Inside the Hypercube

Jean-Philippe Aumasson^{1*}, Willi Meier^{1†}, María Naya-Plasencia^{2‡}, and Thomas Peyrin³

 $^{1}\,$ FHNW, Windisch, Switzerland $^{2}\,$ INRIA project-team SECRET, France $^{3}\,$ Ingenico, France

Some force inside the Hypercube occasionally manifests itself with deadly results. http://www.staticzombie.com/2003/06/cube_2_hypercube.html

Abstract. Bernstein's CubeHash is a hash function family that includes four functions submitted to the NIST Hash Competition. A CubeHash function is parametrized by a number of rounds r, a block byte size b, and a digest bit length h. The 1024-bit internal state of CubeHash is represented as a five-dimension hypercube. Submissions to NIST have $r=8,\ b=1,\$ and $h\in\{224,256,384,512\}.$

This paper gives the first external analysis of CubeHash, with

- improved standard generic attacks for collisions and preimages
- a multicollision attack that exploits fixed points
- a study of the round function symmetries
- a preimage attack that exploits these symmetries
- $\bullet\,$ a practical collision attack on a weakened version of CubeHash
- high-probability truncated differentials over the 8-round transform

Our results do not contradict the security claims about CubeHash.

1 CubeHash

Bernstein's CubeHash is a hash function family that includes four functions submitted to the NIST Hash Competition. A CubeHash function is parametrized by a number of rounds r, a block byte size b, and a digest bit length h; the 1024-bit internal state of CubeHash is viewed as a five dimensional hypercube. Submissions to NIST have r = 8, b = 1, and $h \in \{224, 256, 384, 512\}$.

CubeHash computes the digest of a message as follows:

- initialize a 1024-bit state as a function of (h, b, r)
- append to the message a 1 bit and enough 0 bits to reach a multiple of 8b bits
- for each b-byte message block:
 - xor the block into the first b bytes of the state
 - \bullet transform the state through the r-round T function
- xor a 1 bit with the 993th bit of the state
- transform the state through 10r-round T
- \bullet output the first h bits of the state

Let $x[0], \ldots, x[31]$ represent the 1024-bit state as an array of 32-bit words. The transform function T makes r identical rounds, where each round computes (see also Fig. 1):

^{*}Supported by the Swiss National Science Foundation under project no. 113329.

[†]Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07.

[‡]Supported in part by the French Agence Nationale de la Recherche under contract ANR-06-SETI-013-RAPIDE.

```
x[i+16] = x[i+16] + x[i]
for i = 0, ..., 15:
                        y[i \oplus 8] = x[i]
for i = 0, ..., 15:
                        x[i] = y[i] \ll 7
for i = 0, ..., 15:
                        x[i] = x[i] \oplus x[i+16]
for i = 0, ..., 15:
                        y[i \oplus 2] = x[i+16]
for i = 0, ..., 15:
                        x[i+16] = y[i]
for i = 0, ..., 15:
                        x[i+16] = x[i+16] + x[i]
for i = 0, ..., 15:
for i = 0, ..., 15:
                        y[i \oplus 4] = x[i]
                        x[i] = y[i] \lll 11
for i = 0, ..., 15:
                        x[i] = x[i] \oplus x[i+16]
for i = 0, ..., 15:
                        y[i \oplus 1] = x[i+16]
x[i+16] = y[i]
for i = 0, ..., 15:
for i = 0, ..., 15:
```

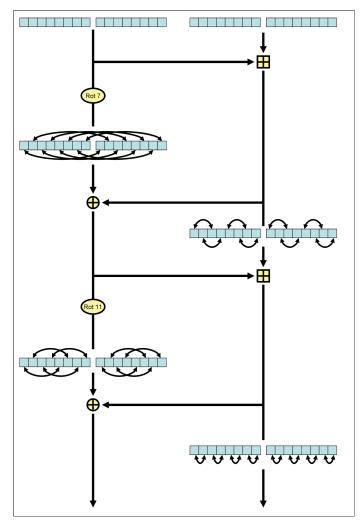


Fig. 1. Schematic view of a CubeHash round.

