
Efficient Rational Secret Sharing in Standard

Communication Models

Georg Fuchsbauer∗ Jonathan Katz† Eric Levieil∗

David Naccache∗

Abstract

We propose a new methodology for rational secret sharing leading to various instantiations
that are simple and efficient in terms of computation, share size, and round complexity. Our
protocols do not require physical assumptions or simultaneous channels, and can even be run
over asynchronous, point-to-point networks.

Of additional interest, we propose new equilibrium notions for this setting (namely, compu-
tational versions of strict Nash equilibrium and stability with respect to trembles), show relations
between them, and prove that our protocols satisfy them.

1 Introduction

The classical problem of t-out-of-n secret sharing [Sha79, Bla79] involves a dealer D who distributes
shares of a secret s to a group of n players P1, . . . , Pn so that (1) any group of t or more players can
reconstruct the secret without further involvement of the dealer, yet (2) any group of fewer than
t players cannot recover the secret. For example, in Shamir’s scheme [Sha79] the secret s lies in a
finite field F, with |F| > n. The dealer chooses a random polynomial f(x) of degree at most t− 1
with f(0) = s, and gives each player Pi the “share” f(i). To reconstruct the secret s, any t players
simply broadcast their shares and interpolate the polynomial. On the other hand, any set of fewer
than t players has no information about s given their shares.

The implicit assumption in the original formulation of the problem is that each party is either
honest or corrupt, and honest parties are all willing to cooperate when reconstruction of the secret
is desired. Beginning with the work of Halpern and Teague [HT04], protocols for secret sharing
and other cryptographic tasks have begun to be re-evaluated in a game-theoretic light (see [DR07,
Kat08a] for an overview of work in this direction). In this context, parties are neither honest nor
corrupt but are instead simply rational and are assumed (only) to act in their own self-interest.

Under natural assumptions regarding the utilities of the parties, standard secret-sharing schemes
completely fail. For example, assume as in [HT04] that all players want to learn the secret above all
else, but otherwise prefer that no other players learn the secret. (Later, we will treat the utilities of
the players more precisely.) For a set of t parties to reconstruct the secret in Shamir’s scheme, each
party is supposed to broadcast their share. It is easy to see, however, that each player is better off
withholding their share no matter what the other players do. Consider P1: If fewer than t−1 other

∗École Normale Supérieure, LIENS -CNRS - INRIA, Paris, France. Email: {georg.fuchsbauer, eric.levieil,

david.naccache}@ens.fr
†University of Maryland, USA. Email: jkatz@cs.umd.edu. Work done while visiting ENS and IBM. Research

supported by NSF CyberTrust grant #0830464 and NSF CAREER award #0447075.

1

players reveal their shares, then P1 does not learn the secret regardless of whether P1 reveals his
share or not. If more than t − 1 other players reveal their shares, then everyone learns the secret
and P1’s actions again have no effect. On the other hand, if exactly t− 1 other players reveal their
shares, then P1 learns the secret (using his share) but prevents other players from learning the
secret by not publicly revealing his own share. The result is that if all players are rational then no
one will broadcast their share and the secret will not be reconstructed.

A series of recent works [HT04, GK06, LT06, ADGH06, KN08a, KN08b, OPRV09, MS09] has
focused on designing rational secret-sharing protocols immune to the above problem. Protocols
for rational secret sharing also follow from the more general results of Lepinski et al. [LMPS04,
LMS05a, IML05, ILM08]. Each of these works has some or all of the following disadvantages:

On-line dealer or trusted parties. Halpern and Teague [HT04] introduced a general approach
to solving the problem that has been followed in most subsequent work. Their solution, however,
requires the continual involvement of the dealer, even after the initial shares have been distributed.
The solution proposed by Halpern and Teague also applies only when t, n ≥ 3.

Recent work of [ILM08, MS09] requires the involvement of some (minimally trusted) external
parties during the reconstruction phase.

Computational inefficiency. To eliminate the on-line dealer, several researchers [GK06, LT06,
ADGH06, KN08a] have suggested solutions that rely on multiple invocations of protocols for generic
secure multi-party computation. Because the function being computed by these protocols is com-
plex, it is unclear whether computationally efficient protocols with suitable functionality can be
designed. The solutions of [LMPS04, LMS05a, IML05, ILM08], though following a different high-
level approach, also rely on generic secure multi-party computation.

Non-standard communication models. The solutions in [HT04, GK06, LT06, ADGH06] as-
sume simultaneous broadcast which implies that parties must decide on what value (if any) to broad-
cast in a given round before observing the values broadcast by other parties. Kol and Naor [KN08a]
show how to avoid simultaneous broadcast, at the cost of increasing the round complexity by a
(multiplicative) factor linear in the size of the domain from which the secret is chosen; their ap-
proach thus has super-polynomial complexity for secrets of super-logarithmic length. Subsequent
work by Kol and Naor [KN08b] shows how to avoid the assumption of simultaneous broadcast at
the expense of increasing the round complexity by a (multiplicative) factor of t.

The solutions of [LMPS04, LMS05a, IML05] require physical assumptions such as secure en-
velopes and ballot boxes. Secure envelopes can be used to implement simultaneous broadcast (but
not vice versa) and hence represent a strictly stronger class of assumptions.

