
Inside the Hypercube

Jean-Philippe Aumasson1∗, Willi Meier1†, Maŕıa Naya-Plasencia2‡, and Thomas Peyrin3

1 FHNW, Windisch, Switzerland
2 INRIA project-team SECRET, France

3 Ingenico, France

Some force inside the Hypercube occasionally manifests itself with deadly results.
http://www.staticzombie.com/2003/06/cube 2 hypercube.html

Abstract. Bernstein’s CubeHash is a hash function family that includes four func-
tions submitted to the NIST Hash Competition. A CubeHash function is parametrized
by a number of rounds r, a block byte size b, and a digest bit length h (the compres-
sion function makes r rounds, while the finalization function makes 10r rounds). The
1024-bit internal state of CubeHash is represented as a five-dimensional hypercube.
Submissions to NIST have r = 8, b = 1, and h ∈ {224, 256, 384, 512}.
This paper gives the first external analysis of CubeHash, with

• improved standard generic attacks for collisions and preimages

• a multicollision attack that exploits fixed points

• a study of the round function symmetries

• a preimage attack that exploits these symmetries

• a practical collision attack on a weakened version of CubeHash

• high-probability truncated differentials over the 10-round transform

Our results do not seem to contradict the security claims about CubeHash.

1 CubeHash

Bernstein’s CubeHash is a hash function family that includes four functions submitted to
the NIST Hash Competition. A CubeHash function is parametrized by a number of rounds
r, a block byte size b, and a digest bit length h; the 1024-bit internal state of CubeHash
is viewed as a five dimensional hypercube. Submissions to NIST have r = 8, b = 1, and
h ∈ {224, 256, 384, 512}.

CubeHash computes the digest of a message as follows:

• initialize a 1024-bit state as a function of (h, b, r)
• append to the message a 1 bit and enough 0 bits to reach a multiple of 8b bits
• for each b-byte message block:

• xor the block into the first b bytes of the state
• transform the state through the r-round T function

• xor a 1 bit with the 993th bit of the state
• transform the state through 10r-round T
• output the first h bits of the state

∗Supported by the Swiss National Science Foundation under project no. 113329.
†Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07.
‡Supported in part by the French Agence Nationale de la Recherche under contract ANR-06-

SETI-013-RAPIDE.

Let x[0], . . . , x[31] represent the 1024-bit state as an array of 32-bit words. The transform
function T makes r identical rounds, where each round computes (see also Fig. 1):

for i = 0, . . . , 15: x[i + 16] = x[i + 16] + x[i]
for i = 0, . . . , 15: y[i⊕ 8] = x[i]
for i = 0, . . . , 15: x[i] = y[i] ≪ 7
for i = 0, . . . , 15: x[i] = x[i]⊕ x[i + 16]
for i = 0, . . . , 15: y[i⊕ 2] = x[i + 16]
for i = 0, . . . , 15: x[i + 16] = y[i]
for i = 0, . . . , 15: x[i + 16] = x[i + 16] + x[i]
for i = 0, . . . , 15: y[i⊕ 4] = x[i]
for i = 0, . . . , 15: x[i] = y[i] ≪ 11
for i = 0, . . . , 15: x[i] = x[i]⊕ x[i + 16]
for i = 0, . . . , 15: y[i⊕ 1] = x[i + 16]
for i = 0, . . . , 15: x[i + 16] = y[i]

2 Improved standard generic attacks

The author of CubeHash presented [2] the following “standard preimage attack”:

• from (h, b, r) compute the initial state S0

• from the h-bit image plus some arbitrary /1024− h) bits, invert 10r rounds and the
“xor 1” to get a state Sf before finalization

• find two n-block sequences that map S0 (forward) and Sf (backward), respectively,
to two states that share the last (1024− 8b) bits

There are 2nb possible n-block inputs and one looks for a collision over (1024−8b) bits. For
a success chance 1 − 1/e ≈ 0.63 one thus requires 2512−4b trials in each direction, that is,
2nb > 1024−8b, i.e., n > 512/b−4. In total the number of evaluations of T is approximately

2×
(

512
b
− 4
)
× 2512−4b ≈ 2522−4b−log b .

Furthermore, [2] estimates that each round of T needs 211 “bit operations”; the above
formula gives about 2533−4b−log b+log r bit operations.