2 Improved standard generic attacks

The author of CubeHash presented [1] the following "standard preimage attack":

- from (h, b, r) compute the initial state S_0
- from the h-bit image plus some arbitrary /1024 h) bits, invert 10r rounds and the "xor 1" to get a state S_f before finalization
- find two *n*-block sequences that map S_0 (forward) and S_f (backward), respectively, to two states that share the last (1024 8b) bits

There are 2^{nb} possible n-block inputs and one looks for a collision over (1024-8b) bits. For a success chance $1-1/e\approx 0.63$ one thus requires 2^{512-4b} trials in each direction, that is, 2nb>1024-8b, i.e., n>512/b-4. In total the number of evaluations of T is approximately

$$2 \times \left(\frac{512}{b} - 4\right) \times 2^{512 - 4b} \approx 2^{522 - 4b - \log b} \ .$$

Furthermore, [1] estimates that each round of T needs 2^{11} "bit operations"; the above formula gives about $2^{533-4b-\log b+\log r}$ bit operations.

A speed-up of the above attack can be obtained by searching a collision not only in the states resulting of a n-block computation, but in every distinct state reached (i.e. also with the intermediate states). This is made possible by the absence of message length padding. Each call to T gives a new candidate for the collision search; we thus get rid of the (512/b-4) multiplicative factor in the cost estimate. This gives a cost of

$$2 \times 2^{512-4b} = 2^{513-4b}$$

evaluations of T, i.e. $2^{524-4b+\log r}$ bit operations.

The proposed CubeHash-512 has (h,b,r)=(512,1,8), our attack thus makes 2^{523} bit operations, against 2^{532} with the original attack. If r=8, our attack needs b>3 to make less than 2^{512} bit operations, against b>5 with the original preimage attack. It is to note that these estimates exclude the nonnegligible communication costs.

One can use the same trick to speed-up the standard collision attack [1]; the cost in T evaluations then drops from $2^{521-4b-\log b}$ to 2^{512-4b} .

3 Narrow-pipe multicollisions

Based on the "narrow-pipe" attacks in [2], we show a multicollision attack on CubeHash faster than Joux's [5] or birthday [4,7] methods (for large b's). Our attack requires the same amount of computation as narrow-pipe collisions. It exploits the fact that the null state is a fixed point for the compression function T (regardless of r), and that the message padding doesn't include the message length.

Starting from an initial state S_0 derived from (h, b, r), one finds two *n*-block sequences m and m' that map S_0 (forward) and the zero state (backward), respectively, to two states that share the last (1024 - 8b) bits. One finds a connection of the form

$$S_0 \oplus m_1 \xrightarrow{T} S_1$$

$$S_1 \oplus m_2 \xrightarrow{T} \cdots$$

$$\cdots \xrightarrow{T} S'_1$$

$$S'_1 \oplus m'_2 \xrightarrow{T} 0 \oplus m'_1$$

Once a path to the zero state is found, one can add an arbitrary number of zero message blocks to maintain a zero state. Colliding messages are of the form

$$m||m'||0||0||\dots ||0||\bar{m},$$

where \bar{m} is an arbitrary sequence of blocks.

Using the technique of §2, this multicollision attack requires approximately 2^{513-4b} evaluations of T. In comparison, a birthday attack finds a k-collision in $(k! \times 2^{n(k-1)})^{1/k}$ trials, and Joux's attacks in $\log k \times 2^{4(128-b)}$. For example, with h = 512 and b = 112, our attack finds 2^{64} -collisions within 2^{65} calls to T, against $> 2^{512}$ for a birthday attack and 2^{70} for Joux's.

4 On state symmetries

The documentation of CubeHash mentions [3, p.3] the existence of symmetries through the round function, and states that the initialization of CubeHash was designed to avoid symmetries. However [3] gives no detail on those symmetries. In this section we present five symmetry classes of 2^{512} states each, and show how to exploit them.

4.1 Symmetry classes

If a 32-word state x satisfies x[0] = x[1], x[2] = x[3], ..., x[30] = x[31], then this property is preserved through the transformation T, for any number of rounds. One can represent this symmetry with the pattern (each letter stands for a 32-bit word):

AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP .

In total we found five classes of symmetry:

 C_1 : AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP C_2 : ABABCDCD EFEFGHGH IJIJKLKL MNMNOPOP C_3 : ABCDABCD EFGHEFGH IJKLIJKL MNOPMNOP C_4 : ABCDEFGH ABCDEFGH IJKLMNOP IJKLMNOP C_5 : ABBACDDC EFFEGHHG IJJIKLLK MNNMOPPO

Each class contains 2^{512} states. If a state belongs to several classes, then its image under T also belongs to these classes; for example if $S \in (C_i \cap C_j)$, then $T(S) \in (C_i \cap C_j)$. We have

$$|C_1 \cap C_2| = |C_1 \cap C_5| = |C_2 \cap C_3| = |C_2 \cap C_5| = |C_3 \cap C_4| = 256$$

$$|C_1 \cap C_3| = |C_2 \cap C_4| = |C_3 \cap C_5| = 128$$

$$|C_1 \cap C_4| = |C_4 \cap C_5| = 64$$

We thus have $\left| \bigcup_{i=1}^5 C_i \right| \ge 5 \times 2^{512} - 10 \times 2^{256} \approx 2^{514.3}$ distinct symmetric states. Note that symmetry is not preserved by the finalization procedure of CubeHash (the "xor 1" breaks any of the above symmetries).

