
Efficient Rational Secret Sharing in the Standard

Communication Model

Georg Fuchsbauer∗ Jonathan Katz† Eric Levieil∗

David Naccache∗

Abstract

We propose a new methodology for rational secret sharing leading to various instantiations
that are simple and efficient. In addition, we show a round-efficient way to eliminate the need
for simultaneous channels even when secrets are chosen from an arbitrarily large domain. Our
solution generates shares of bounded size, and may therefore be applied to the setting of rational
secure computation as well.

1 Introduction

The classical problem of t-out-of-n secret sharing [Sha79, Bla79] involves a dealer D who distributes
shares of a secret s to a group of n players P1, . . . , Pn so that (1) any group of t or more players can
reconstruct the secret without further involvement of the dealer, yet (2) any group of fewer than
t players cannot recover the secret. Foe example, in Shamir’s scheme [Sha79] the secret s lies in a
finite field F, with |F| > n. The dealer chooses a random polynomial f(x) of degree at most t− 1
with f(0) = s, and gives each player Pi the “share” f(i). To reconstruct the secret s, any t players
simply broadcast their shares and interpolate the polynomial. On the other hand, any set of fewer
than t players has no information about s given their shares.

The implicit assumption in the original formulation of the problem is that each party is either
honest or corrupt, and honest parties are all willing to cooperate completely with each other when
reconstruction of the secret is desired. Beginning with the work of Halpern and Teague [HT04],
protocols for secret sharing and other cryptographic tasks have begun to be re-evaluated in a
game-theoretic light (see [DR07, Kat08a] for an overview of work in this direction). In this context,
parties are neither honest nor corrupt but are instead simply rational and are assumed (only) to
act in their own self-interest.

Under natural assumptions regarding the utilities of the parties, standard secret-sharing schemes
completely fail. For example, assume as in [HT04] that all players want to learn the secret above
all else, but otherwise prefer that the fewest number of other players learn the secret. (Later, we
will treat the utilities of the players more precisely.) For a set of t parties to reconstruct the secret
in Shamir’s scheme, each party is supposed to broadcast their share. It is easy to see, however, that
each player is better off withholding their share no matter what the other players do. Consider P1:
if strictly fewer than t − 1 other players reveal their shares to the rest of the group, then no one

∗École Normale Supérieure, LIENS - CNRS - INRIA, Paris, France. Email: {georg.fuchsbauer, eric.levieil,

david.naccache}@ens.fr
†University of Maryland, USA. Email: jkatz@cs.umd.edu. Work done while visiting ENS. Research supported by

NSF CyberTrust grant #0830464 and NSF CAREER award #0447075.

1

learns the secret regardless of whether P1 reveals his share or not. If more than t− 1 other players
reveal their shares, then everyone learns the secret and P1’s actions again have no effect. On the
other hand, if exactly t − 1 other players reveal their shares, then P1 learns the secret (using his
share) but can prevent other players from learning the secret by not publicly revealing his own
share. As argued in [HT04], the result is that if all players are rational no one will broadcast their
share and the secret will not be reconstructed.

More generally, let t∗ ≥ t denote the number of players present during the secret-reconstruction
phase. We observe the following about the game-theoretic equilibria of “standard” Shamir secret
sharing (definitions of the relevant game-theoretic notions are given in Section 2):

• For any t, n, t∗, it is a Nash equilibrium for no one to reveal their share.

• If t∗ > t, it is a Nash equilibrium for all t∗ participating players to reveal their shares. How-
ever, as discussed above, broadcasting one’s share is weakly dominated by not broadcasting
anything; thus, the Nash equilibrium likely to be reached is the one in which no one reveals
their share.

• If t∗ = t, then having all t∗ players reveal their shares is not even a Nash equilibrium.

A series of recent works [HT04, GK06, LT06, ADGH06, KN08a, KN08b] has focused on de-
signing so-called rational secret-sharing protocols immune to the above problems. A protocol for
rational secret sharing also follows from the more general results of Lepinski et al. [LMPS04, LMS05,
IML05]. Each of these works has some or all of the following disadvantages:

On-line dealer. Halpern and Teague [HT04] introduced a general approach to solving the problem
that has been followed in most subsequent work. Their solution, however, requires the continual
involvement of the dealer (even after the initial shares have been distributed) to refresh parties’
shares. The solution proposed by Halpern and Teague also applies only when t, n ≥ 3.

Inefficiency. To eliminate the need for an on-line dealer, several researchers [GK06, LT06,
ADGH06, KN08a] have suggested solutions that rely on multiple invocations of protocols for generic
secure multi-party computation. Because the function being computed by these protocols is rela-
tively complex, it is unclear whether efficient protocols with suitable functionality can be designed.
The solutions of Lepinski et al. [LMPS04, LMS05, IML05], though following a different high-level
approach, also rely on secure multi-party computation and are similarly inefficient.

Non-standard communication models. The solutions offered in [HT04, GK06, LT06, ADGH06]
assume the existence of a simultaneous broadcast channel which implies that parties must decide
on what value (if any) to broadcast in a given round before observing the values broadcast by
other parties. Kol and Naor [KN08a] assume simultaneous broadcast for the initial protocol they
propose, though they also show how to avoid this assumption at the cost of increasing the round
complexity by a (multiplicative) factor linear in the size of the domain from which the secret is
chosen. Besides the additional inefficiency resulting from this approach, this also means that their
solution is not applicable for secrets of super-logarithmic length.

The solution of Lepinski et al. [LMPS04], and follow-up work by Izmalkov, Micali, and Lepin-
ski [IML05], requires strong physical assumptions such as secure envelopes and ballot boxes. We
remark that secure envelopes can be used to implement simultaneous broadcast (but not vice versa)
and hence such physical assumptions represent a strictly stronger class of assumptions.