A speed-up of the above attack can be obtained by searching a collision not only in the
states resulting of a n-block computation, but in every distinct state reached (i.e. also with
the intermediate states). This is made possible by the absence of message length padding.
Each call to T gives a new candidate for the collision search; we thus get rid of the (512/b−4)
multiplicative factor in the cost estimate. This gives a cost of

2× 2512−4b = 2513−4b

evaluations of T , i.e. 2524−4b+log r bit operations.
The proposed CubeHash-512 has (h, b, r) = (512, 1, 8), our attack thus makes 2523 bit

operations, against 2532 with the original attack. If r = 8, our attack needs b > 3 to make
less than 2512 bit operations, against b > 5 with the original preimage attack. It is to note
that these estimates exclude the nonnegligible communication costs.

One can use the same trick to speed-up the standard collision attack [2]; the cost in T
evaluations then drops from 2521−4b−log b to 2512−4b.

Fig. 1. Schematic view of a CubeHash round.

3 Narrow-pipe multicollisions

Based on the “narrow-pipe” attacks in [3], we show a multicollision attack on CubeHash
faster than Joux’s [6] or birthday [5,8] methods (for large b’s). Our attack requires the same
amount of computation as narrow-pipe collisions. It exploits the fact that the null state is a
fixed point for the compression function T (regardless of r), and that the message padding
doesn’t include the message length.

Starting from an initial state S0 derived from (h, b, r), one finds two n-block sequences
m and m′ that map S0 (forward) and the zero state (backward), respectively, to two states
that share the last (1024− 8b) bits. One finds a connection of the form

S0 ⊕m1
T−→ S1

S1 ⊕m2
T−→ · · ·
· · ·

· · · T−→ S′1

S′1 ⊕m′2
T−→ 0⊕m′1

Once a path to the zero state is found, one can add an arbitrary number of zero message
blocks to maintain a zero state. Colliding messages are of the form

m‖m′‖0‖0‖ . . . ‖0‖m̄,

where m̄ is an arbitrary sequence of blocks.

Using the technique of §2, this multicollision attack requires approximately 2513−4b

evaluations of T . In comparison, a birthday attack finds a k-collision in (k! × 2n(k−1))1/k

trials, and Joux’s attacks in log k × 24(128−b). For example, with h = 512 and b = 112, our
attack finds 264-collisions within 265 calls to T , against > 2512 for a birthday attack and
270 for Joux’s.

4 On state symmetries

The documentation of CubeHash mentions [4, p.3] the existence of symmetries through
the round function, and states that the initialization of CubeHash was designed to avoid
symmetries. However [4] gives no detail on those symmetries. In this section we present five
symmetry classes of 2512 states each, and show how to exploit them.

4.1 Symmetry classes

If a 32-word state x satisfies x[0] = x[1], x[2] = x[3], . . . , x[30] = x[31], then this property
is preserved through the transformation T , for any number of rounds. One can represent
this symmetry with the pattern (each letter stands for a 32-bit word):

AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP .

In total we found five classes of symmetry:

C1 : AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP
C2 : ABABCDCD EFEFGHGH IJIJKLKL MNMNOPOP
C3 : ABCDABCD EFGHEFGH IJKLIJKL MNOPMNOP
C4 : ABCDEFGH ABCDEFGH IJKLMNOP IJKLMNOP
C5 : ABBACDDC EFFEGHHG IJJIKLLK MNNMOPPO

Each class contains 2512 states. If a state belongs to several classes, then its image under T
also belongs to these classes; for example if S ∈ (Ci ∩Cj), then T (S) ∈ (Ci ∩Cj). We have

|C1 ∩ C2| = |C1 ∩ C5| = |C2 ∩ C3| = |C2 ∩ C5| = |C3 ∩ C4| = 256
|C1 ∩ C3| = |C2 ∩ C4| = |C3 ∩ C5| = 128
|C1 ∩ C4| = |C4 ∩ C5| = 64

We thus have
∣∣∪5

i=1Ci

∣∣ ≥ 5× 2512 − 10× 2256 ≈ 2514.3 distinct symmetric states. Note that
symmetry is not preserved by the finalization procedure of CubeHash (the “xor 1” breaks
any of the above symmetries).