Exploiting symmetric states

Preimages. Given a target digest, one can make a preimage attack similar to that in §2, and exploit symmetric states for the connection. The attack goes as follows:

- from the initial state, reach a symmetric state (of any class) by using $2^{1024-514-8} =$ 2^{502} message blocks
- from a state before finalization, reach (backwards) another symmetric state (not necessarily of the same class)
- from these two symmetric states in classes C_i and C_j , use null message blocks in both directions to reach two states in $C_i \cap C_j$
- find a collision by trying $\sqrt{|C_i \cap C_j|}$ messages in each direction

Complexity of steps 1 and 2 is about 2^{503} computations of T. The cost of steps 3 and 4 depends on i and j; there are three distinct cases (counting in calls to T):

- 1. i=j (with prob. 5/25): step 3 costs 0 and step 4 costs 2×2^{256} 2. $|C_i\cap C_j|=2^{256}$ (with prob. 10/25): step 3 costs 2×2^{256} and step 4 costs 2×2^{128} 3. $|C_i\cap C_j|=2^{128}$ (with prob. 6/25): step 3 costs 2×2^{384} and step 4 costs 2×2^{64} 4. $|C_i\cap C_j|=2^{64}$ (with prob. 4/25): step 3 costs 2×2^{448} and step 4 costs 2×2^{32}

In any case, the total complexity is about 2^{503} calls to T. This attack, however, finds messages of unauthorized size (more than 2^{257} bytes!).

One can find preimages of reasonable size by using a variant of the above attack: suppose b > 4, from the initial state reach a state in C_1 , do the same backwards from a state before finalization. Then one seeks a collision within C_1 by trying messages preserving the symmetry: for example, if b=5, one has to preserve the equality x[0]=x[1] and shall thus pick 5-byte messages of the form X000X (each digit stands for a byte). The cost of reaching a C_1 state depends on b:

- if $b \equiv 0 \mod 8$, there are (1024 8b)/2 = 512 4b equations to satisfy, thus about 2^{512-4b} calls to T are necessary
- if $b \equiv 4 \mod 8$, there are only (1024 8b 32)/2 = 496 4b equations to satisfy, because one has no condition on the first state word not xored with the message
- generalizing, when $b \mod 8 \le 4$, about $2^{512-4(b+(b \mod 4))}$ calls to T are necessary when $b \mod 8 > 4$, there are $(1024 8b 32 + 8(b \mod 4))/2$ equations to satisfy, which gives a cost $2^{496-4(b-(b \mod 4))}$

The general formula is

$$2512 - 32 \lfloor b/8 \rfloor - 32 \lfloor (b \bmod 8)/4 \rfloor - [(\lfloor (b \bmod 8)/4 \rfloor + 1) \bmod 2] \times 8(b \bmod 4)$$

In the best case ($b \equiv 4 \mod 8$), the attack is 2^{15} times faster than that in §2. In the worst case $(b \equiv 0 \mod 8)$, it has the same complexity. Note that when b = 5, the attack makes about 2^{481} calls to T, against 2^{493} with the attack in §2.

Collisions on a weakened CubeHash. The initialization of CubeHash never leads to a symmetric initial state. Here we present a practical collision attack that would apply if the initial state were symmetric, and in $C_1 \cap C_4$.

Suppose that the initial state of CubeHashr/b-h is in $C_1 \cap C_4$, i.e. is of the form

AAAAAAA AAAAAAAA BBBBBBBB BBBBBBB .

If one hashes the $b2^{33}$ -byte message that contain only zeros, then each of the 2^{33} intermediate states is an element of $C_1 \cap C_4$. Assuming that T acts like a random permutation of $C_1 \cap C_4$, one will find two identical states with probability about 0.63, which directly gives a collision.

5 Truncated differentials over T

We analyse linear differentials over the T transform, and use them to empirically detect high-probability truncated differentials.

