≡ 0 mod pei
i | x←r Zn]−

k∏
i=1

Pr[z(x) 6≡ 0 mod pei
i | x←r Zn]

=1−
k∏
i=1

ν(pei
i , z)−

k∏
i=1

(1− ν(pei
i , z)) .

Note that it holds that γ(z) ≥ γ′′(z).
The probability π2(z) can be expressed in terms of ν(·, ·) as

π2(z) = Pr[z(x) ≡ 0 ∧ z(x′) 6≡ 0 | x, x′ ←r Jn]
= Pr[z(x) ≡ 0 mod n | x←r Jn] Pr[z(x) 6≡ 0 mod n | x←r Jn]

≤ Pr[z(x) ≡ 0 mod n | x←r Zn] Pr[z(x) 6≡ 0 mod n | x←r Zn]
(

Zn
|Jn|

)2

= Pr[z(x) ≡ 0 mod n | x←r Zn] (1− Pr[z(x) ≡ 0 mod n | x←r Zn])
(

2n
φ(n)

)2

=

(
k∏
i=1

ν(pei
i , z)−

k∏
i=1

ν(pei
i , z)

2

)(
2n
φ(n)

)2

where we use that

Pr[z(x) ≡ 0 mod n | x←r Zn] ≥ Pr[z(x) ≡ 0 mod n | x←r Jn]
|Jn|
|Zn|

and
Pr[z(x) 6≡ 0 mod n | x←r Zn] ≥ Pr[z(x) 6≡ 0 mod n | x←r Jn]

|Jn|
|Zn|

We prove Lemma 2 by showing that(
2n
φ(n)

)2

γ′′(z) ≥

(
k∏
i=1

ν(pei
i , z)−

k∏
i=1

ν(pei
i , z)

2

)(
2n
φ(n)

)2

.

Note that this inequality is equivalent to

1−
k∏
i=1

ν(pei
i , z)−

k∏
i=1

(1− ν(pei
i , z)) ≥

(
k∏
i=1

ν(pei
i , z)

)(
1−

k∏
i=1

ν(pei
i , z)

)
,

which in turn is equivalent to(
1−

k∏
i=1

ν(pei
i , z)

)2

≥
k∏
i=1

(1− ν(pei
i , z)) .

Lemma 4. For k ∈ N and µ′i ∈ [0, 1] with i ∈ {1, . . . , k} holds that(
1−

k∏
i=1

µ′i

)k
≥

k∏
i=1

(1− µ′i).

Proof. Let µi := 1− µ′i and apply Lemma 3. 4

The claim follows since
(

1−
∏k
i=1 µi

)2
≥
(

1−
∏k
i=1 µi

)k
for k ≥ 2.

C Storing and Evaluating Rational Functions.

We have to take care of the way how the polynomials (Ni, Di) ∈ Zn[X]×Zn[X] corresponding to the
rational function Li ∈ L are computed and stored. Consider an oracle representing a polynomial f ∈
Zn[X] by the list of non-zero coefficients of f together with the corresponding degree. For instance,
let us assume that the algorithm computes the rational function L3 = L1 + L2 = (1, 1) + (X, 1) =
(X + 1, 1) in the first query, and then applies a sequence of m repeated squaring operations to L3.
The expansion of the polynomial (X + 1)m consists of 2m monomials with non-zero coefficients,
which grows too fast to be stored efficiently.

However, we assume that the oracle stores the polynomials Ni and Di as straight line programs.
That is, the oracle stores the sequence of queries that A performs to compute the polynomials Ni

and Di for i ∈ {3, . . . , |L|}. Note that each polynomial Ni is computed by performing at most 3m
operations in Zn[X], and each polynomial Di is computed by performing at most m operations,
hence the size of this representation is O(m). Moreover, replacing the wildcard character X by
x ∈ Zn and performing the same sequence of operations on 1 and x corresponds to evaluating
Ni(x) and Di(x). Computing Ni(x)/Di(x) if Di(x) ∈ Z∗n yields Li(x). Hence each polynomial can
be evaluated by performing O(m) operations in Zn.