Recent work of Ong et al. [OPRV08] provides a solution in the standard communication model,
but under the assumption that logarithmically many parties are completely honest and never deviate
from the protocol. In our work, as in all work mentioned above, we do not impose this assumption.

2

Inapplicability to rational multi-party computation (MPC). A different secret sharing
scheme of Kol and Naor [KN08b] avoids an on-line dealer, is efficient, and does not require si-
multaneous broadcast even when the secret is chosen from an arbitrarily large domain. In this
scheme, however, the shares of the parties have unbounded length. While not a significant problem
in its own right (indeed, the protocols in [HT04, GK06, LT06, ADGH06] have bounded-size shares
but unbounded round complexity), it becomes an issue when applied to rational computation of
general functions. A general approach [HT04, GK06, LT06, ADGH06] to rational computation of
a function f (satisfying certain properties) is to first have the parties compute (using standard
protocols for secure computation) a function f ′ that results in a secret sharing of the output of f ,
and then have the parties run a rational secret sharing protocol to reconstruct the output. As noted
in [KN08a], this approach will not work when shares have unbounded size (since the communication
used in computing f ′ is an upper bound on the size of the shares).

We remark that the round complexity of the Kol-Naor protocol mentioned above is linear in
the number of parties.

1.1 Our Results

In this work we introduce a general framework for rational secret sharing without an on-line dealer.
Our solution follows the same high-level idea as in previous work (see below), but implements
this idea without resorting to generic secure multi-party computation. Our approach is therefore,
arguably, simpler than prior solutions; more importantly, our new solution is very efficient in terms
of both round complexity and required computation. We also show how our protocol can be applied
in the standard communication model where all parties have access to a broadcast channel but
rushing is allowed (i.e., simultaneous broadcast is not assumed). In this case, the round complexity
of our protocol is independent of the domain of the secret as well as the number of parties (in
contrast to [KN08a] and [KN08b], respectively). Since shares in our protocol have bounded size,
our protocol can be used for rational computation of general functions as in previous work.

Of independent interest, we use here a different equilibrium notion than in most previous work.
Specifically, we show that the reconstruction phase of our protocol forms a computational Nash
equilibrium that is stable with respect to trembles. (This choice was motivated by the suggestion
in [Kat08a].) We stress, though, that by following the same arguments as in prior work our scheme
can also be shown to survive (a computational notion of) iterated deletion of weakly dominated
strategies. We chose to use a new equilibrium notion since “surviving iterated deletion” is prob-
lematic in certain respects. See further discussion in Section 2.2.

In fairness, we also mention some disadvantages of our scheme. First, our protocol has a
negligible probability of error. Second, the scheme handles only single-player deviations and is not
resilient to coalitions of rational players; this problem is shared by the solutions of, e.g., [HT04,
KN08b]. Finally, our solution offers only computational secrecy even before the reconstruction phase
begins. That is, the share of even a single party determines the secret in an information-theoretic
sense; all we guarantee is that any t−1 computationally bounded parties learn no information about
the secret. In part for this reason, although our solution is a (computational) Nash equilibrium and
can be shown to satisfy the solution concept used in [HT04, GK06, LT06, ADGH06], our protocol
does not achieve the stronger equilibrium notions considered by Kol and Naor [KN08a, KN08b].
Our general feeling, however, is that the notions considered by Kol and Naor are “too strong” in
the sense that they rule out many naturally appealing protocols; indeed, Kol and Naor themselves
state [KN08b] that the equilibrium notion they use is “too restrictive” and should be considered
sufficient but not necessary. Determining the “right” game-theoretic notions for rational secret

3

sharing is the subject of ongoing research [Kat08a, Kat08b].

Overview of our approach. We follow the same high-level approach as in [HT04, GK06, LT06,
ADGH06, KN08a, KN08b]. Our reconstruction protocol proceeds in a sequence of “fake” iterations
followed by a “real” iteration. Roughly speaking, these satisfy the following requirement:

• In the real iteration, everyone learns the secret (assuming everyone follows the protocol).

• In a fake iteration, no information about the secret is revealed.

• No party can tell, in advance, whether the next iteration will be real or fake.

The iteration number i∗ of the real iteration is chosen according to a geometric distribution with
parameter β ∈ (0, 1) (where β depends on the exact utilities of the players). The reconstruction
mechanism is then as follows (for now, we assume synchronous broadcast): parties run each iteration
until the real iteration is identified, at which point all parties output the secret. If some party fails
to follow the protocol in any iteration, all parties abort. Intuitively, it is rational for Pi to follow
the protocol as long as the expected gain of deviating (which occurs only if Pi aborts exactly in
iteration i∗) is outweighed by the expected loss of deviating (which occurs if Pi aborts any time
before iteration i∗).

In prior work of [GK06, LT06, ADGH06, KN08a], a secure multi-party computation was per-
formed in each iteration to determine whether the given iteration will be real or fake. Instead we use
the following idea, described in the 2-out-of-2 case (we omit some technical aspects of the protocol
in order to focus on the main idea): The dealer D chooses i∗ from the appropriate distribution in
advance, at the time of sharing. The dealer then generates keys two key-pairs (vk1, sk1), (vk2, sk2)
for a verifiable random function (VRFs) [MRV99] where vk represents a verification key and sk
represents a secret key, and we denote by VRFsk(x) the evaluation of the VRF on input x using
secret key sk. The dealer gives the verification keys to both parties, gives sk1 to P1, and gives
sk2 to P2. Furthermore, it gives s1 = s ⊕ VRFsk2(i∗) to P1, and s2 = s ⊕ VRFsk1(i∗) to P2. Each
iteration consists of one message from each party: in iteration i, party P1 sends VRFsk1(i) while P2

sends VRFsk2(i). Observe that a fake iteration reveals nothing about the secret, in a computational
sense. Furthermore, neither party can identify the real iteration in advance.