We start from the input difference 80000000 in x[16]; x[16] was chosen because words $x[16]\cdots x[31]$ diffuse less in the first rounds than $x[0]\cdots x[15]$, and to minimize the index in order to minimize b (to control x[16] one needs $b\geq 68$). We chose 80000000 to minimize the impact of carries.

The weight-1 difference above gives a weight-5 difference with probability 1 after one round. Using the inverse transform function T^{-1} , we identify a difference that gives after one round a difference in 80000000 in x[16] with probability 2^{-5} for random bits in $x[17] \cdots x[31]$; with probability 2^{-2} for random bits only in x[31] and a particular choice of the other bits; with probability 2^{-3} for random bits in $x[28] \cdots x[31]$. To summarize, the input difference used is (printing words from left-top to right-bottom)

After a round this gives with some nonzero probability the weight-1 difference

which after another round gives with probability 1 the difference

In the linear model (i.e. when additions are replaced by xors), the differential path cycles over 47 rounds, that is, it comes back to the difference 80000000 in x[16] after 47 rounds. In the original model, however, linear differentials are followed with negligible probability after only a few rounds. Nevertheless, one can use the 2-round differential above to empirically identify 1-to-1 truncated differentials over more rounds. We detail these results below.

We empirically looked for high-probability truncated differentials, starting from the weight-8 input difference, and applying to each output bit a frequency test similar to that in $[6, \S 2.1]$, with decision treshold 0.001 and 2^{20} samples.

First, we consider as output the *first 512 state bits*, i.e. the maximum number of bits outputable by CubeHash (note that [3] defines $h \in \{8, 16, 24, ..., 512\}$). We initialize a message to $x[0] = \cdots = x[15] = 0$,

```
 x[16] = 00000000 \qquad x[17] = 4335 \text{A} 2 \text{F} 2 \qquad x[18] = 6 \text{C} 2774 \text{B} 5 \qquad x[19] = 184555 \text{F} 5 \\ x[20] = 6 \text{E} 359435 \qquad x[21] = 6 \text{D} 8 \text{D} 994 \text{C} \qquad x[22] = 0768 \text{D} 703 \qquad x[23] = 16 \text{D} 45 \text{B} 5 \text{A} \\ x[24] = 6 \text{F} 44 \text{B} 6 \qquad x[25] = 6 \text{C} 52326 \text{A} \qquad x[26] = 23 \text{B} \text{E} \text{F} \text{B} 7 \qquad x[27] = 5587 \text{CD} \text{F} 0 \\ x[27] = 5 \text{D} 8 \text{CD} \text{CD} 7 \qquad x[27] = 2 \text{D} 8 \text{D} 9 \qquad x[27] = 2 \text{D} 9 \qquad x[27
```

and 128 random bits in $x[28] \cdots x[31]$, then apply the weight-8 difference, transform both messages with 7-round T, and collect the p-values of the frequency test for each output bit. We observe that about 30 bits have p-value less than 0.001, against none for 8 or more rounds. For example the output bits 35, 99, 498, and 499 have null p-value.

Then, we consider as output the 1024 state bits. We set $x[0] \dots, x[27]$ to the same values as above, and in addition set

```
x[28] = 0E22B0EE x[29] = 41F13BBA x[31] = 179C53D5
```

and 32 random bits in x[30]. Over 8 T rounds, we found 5 output bits with p-value less than 0.001, at positions 579, 777, 778, 841, 842. These bits show biases about 2^{-9} . Over 9 rounds or more, no bias was detected.

These observations indicate that 8-round T does not act as a random permutation, and that 10 rounds may not be overkill, as suggested in [2]. However, the methods used don't correspond to realistic attack scenarios, since we consider differences in x[31]. Furthermore, if we restrict ourselves to differences in the first state byte, and put random bits in the rest of the state, then we observe nonrandomness after up to 5 rounds.

References

- Daniel J. Bernstein. CubeHash appendix: complexity of generic attacks. Submission to NIST, 2008.
- 2. Daniel J. Bernstein. CubeHash attack analysis (2.B.5). Submission to NIST, 2008.
- 3. Daniel J. Bernstein. CubeHash specification (2.B.1). Submission to NIST, 2008.
- 4. Persi Diaconis and Frederick Mosteller. Methods for studying coincidences. *Journal of the American Statistical Association*, 84(408):853–861, 1989.
- Antoine Joux. Multicollisions in iterated hash functions. application to cascaded constructions. In CRYPTO, 2004.
- NIST. SP 800-22, a statistical test suite for random and pseudorandom number generators for cryptographic applications, 2001.
- 7. Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday paradox for multi-collisions. In *ICISC*, 2006.