4.2 Exploiting symmetric states

Preimages. Given a target digest, one can make a preimage attack similar to that in §2,
and exploit symmetric states for the connection. The attack goes as follows:

• from the initial state, reach a symmetric state (of any class) by using 21024−514−8 =
2502 message blocks

• from a state before finalization, reach (backwards) another symmetric state (not nec-
essarily of the same class)

• from these two symmetric states in classes Ci and Cj , use null message blocks in both
directions to reach two states in Ci ∩ Cj

• find a collision by trying
√
|Ci ∩ Cj | messages in each direction

Complexity of steps 1 and 2 is about 2503 computations of T . The cost of steps 3 and 4
depends on i and j; there are three distinct cases (counting in calls to T):

1. i = j (with prob. 5/25): step 3 costs 0 and step 4 costs 2× 2256

2. |Ci ∩ Cj | = 2256 (with prob. 10/25): step 3 costs 2× 2256 and step 4 costs 2× 2128

3. |Ci ∩ Cj | = 2128 (with prob. 6/25): step 3 costs 2× 2384 and step 4 costs 2× 264

4. |Ci ∩ Cj | = 264 (with prob. 4/25): step 3 costs 2× 2448 and step 4 costs 2× 232

In any case, the total complexity is about 2503 calls to T . This attack, however, finds
messages of unauthorized size (more than 2257 bytes!).

One can find preimages of reasonable size by using a variant of the above attack: suppose
b > 4, from the initial state reach a state in a given class Ci, do the same backwards from a
state before finalization. For a given b, the complexity of reaching a symmetric state depends
on the Ci considered (see below). Then one seeks a collision within Ci by trying messages
preserving the symmetry: for example, if b = 5 and Ci = C1, then one has to preserve
the equality x[0] = x[1] and shall thus pick 5-byte messages of the form X000X (each digit
stands for a byte). Since any Ci contains 2512 states, the cost of finding a collision within
Ci is about 2256 trials in each direction.

Below we give the Ci that is the easiest to reach, depending on the value of b:

• 5 ≤ b < 9: the best class is C1, which gives (1024 − 2 × 4 × 8)/2 = 480 equations to
verify

• 9 ≤ b < 17: the best class is C2 or C5, which give (1024−2×8×8)/2 = 448 equations
to verify

• 17 ≤ b < 33: the best class is C3, which gives (1024− 2× 16× 8)/2 = 384 equations
to verify

• 33 ≤ b < 65: the best class is C4, which gives (1024− 2× 32× 8)/2 = 256 equations
to verify

If n equations have to be verified, the cost of reaching a symmetric state is about 2n

evaluations of T . Compared to the preimage attack in §2, the best speed-up obtained from
a given Ci is when b = 4d + 1, where d is the number of 32-bit words that separate the first
repetition of two words.

To illustrate this attack, let’s study in more detail the case of C1:

• if b ≡ 0 mod 8, there are (1024 − 8b)/2 = 512 − 4b equations to satisfy, thus about
2512−4b calls to T are necessary
• if b ≡ 4 mod 8, there are only (1024 − 8b − 32)/2 = 496 − 4b equations to satisfy,

because one has no condition on the first state word not xored with the message
block
• generalizing, when b mod 8 ≤ 4, about 2512−4(b+(b mod 4)) calls to T are necessary
• when b mod 8 > 4, there are (1024 − 8b − 32 + 8(b mod 4))/2 equations to satisfy,

which gives a cost 2496−4(b−(b mod 4))

The general formula for the number of equations is

512− 32bb/8c − 32b(b mod 8)/4c − [(b(b mod 8)/4c+ 1) mod 2]× 8(b mod 4) .

In the best case (b ≡ 4 mod 8), the attack is 215 times faster than that in §2 (in the worst
case, b ≡ 0 mod 8, it has the same complexity). Note that when b = 5, the attack makes
about 2481 calls to T , against 2493 with the attack in §2.

Collisions on a weakened CubeHash. The initialization of CubeHash never leads to a
symmetric initial state. Here we present a practical collision attack that would apply if the
initial state were symmetric, and in C1 ∩ C4.

Suppose that the initial state of CubeHashr/b-h is in C1 ∩ C4, i.e. is of the form

AAAAAAAA AAAAAAAAA BBBBBBBBB BBBBBBBB .

If one hashes the b233-byte message that contain only zeros, then each of the 233 intermediate
states is an element of C1∩C4. Assuming that T acts like a random permutation of C1∩C4,
one will find two identical states with probability about 0.63, which directly gives a collision.

5 Truncated differentials over T

This section shows how to detect nonrandomness over the 10-round T transform. We start
from a weight-64 difference to reach a weight-1 difference after 3 rounds with high proba-
bility; this nonlinear differential was discovered by simply computing backwards from the
weight-1 difference.