To complete the protocol, we need to provide a way for parties to identify the real iteration.
As noted above, previous work [HT04, GK06, LT06, ADGH06, KN08a] allows parties to identify
the real iteration as soon as it occurs. This suffices when simultaneous broadcast is available, since
each party must decide on its next-iteration message before it learns whether the iteration is real
or not. When simultaneous channels are not available, however, this approach does not work since
it is vulnerable to an obvious rushing strategy. Kol and Naor [KN08a, KN08b] give two different
ways to circumvent this problem, but as mentioned earlier the first applies only for domains of
polynomial size (and yields round complexity linear in the domain size), while the second yields
round complexity linear in the number of parties and requires shares of unbounded size.

Motivated by recent work on fairness (in the malicious setting) [GHKL08, GK08], we suggest
the following, new approach: delay the signal indicating whether a given iteration is real or fake
until the following iteration. As before, a party cannot risk aborting until it is sure that the real
iteration has occurred; by the time it is sure of this fact, however, the real iteration is over and
all parties can reconstruct the secret. This eliminates the need for simultaneous channels, while
increasing the (expected) round complexity by only a single round.

In our description above, the protocol relies on VRFs. We show that, in fact, trapdoor permu-
tations suffice. The general approach outlined above can also be extended to the case of t-out-of-n
secret sharing, for any t, n.

4

1.2 Outline of the Paper

Section 2 provides appropriate definitions, and in particular describes the game-theoretic concepts
used in this paper. In Section 3 we describe the solution as outlined in the previous section, in the
2-out-of-2 setting and based on VRFs. We then explain how to extend the protocol to the general
t-out-of-n case, and also show how the protocol can be based on trapdoor permutations.

2 Modeling and Definitions

We first describe our model for secret sharing, followed by definitions of computational Nash equilib-
rium and resistance to trembles. We also provide a definition of verifiable random functions (VRFs).
We denote the security parameter by k, and let ppt stand for “probabilistic polynomial time.”

2.1 Secret Sharing

A t-out-of-n secret-sharing scheme for domain S (with |S| > 1) is a scheme carried out by a dealer
D and a set of n parties P1, . . . , Pn in two phases. In the first phase (the sharing phase), a secret
s ∈ S is chosen and given to the dealer. Based on this secret and a security parameter 1k, the dealer
generates shares s1, . . . , sn and gives si to player Pi. In the second phase (the reconstruction phase),
some set of t∗ ≥ t parties carry out some protocol that will allow them to jointly reconstruct s. We
impose the following requirements:

Secrecy: The shares of any t − 1 parties reveal nothing about s, in a computational sense. For-
mally, for any secrets s0, s1 ∈ S and any indices i1, . . . , it−1 the following distributions are
computationally indistinguishable:{

(s1, . . . , sn)← D(s0) : (si1 , . . . , sit−1)
}

and
{

(s1, . . . , sn)← D(s1) : (si1 , . . . , sit−1)
}
.

Correctness: For any set of t∗ ≥ t parties who run the reconstruction phase honestly, the correct
secret s will be reconstructed with all but negligible probability (in k).

The above definition views parties as either malicious or honest. We now incorporate utilities into
our discussion, and treat each party as simply rational.

2.2 Rational Secret Sharing

Given some set of t∗ ≥ t parties (numbered P1, . . . , Pt∗ for convenience), let the outcome o of the
reconstruction phase be a binary vector of length t∗ with oi = 1 iff the output of Pi is equal to the
initial secret s (i.e., Pi “learned the secret”). We stress that in contrast to prior work, we consider
a party to have learned the secret s if and only if it outputs s, and do not care whether that party
“actually” learned the secret or not. In particular, in our model a party who outputs a random
value in the domain S without running the reconstruction phase at all ends up “learning” the secret
with probability 1/|S|. We model the problem this way for at least two reasons:

1. Our formulation allows us to assign utility to learning partial information about the secret,
something that is not reflected in prior formulations. In particular, partial information that
increases the probability with which a party can output the correct secret will increase the
expected utility of that party.

5

2. It is difficult, in general, to formally model what it means for a party to “really” learn the
secret, especially when considering arbitrary protocols and behaviors. In contrast, in our
definition it is easy to tell whether a player learns the secret by just looking at their output.
Our notion also appears better suited for a computational setting, where a party might “know”
the secret from an information-theoretic point of view, yet be unable to output it.

Let num(o) def=
∑

i oi; i.e., num(o) is simply the number of players who learn the secret. Let µi

denote the utility of player Pi for the outcome o. Following [HT04] and all subsequent work in this
area, we make the following assumptions about the utility functions of the players:

• oi > o′i ⇒ µi(o) > µi(o′).

• If oi = o′i, then num(o) < num(o′)⇒ µi(o) > µi(o′).

That is, player Pi first prefers outcomes in which he learns the secret; otherwise, player Pi prefers
strategies in which the fewest number of other players learn the secret. For the purposes of our
analysis, we distinguish only three types of outcomes, described from the point of view of Pi:

1. If o is an outcome in which Pi learns the secret and no other player does, then µi(o)
def= U+.

2. If o is an outcome in which Pi learns the secret and at least one other player does also, then
µi(o)

def= U .

3. If o is an outcome in which Pi does not learn the secret, then µi(o)
def= U−.

Clearly, our conditions impose U+ > U > U−. Define

Urandom
def=

1
|S|
· U+ +

(
1− 1
|S|

)
· U− ; (1)

this is the expected utility of a party who outputs a random guess for the secret (assuming other
parties terminate without any output, or with the wrong output). When dealing with a t-out-of-n
secret-sharing scheme we also assume U > Urandom; otherwise, players have essentially no incentive
to run the reconstruction phase at all.