We consider the input difference 80000000 in x[16]. The word x[16] was chosen because
x[16] · · ·x[31] diffuse less in the first rounds than x[0] · · ·x[15]. We set a difference 80000000
to minimize the impact of carries.

We consider the following nonlinear differential. Input difference (weight-64):

18000000 10000000 08000000 30000000

00000040 00000080 00000000 00000000

00400000 00000000 00400000 01000404

00000003 80802002 00000001 81802004

40000000 08000000 00000000 E8020600

00000000 00000100 00000080 41F001C0

00400008 00000008 00400000 01000404

00000005 80802002 00000001 8080200C

Difference after one round (weight-26):

000E0000 00000000 00000000 00000000

00000000 00000040 00000080 00000040

01000004 00000000 00000004 00000000

00000000 00000000 00002000 00000000

800E0200 00000000 00000000 00000000

00000000 000000C0 00000080 000001C0

00000000 00000004 00000000 00000004

00000000 00002000 0000C000 00000000

Difference after two rounds (weight-9):

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 01000000

00000000 00002000 00000000 00002000

00000000 00000000 00000000 80000000

00000000 00000000 00000000 00100000

00000000 00000000 00000000 03000000

00000000 00002000 00000000 00002000

Difference after three rounds (weight-1):

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

80000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

which after another round gives with probability 1 the difference

80000000 00000000 80000000 00000000

00000400 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 80000000 00000000 80000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

This differential holds with negligible probability for a random input. But it holds for the
input

DFB7AA11 7B2872F1 2848B142 64CB0AF9

17DA36E7 320A7AB2 27621CD8 B6E23031

3BCE90DB 0E496C61 AF4156BD 0B4D857F

4379D4C0 D495EAC9 038BD6E5 72A114CC

29065395 824774C3 F0923C34 28F3B2DD

74251DF6 1A562265 BD8EE5E3 DEFDD839

2804D3BE 89417DC3 F001CE4A 6A5328A8

2BEC024E B2306F17 1F2A7C6C 14BC37B6

For 32 random bits in x[25] and x[26] (at positions 4, . . . , 19 in both), the differential is
satisfied with probability approximately 0.985.

Note that in the linear model (i.e. when additions are replaced by xors), a differential
path starting from the weight-1 difference cycles over 47 rounds. That is, it comes back
to the difference 80000000 in x[16] after 47 rounds. In the original model, however, linear
differentials are followed with negligible probability.

Based on the above differential, we empirically looked for high-probability truncated
differentials, based on the weight-64 input difference, and applying to each output bit a
frequency test similar to that in [7, §2.1], with decision treshold 0.001 and 220 samples. We
found 4 output bits with p-value less than 0.001, at positions 579, 778, 841, and 842. Over
11 rounds and more, no bias was detected.

This observation is consistent with the fact that, when starting from the weight-1 differ-
ence, we could detect nonrandomness on up to 7 rounds (now this difference is introduced
three rounds later). Note that in a previous version of this article [1], we reached 8 rounds
by starting one round before the weight-1 difference.

These observations indicate that 10-round T does not act as a random permutation,
and that 10 rounds may not be overkill, as suggested in [3]. But note that the settings
used don’t correspond to a realistic attack scenario. Furthermore, if we restrict ourselves
to differences in the first state byte, and put random bits in the rest of the state, then we
observe nonrandomness after up to 5 rounds.

References

1. Jean-Philippe Aumasson, Willi Meier, Mara Naya-Plasencia, and Thomas Peyrin. Inside the
hypercube. Cryptology ePrint Archive, Report 2008/486, 2008. version 20081124:132635.

2. Daniel J. Bernstein. CubeHash appendix: complexity of generic attacks. Submission to NIST,
2008.

3. Daniel J. Bernstein. CubeHash attack analysis (2.B.5). Submission to NIST, 2008.
4. Daniel J. Bernstein. CubeHash specification (2.B.1). Submission to NIST, 2008.
5. Persi Diaconis and Frederick Mosteller. Methods for studying coincidences. Journal of the

American Statistical Association, 84(408):853–861, 1989.
6. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded constructions.

In CRYPTO, 2004.
7. NIST. SP 800-22, a statistical test suite for random and pseudorandom number generators for

cryptographic applications, 2001.
8. Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday paradox for

multi-collisions. In ICISC, 2006.