Given a vector of strategies ~σ for the parties active in the reconstruction phase, we let Ui(~σ)
denote the expected utility of Pi as a function of the security parameter k. The expectation is taken
over the initial choice of s (which we will always assume to be uniform), the dealer’s randomness,
and the randomness of the players’ strategies. Following standard game-theoretic notation, define
~σ−i

def= (σ1, . . . , σi−1, σi+1, . . . , σt∗) and (σ′i, ~σ−i)
def= (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn); that is, (σ′i, ~σ−i)

denotes the strategy vector ~σ with Pi’s strategy changed to σ′i. We now define the most basic
equilibrium notion for secret sharing.

Definition 1 Let Π be a t-out-of-n secret-sharing scheme, where σi denotes the prescribed actions
of party Pi in the reconstruction phase. Π induces a computational Nash equilibrium if for any
t∗ ≥ t, any set of t∗ distinct indices I = {i1, . . . , it∗}, any i ∈ I, and any ppt strategy σ′i, there
exists a negligible function ε such that

Ui(σ′i, ~σ−i) ≤ Ui(~σ) + ε(k)

(where ~σ = (σi1 , . . . , σit∗)). ♦

6

As discussed extensively in prior work (see [Kat08a]), a Nash equilibrium is generally considered
“too weak” in the sense that it may still be rational for parties to deviate from their prescribed ac-
tions. In most previous work starting with [HT04], the more restrictive notion of a Nash equilibrium
surviving iterated deletion of weakly dominated strategies was used instead [GK06, LT06, ADGH06].
This notion is not fully satisfactory, either [KN08b, Kat08a]; typical proofs that protocols meet this
property proceed by showing that no strategies are deleted, and Kol and Naor [KN08b] give an
example of a protocol that is intuitively “bad” but which nevertheless can be shown to satisfy the
notion. Kol and Naor suggest other concepts, including that of a Nash equilibrium surviving back-
ward induction [KN08a] and a strict Nash equilibrium [KN08b]. These notions seem too restrictive
to be useful in a computational setting, where (informally) there is always a negligible chance of
breaking whatever computational assumption the protocol is based on. Because of these problems
(and motivated by [Kat08a]), we use the notion of stability with respect to trembles.1 Our definition
expands and makes precise the suggestion of [Kat08a].

We consider the setting where strategies refer to interactive Turing machines executing some
protocol. Two strategies σi, σ

′
i are said to yield equivalent play with respect to ~σ−i if the distribution

of messages sent in an execution of (σi, ~σ−i) is identical to the distribution of messages sent in an
execution of (σ′i, ~σ−i). We stress that σi, σ

′
i may differ in their local computation and local outputs,

as well as in the messages they send when interacting with some other set of strategies ~σ′−i. We
say that strategy σ′i is δ-close to strategy σi if there exists a ppt strategy σ̂i such that σ′i can be
expressed in the following form: with probability 1 − δ, follow σi; otherwise, follow σ̂i. (In other
words, σ′i differs from σi with probability at most δ.) Given a strategy vector ~σ, we say that ~σ′ is
δ-close to ~σ if with probability 1 − δ all parties play according to ~σ, while with probability δ the
parties can behave arbitrarily.

Definition 2 Let Π be a t-out-of-n secret-sharing scheme, where σi denotes the prescribed actions
of party Pi in the reconstruction phase. Π induces a computational Nash equilibrium stable with
respect to trembles if

1. Π induces a computational Nash equilibrium;

2. There is a constant δ > 0 (independent of the security parameter) such that for any t∗ ≥ t,
any set of t∗ distinct indices I = {i1, . . . , it∗}, any i ∈ I, any vector of ppt strategies ~ρ−i that
is δ-close to ~σ−i, and any ppt strategy ρi, there exists a ppt strategy σ′i such that

(a) There is a negligible function ε such that Ui(ρi, ~ρ−i) ≤ Ui(σ′i, ~ρ−i) + ε(k).

(b) σ′i and ρi yield equivalent play with respect to ~σ−i. ♦

Intuitively, stability with respect to trembles means that even if a party Pi believes that the
other parties might play some other strategy with probability δ (but will follow the protocol the
rest of the time), there is still no better strategy for Pi than to outwardly follow the protocol (while
perhaps performing some additional local computation). Moreover, if Π induces a computational
Nash equilibrium it means that any additional local computation performed by Pi will not help as
long as other parties follow the protocol.

1We do not claim that this notion is free of problems; in fact, the notion as defined here is probably too strong
in that it rules out some protocols that are intuitively “good”. Since we are showing a positive result, we did not
consider any weaker variants of the definition.

7

2.3 Verifiable Random Functions (VRFs)

A VRF is a keyed function whose output is “random-looking” but can still be verified as correct
given an associated proof along with a public key. The notion was introduced by Micali, Rabin,
and Vadhan [MRV99], and various constructions in the standard model are known [MRV99, Dod02,
Lys02, DY05, CL07]. The definition that follows is stronger than the “standard” definition in that
it includes an extra uniqueness requirement, but the construction of, e.g., [DY05] achieves it. (Also,
we use VRFs only as a stepping stone to our construction based on trapdoor permutations.)

Definition 3 A verifiable random function (VRF) with range R = {Rk} is a tuple of probabilistic
polynomial-time algorithms (Gen, Eval, Prove, Vrfy) such that the following hold:

Correctness: For all k, any (pk, sk) output by Gen(1k), the algorithm Evalsk maps k-bit inputs
to the set Rk. Furthermore, for any x ∈ {0, 1}k we have Vrfypk (x,Evalsk(x),Provesk(x)) = 1.

Verifiability: For all (pk, sk) output by Gen(1k), there does not exist a tuple (x, y, y′, π, π′) with
y 6= y′ and Vrfypk(x, y, π) = 1 = Vrfypk(x, y′, π′).

Unique proofs: For all (pk, sk) output by Gen(1k), there does not exist a tuple (x, y, π, π′) with
π 6= π′ and Vrfypk(x, y, π) = 1 = Vrfypk(x, y, π′).

Pseudorandomness: Consider the following experiment:

1. Generate (pk, sk)← Gen(1k) and give pk to A.

2. A adaptively queries a sequence of strings x1, . . . ∈ {0, 1}k and is given yi = Evalsk(xi)
and πi = Provesk(xi) in response to each such query xi.

3. A outputs a string x ∈ {0, 1}k subject to the restriction x 6∈ {x1, . . .}.
4. A random bit b← {0, 1} is chosen. If b = 0 then A is given y = Evalsk(x); if b = 1 then
A is given a random y ← Rk.

5. A makes more queries as in step 2, as long as none of these queries is equal to x.

6. At the end of the experiment, A outputs a bit b′. We say A succeeds if b′ = b.

We require that for any probabilistic polynomial-time adversary A, there exists a negligible
function ε such that the success probability of A is at most 1

2 + ε(k). ♦

3 2-out-of-2 Rational Secret Sharing using VRFs

We now describe our protocol Π for the case of 2-out-of-2 secret sharing, and prove that Π induces
a computational Nash equilibrium stable with respect to trembles. Let S be the domain of the
secret, and assume S = {0, 1}` where ` may depend on k. Let (Gen, Eval, Prove, Vrfy) be a VRF
with domain {0, 1}`, and let (Gen′, Eval′, Prove′, Vrfy′) be a VRF with domain {0, 1}k. The protocol
is defined as follows:

Sharing phase: Let s denote the secret. The dealer chooses an integer i∗ ∈ {1, . . .} according to
a geometric distribution with parameter β,2 where β is a constant that depends on the players’
utilities (and is independent of the security parameter); we discuss how to set β below. We assume

2That is, the dealer flips a biased coin whose probability of landing heads is β and sets i∗ to be the number of
coin flips until the first head occurs.

8

Reconstruction phase

At the outset of this phase, P1 chooses s̄(0) uniformly from S and P2 chooses s(0) the same way.
Then in each iteration i, the parties do the following:

(P2 sends message to P1:) Party P2 computes ȳi := Evalsk2(i), π̄i := Provesk2(i) and ȳ′i :=
Eval′sk′

2
(i), π̄′i := Prove′sk′

2
(i). It sends (ȳi, π̄i, ȳ

′
i, π̄
′
i) to P1.

(P1 receives message from P2:) Party P1 receives (ȳi, π̄i, ȳ
′
i, π̄
′
i) from P2. If P2 does not send

anything, or if Vrfypk1
(i, ȳi, π̄i) = 0 or Vrfy′pk′

1
(i, ȳ′i, π̄

′
i) = 0, then P1 outputs s̄(i−1) and terminates.

(P1 sends message to P2:) Party P1 computes yi := Evalsk1(i), πi := Provesk1(i) and y′i :=
Eval′sk′

1
(i), π′i := Prove′sk′

1
(i). It sends (yi, πi, y

′
i, π
′
i) to P2.

If signal1 = ȳ′i then P1 outputs s̄(i−1) and terminates. Otherwise, it sets s̄(i) := share1 ⊕ ȳi and
continues.

(P2 receives message from P1:) Party P2 receives (yi, πi, y
′
i, π
′
i) from P1. If P1 does not send

anything, or if Vrfypk1
(i, yi, πi) = 0 or Vrfy′pk′

1
(i, y′i, π

′
i) = 0, then P2 outputs s(i−1) and terminates.

If signal2 = y′i then P2 outputs s(i−1) terminates. Otherwise, it sets s(i) := share2⊕yi and continues.

Figure 1: The reconstruction phase of secret-sharing protocol Π.

i∗ < 2k− 1 since this occurs with all but negligible probability. (Technically, if i∗ ≥ 2k− 1 then the
dealer can just give a special error message to each party.)

The dealer generates (pk1, sk1), (pk2, sk2)← Gen(1k) and (pk′1, sk
′
1), (pk′2, sk

′
2)← Gen′(1k), and

then computes:

• share1 := Evalsk2(i∗)⊕ s and share2 := Evalsk1(i∗)⊕ s;

• signal1 := Eval′sk′2
(i∗ + 1) and signal2 := Eval′sk′1

(i∗ + 1).

Finally, the dealer gives to P1 the values (sk1, sk
′
1, pk2, pk

′
2, share1, signal1), and gives to P2 the

values (sk2, sk
′
2, pk1, pk

′
1, share2, signal2).

Reconstruction phase: A high-level overview of the protocol was given in Section 1.1, and so
we jump right in to the formal specification here. The reconstruction phase proceeds in a series of
iterations, where each iteration consists of one message sent by each party. Although these messages
could be sent at the same time (since they do not depend on each other), we do not want to assume
synchronous communication and we therefore simply require P2 to go first in each iteration.

Before the formal proof, we give some intuition as to why the reconstruction phase of Π is a
computational Nash equilibrium for appropriate choice of β. Assume P2 follows the protocol, and
consider possible deviations by P1. (Deviations by P2 can be analyzed symmetrically. In fact, that
case is easier to analyze since P2 goes first in every iteration.) There are essentially two things P1

can do: it can abort in iteration i = i∗ + 1 (i.e., as soon as it receives ȳ′i = signal1), or it can abort
in some iteration i < i∗ + 1. In the first case, when P1 aborts in iteration i∗ + 1, party P1 “knows”
that it learned the dealer’s secret in the preceding iteration (that is, in iteration i∗) and can thus
output the correct secret; however, P2 will output s(i

∗) = s and so gets credit for “learning” the
secret as well. (Here we rely on the verifiability property of the VRF, in that P1 cannot change yi∗

without being detected.) Thus, in this case, P1 does not increase its utility beyond what it would
achieve by following the protocol. In the second case, where P1 aborts in some iteration i < i∗+ 1,
the issue is that P1 does not know whether i = i∗ or not. The best strategy it can adopt is to

9

output s̄(i) and hope that i = i∗. The expected utility that P1 obtains by following this strategy
can be estimated as follows:

• The probability that P1 aborts in iteration i = i∗ is roughly β.

• When i < i∗, player P1 has “no information” about s and so the best it can do is guess. The
expected utility of P1 in this case is thus at most Urandom (cf. Equation (1)).

• U+ is always an upper bound for the utility of P1, even when i = i∗.

Putting everything together, the expected utility of P1 following this strategy is at most

β · U+ + (1− β) · Urandom .

Since Urandom < U by assumption, it is possible to set β so that the entire expression above is
strictly less than U ; in that case, P1 has no incentive to deviate. We make this intuitive argument
precise in the proof of the following theorem.

Theorem 1 Let β be such that U > β · U+ + (1− β) · Urandom. Then protocol Π, using this value
of β, is a 2-out-of-2 secret-sharing scheme that induces a computational Nash equilibrium stable
with respect to trembles.

Proof We must first show that Π is a valid secret-sharing scheme. The secrecy property will
follow from the proof that the reconstruction phase is a computational Nash equilibrium: if secrecy
did not hold then computing the secret locally and not participating in the reconstruction phase at
all would be a profitable deviation. We therefore focus on correctness. Assuming both parties run
the protocol honestly, there are only three events that would prevent the correct secret from being
reconstructed: either i∗ ≥ 2k − 1 (which occurs with negligible probability), or signal1 = Eval′sk′2

(i)
or signal2 = Eval′sk′1

(i) for some i < i∗ + 1. Security of the VRF easily implies that the latter two
events happen with only negligible probability.

We next prove that Π induces a computational Nash equilibrium. Assume P2 follows the
strategy σ2 as prescribed by the protocol, and let σ′1 denote any probabilistic polynomial-time
strategy followed by P1. (The other case, where P1 follows the protocol and we look at deviations
by P2, follows similarly with an even simpler proof.) In a given execution of the reconstruction
phase, let i denote the iteration, if any, in which P1 aborts; if P1 never aborts then we set i =∞.
Let early be the event that i < i∗; let exact be the event that i = i∗; and let late be the event
that i > i∗. Let correct be the event that P1 outputs the correct secret s. We will consider the
probabilities of these events in two experiments: the experiment defined by running the actual
secret-sharing scheme, and a second experiment where P1 is given share1, signal1 chosen uniformly
at random from the appropriate ranges. Probabilities in the first experiment will be denoted by
Prreal[·], and probabilities in the second experiment will be denoted by Prideal[·].

We have

U1(σ′1, σ2) (2)
≤ U+ · Prreal[exact] + U+ · Prreal[correct ∧ early] + U− · Prreal[correct ∧ early] + U · Prreal[late],

using the fact (as discussed in the intuition preceding the theorem) that whenever late occurs P2

outputs the correct secret s. Since when both parties follow the protocol P1 gets utility U , we need
to show that there exists a negligible function ε such that U1(σ′1, σ2) ≤ U + ε(k). This is proved by
the following claims.

10

Claim 1 There exists a negligible function ε such that

|Prreal[exact]− Prideal[exact]| ≤ ε(k)
|Prreal[late]− Prideal[late]| ≤ ε(k)

|Prreal[correct ∧ early]− Prideal[correct ∧ early]| ≤ ε(k)
|Prreal[correct ∧ early]− Prideal[correct ∧ early]| ≤ ε(k).

Proof This follows easily from the pseudorandomness of the VRFs.

Let abort be the event that P1 aborts before iteration i∗ + 1 (so abort = exact ∨ early). Define

Uideal
def= U+ · Prideal[exact ∧ abort] + U+ · Prideal[correct ∧ early ∧ abort]

+ U− · Prideal[correct ∧ early ∧ abort] + U · Prideal[late].

Claim 1 shows that |U1(σ′1, σ2)− Uideal| ≤ ε(k) for some negligible function ε. It remains to bound
Uideal. Information-theoretic arguments show that

Prideal[exact | abort] = β

Prideal[correct | early] =
1
|S|

;

therefore,

Uideal = U+ ·
(
β · Prideal[abort] +

1
|S|
· (1− β) · Prideal[abort]

)
+ U− ·

(
1− 1
|S|

)
(1− β) · Prideal[abort] + U · (1− Prideal[abort])

= U +
(
U+ ·

(
β +

1
|S|
· (1− β)

)
+ U− ·

(
1− 1
|S|

)
(1− β)− U

)
· Prideal[abort]

= U +
(
β · U+ + (1− β) · Urandom − U

)
· Prideal[abort] (3)

≤ U

using the fact that β · U+ + (1− β) · Urandom − U < 0. This completes the proof that Π induces a
computational Nash equilibrium.

To complete the proof, we show that Π induces a computational Nash equilibrium stable with
respect to trembles. This part of the proof relies heavily on the uniqueness property of the VRFs. In
particular, the uniqueness property implies that in each iteration each party has a unique message
it can send that will not be treated as an abort. This rules out any way for the parties to “signal”
to each other without being detected.

Let δ be a constant that we will fix later. Let ρ2 denote any ppt strategy for P2 that is δ-close
to σ2, and let ρ1 be an arbitrary ppt strategy for P1. We show the existence of a ppt strategy σ′1
satisfying the requirements of Definition 2. (Once again we focus on deviations by P1 but the case
of P2 is analogous.)

Say an iteration-imessage (ȳi, π̄i, ȳ
′
i, π̄
′
i) from P2 represents an abort if P2 does not send anything,

or if Vrfypk1
(i, ȳi, π̄i) = 0 or Vrfy′pk′1

(i, ȳ′i, π̄
′
i) = 0. Say P2 aborts if it sends a message representing

an abort. (These notions are defined analogously for P1.) Strategy σ′1 is defined as follows:

1. Given input (sk1, sk
′
1, pk2, pk

′
2, share1, signal1), run ρ1 on this input. Set aborted := 0.

11

2. In each iteration i:

(a) Receive the iteration-i message mi from P2. If P2 aborts, then set aborted := 1.

(b) Give mi to ρ1 and get in response some message m′i.

(c) If aborted = 1 then forward m′i to P2; otherwise, compute the response (yi, πi, y
′
i, π
′
i) as

prescribed by Π and send that to P2.

3. If aborted = 0 then output whatever is prescribed by Π; otherwise, output whatever ρ1

outputs.

When σ′1 interacts with σ2, then aborted is never set to 1; thus, σ′1 and ρ1 yield equivalent play
with respect to σ2. It remains to show that U1(ρ1, ρ2) ≤ U1(σ′1, ρ2) + ε(k) for some negligible func-
tion ε. Let ρ̂2 denote the “residual” strategy of ρ2 (i.e., the strategy it follows with probability δ).
In an interaction involving ρ1, let abort denote the event that ρ1 aborts before P2 aborts, and let
pabort(σ) be the probability of this event when ρ1 is interacting with the strategy σ. We first claim
that the only “advantage” of playing ρ1 rather than σ′1 arises due to ρ1 being the first to abort.

Claim 2 U1(ρ1, ρ̂2)− U1(σ′1, ρ̂2) ≤ pabort(ρ̂2) · (U+ − U−).

Proof Note that abort is well-defined in the interaction of σ′1 with ρ̂2 since σ′1 runs a copy of ρ1

as a sub-routine. When abort does not occur, there are two possibilities: neither ρ1 nor P2 ever
aborts, or P2 aborts first. We consider these in turn:

• When neither ρ1 nor P2 aborts, the output of P2 is unchanged whether P1 is running σ′1 or
ρ1. Furthermore, the output of P1 when running σ′1 is equal to the correct secret. Thus, the
utility of P1 when running σ′1 is at least the utility of P1 when running ρ1.

• If P2 aborts first, the outputs of both P1 and P2 will be identical regardless of whether P1

runs σ′1 or ρ1; this follows because as soon as P2 aborts, strategy σ′1 “switches” to playing
strategy ρ1.

So, the utility obtained by playing σ′1 can only possibly be less than the utility obtained by playing
ρ1 when abort occurs. The maximum difference in the utilities in this case is U+ − U−.

The next claim shows that abort occurs at least as often when ρ1 interacts with σ2 as when ρ1

interacts with ρ̂2.

Claim 3 pabort(σ2) ≥ pabort(ρ̂2).

Proof To see this, consider some view of ρ1 on which it aborts first when interacting with ρ̂2.
(The view includes both the information d1 given to ρ1 by the dealer as well as the messages from
P2.) Since ρ1 aborts first and, in every iteration, there is a unique non-aborting message that
P2 can send, it follows that ρ1 will also abort when interacting with σ2 (who never aborts first)
whenever ρ1 is given d1 from the dealer. The claim follows.

Define U∗ def= β · U+ + (1− β) · Urandom and recall that U∗ < U by assumption. Now,

U1(ρ1, ρ2) = (1− δ) · U1(ρ1, σ2) + δ · U1(ρ1, ρ̂2)
≤ (1− δ) ·

(
U + (U∗ − U) · pabort(σ2)

)
+ δ · U1(ρ1, ρ̂2) + ε(k)

12

(where ε is a negligible function), using Equation (3). Also,

U1(σ′1, ρ2) = (1− δ) · U1(σ′1, σ2) + δ · U1(σ′1, ρ̂2)
= (1− δ) · U + δ · U1(σ′1, ρ̂2) .

It follows that

U1(ρ1, ρ2)− U1(σ′1, ρ2)
= (1− δ) · (U∗ − U) · pabort(σ2) + δ ·

(
U1(ρ1, ρ̂2)− U1(σ′1, ρ̂2)

)
+ ε(k)

≤ (1− δ) · (U∗ − U) · pabort(ρ̂2) + δ · (U+ − U−) · pabort(ρ̂2) + ε(k) ,

using Claims 2 and 3. Since U∗ − U is strictly negative, δ > 0 can be found for which the above
expression is negligible for k large enough. This completes the proof.

3.1 Using Trapdoor Permutations Instead of VRFs

The protocol from the previous section can be adapted rather easily to use trapdoor permutations
rather than VRFs. The key observation is that the VRFs in the previous protocol were used only
in a very specific way: the VRF was applied to inputs in order. What we can do instead is to use a
trapdoor permutation f with associated hardcore bit h to “instantiate” a VRF in our scheme in the
following way: The “public key” will be a description of f and a random element y in the domain
of f ; the secret key will be the trapdoor enabling inversion of f . In iteration i, the “evaluation” of the
VRF on “input” i will be the `-bit sequence h(f−(i−1)`−1(y)), h(f−(i−1)`−2(y)), . . . , h(f−(i−1)`−`(y))
and the “proof” will be πi = f−(i−1)`−`(y). Verification can be done with respect to the original
point y, but can also be done in time independent of i by using the previous proof πi−1 (namely,
by checking that f `(πi) = πi−1).

The key point is that the essential properties we need still hold: the properties of verifiability
and uniqueness of proofs are easy to see, and pseudorandomness still holds but with resect to a
modified game where the adversary queries Evalsk(1), . . . ,Evalsk(i) and then has to guess whether
it is given Evalsk(i+ 1) or a random string. We omit further details.

3.2 Extension to the t-out-of-n Case

To adapt our approach to the t-out-of-n case, we proceed as follows. (We revert back to using
VRFs for notational simplicity, but this extension can be instantiated using trapdoor permutations
as well.) Each party Pi will be associated with two keys for the VRF, denoted (pki, ski) and
(pk′i, sk

′
i) as before. As in the case of Shamir secret sharing, the dealer chooses a random degree-

(t−1) polynomial G such that G(0) = s. The dealer chooses an iteration r∗ according to a geometric
distribution as before, and then gives the following information to each player Pi:

• Public keys of all other parties: {(pkj , pk
′
j)}j 6=i.

• Its own secret keys: ski, sk
′
i.

• Its own share gi = G(i) and “blinded” shares of all other parties: {gi,j = G(j)⊕Evalskj
(r∗)}j 6=i.

• A set of “signals”: {signali,j = Eval′sk′j
(r∗ + 1)}j 6=i.

13

Computational hiding holds, since any set of t− 1 parties Pi1 , . . . , Pit−1 learns (in a computational
sense) only the values G(i1), . . . , G(it−1).

Given a set of t∗ ≥ t active players, the reconstruction phase proceeds as follows: Only the
first t parties (arranged lexicographically) take part, and the rest of the parties simply observe
the communication over a broadcast channel. Let I∗ denote the indices of all t∗ parties, and let I
denote the indices of the t lexicographically first parties. Then, in each iteration r:

• If any party in I∗ \ I speaks, then each party Pi terminates and outputs s(r−1)
i (or a random

element of S if r = 1).

• Each party Pi, for i ∈ I, broadcasts y(r)
i = Evalski

(r) and ȳ
(r)
i = Eval′sk′i

(r), along with the
respective proofs Proveski

(r),Prove′sk′i
(r). Incorrect proofs are treated as an abort.

• Each Pi does as follows:

– If any other party Pj (for j ∈ I) broadcast a value ȳ(r)
j such that signali,j = ȳ

(r)
j , then

Pi outputs s(r−1)
i and terminates.

– If any party Pj (for j ∈ I) aborted, then Pi outputs s(r−1)
i and terminates.

• If Pi has not terminated, then it computes s(r)i as follows: set g` := gi,` ⊕ y
(r−1)
` for all

` 6= i. Interpolate a degree-(t − 1) polynomial through the t points {gi}ti=1, and let s(r)i be
the constant term of this polynomial.

We omit a proof that, by setting the parameter β appropriately, this protocol induces a computa-
tional Nash equilibrium stable with respect to trembles.

References

[ADGH06] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game
theory: Robust mechanisms for rational secret sharing and multiparty computation. In
ACM Conference on Principles of Distributed Computing (PODC) 2006, pages 53–62.
ACM Press, 2006.

[Bla79] G.R. Blakley. Safeguarding cryptographic keys. National Computer Conference, 48:313–
317, 1979.

[CL07] M. Chase and A. Lysyanskaya. Simulatable VRFs with applications to multi-theorem
NIZK. In Advances in Cryptology — Crypto 2007. Springer, 2007.

[Dod02] Y. Dodis. Efficient constructions of (distributed) verifiable random functions. In Public-
Key Cryptography (PKC) 2002, pages 1–17. Springer, 2002.

[DR07] Y. Dodis and T. Rabin. Cryptography and game theory. In N. Nisan, T. Roughgarden,
É. Tardos, and V.V. Vazirani, editors, Algorithmic Game Theory. Cambridge University
Press, 2007.

[DY05] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys.
In Public Key Cryptography (PKC 2005), pages 416–431. Springer, 2005.

14

[GHKL08] D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party
computation. In 40th Annual ACM Symposium on Theory of Computing (STOC), pages
413–422. ACM Press, 2008.

[GK06] S.D. Gordon and J. Katz. Rational secret sharing, revisited. In Security and Cryptog-
raphy for Networks (SCN), pages 229–241. Springer, 2006.

[GK08] D. Gordon and J. Katz. Partial fairness in secure two-party computation, 2008. Avail-
able at http://eprint.iacr.org/2008/206.

[HT04] Joseph Y. Halpern and Vanessa Teague. Rational secret sharing and multiparty com-
putation. In 36th Annual ACM Symposium on Theory of Computing (STOC), pages
623–632. ACM Press, 2004.

[IML05] Sergei Izmalkov, Silvio Micali, and Matt Lepinski. Rational secure computation and
ideal mechanism design. In FOCS, pages 585–595. IEEE Computer Society, 2005.

[Kat08a] J. Katz. Bridging game theory and cryptography: Recent results and future directions.
In Theory of Cryptography Conference (TCC), pages 251–272. Springer, 2008.

[Kat08b] J. Katz. Ruminations on defining rational MPC, 2008. Talk given at SSoRC, Bertinoro,
Italy. Slides available at http://www.daimi.au.dk/~jbn/SSoRC2008/program.

[KN08a] G. Kol and M. Naor. Cryptography and game theory: Designing protocols for ex-
changing information. In Theory of Cryptography Conference (TCC), pages 320–339.
Springer, 2008.

[KN08b] G. Kol and M. Naor. Games for exchanging information. In 40th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 423–432. ACM Press, 2008.

[LMPS04] M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair SFE and coalition-
safe cheap talk. In ACM Symposium on Principles of Distributed Computing (PODC),
pages 1–10. ACM Press, 2004.

[LMS05] M. Lepinski, S. Micali, and A. Shelat. Collusion-free protocols. In 37th ACM Symposium
in Theory of Computing (STOC), pages 543–552. ACM Press, 2005.

[LT06] A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial behavior in multi-
party computation. In Advances in Cryptology — Crypto 2006, pages 180–197. Springer,
2006.

[Lys02] A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In Advances in Cryptology — Crypto 2002, pages 597–612. Springer, 2002.

[MRV99] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In 40th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 120–130. IEEE, 1999.

[OPRV08] S. J. Ong, D. Parkes, A. Rosen, and S. Vadhan. Fairness with an honest minority and
a rational majority, 2008. Available at http://eprint.iacr.org/2008/097.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

15