Ong et al. [OPRV09] provide a solution without simultaneous broadcast, but under the assump-
tion that sufficiently many parties are completely honest and never deviate from the protocol. Here,
as in all other work mentioned above, we do not impose this assumption.

As far as we are aware, all prior schemes for n > 2 assume the existence of a broadcast channel
(whether simultaneous or not).

1.1 Our Results

Our solutions do not suffer from any of the drawbacks mentioned above. (One of the schemes of
Kol and Naor [KN08b] does not either; a more detailed comparison of our work with theirs is given
in Section 1.2.1.) Our schemes follow the same high-level idea as in prior work, but implement
this idea without resorting to generic secure multi-party computation. Our protocols are therefore

2

(arguably) simpler than previous solutions; more importantly, they are efficient in terms of round
complexity, share size, and required computation.

Our protocols do not require simultaneous communication. Instead we can rely on synchronous
(but non-simultaneous) point-to-point channels. To the best of our knowledge, all prior schemes
for n > 2 assume broadcast (whether simultaneous or not); note that the obvious approach of
simulating broadcast by running a broadcast protocol over a point-to-point network will not, in
general, work in the rational setting. Moreover, we show that our protocol can be adapted to work
even in asynchronous point-to-point networks. We thus answer a question that had been open since
the work of Halpern and Teague [HT04].

As an independent contribution, we also introduce two new equilibrium notions and prove that
our protocols satisfy them. (A discussion of game-theoretic equilibrium notions used in this and
prior work is given in Section 2.2.) Specifically, we first introduce a computational version of strict
Nash equilibrium. Using this equilibrium notion in the context of rational secret sharing was pro-
pounded by Kol and Naor [KN08b], but they used an information-theoretic notion of strict Nash
and showed some inherent limitations of doing so. As in all of cryptography, we believe computa-
tional relaxations are meaningful and should be considered; this also allows us to circumvent the
limitations that hold in the information-theoretic case.

Motivated by the suggestion in [Kat08a], we also formalize a notion of stability with respect to
trembles. We then prove that this notion implies our definition of computational strict Nash.

An interesting feature of our definitions is that they effectively rule out “signalling” via sub-
liminal channels in the protocol. In fact, at every point in our protocols there is a unique legal
message a party can send. This prevents a party from outwardly appearing to follow the protocol
while subliminally communicating (or trying to organize collusion) with other parties. Preventing
subliminal communication was an explicit goal of some prior work (e.g., [IML05, LMS05a, ASV08]),
which achieved it only by relying on non-standard communication models.

1.2 Overview of Our Approach

We follow the same high-level approach as in [HT04, GK06, LT06, ADGH06, KN08a, KN08b].
Our reconstruction protocol proceeds in a sequence of “fake” iterations followed by a single “real”
iteration. Roughly speaking, these satisfy the following requirements:

• In the real iteration, everyone learns the secret (assuming everyone follows the protocol).

• In a fake iteration, no information about the secret is revealed.

• No party can tell, in advance, whether the next iteration will be real or fake.

The iteration number i∗ of the real iteration is chosen according to a geometric distribution with
parameter β ∈ (0, 1) (where β depends on the players’ utilities). To reconstruct the secret, parties
run a sequence of iterations until the real iteration is identified, at which point all parties output
the secret. If some party fails to follow the protocol, all parties abort. Intuitively, it is rational
for Pi to follow the protocol as long as the expected gain of deviating, which is positive only if Pi

aborts exactly in iteration i∗, is outweighed by the expected loss if Pi aborts before iteration i∗.
In most prior work [GK06, LT06, ADGH06, KN08a], a secure multi-party computation was

performed in each iteration to determine whether the given iteration should be real or fake. Instead
we use the following approach, described in the 2-out-of-2 case (we omit some technical details in
order to focus on the main idea): The dealer D chooses i∗ from the appropriate distribution in
advance, at the time of sharing. The dealer then generates two key-pairs (vk1, sk1), (vk2, sk2) for a
verifiable random function [MRV99] (VRF; see Section 2.4), where vk represents a verification key

3

and sk represents a secret key, and we denote by VRFsk(x) the evaluation of the VRF on input x
using secret key sk. The dealer gives the verification keys to both parties, gives sk1 to P1, and gives
sk2 to P2. It also gives s1 = s ⊕ VRFsk2(i

∗) to P1, and s2 = s ⊕ VRFsk1(i
∗) to P2. Each iteration

consists of one message from each party: in iteration i, party P1 sends VRFsk1(i) while P2 sends
VRFsk2(i). Observe that a fake iteration reveals nothing about the secret, in a computational sense.
Furthermore, neither party can identify the real iteration in advance. (The description above relies
on VRFs. We show that, in fact, trapdoor permutations suffice.)

To complete the protocol, we need to provide a way for parties to identify the real iteration.
Previous work allows parties to identify the real iteration as soon as it occurs. This suffices when
simultaneous broadcast is available, since each party must decide on its message before it learns
whether the current iteration is real. When simultaneous channels are not available, however,
this approach does not work since it is vulnerable to an obvious rushing strategy. Kol and Naor
[KN08a, KN08b] show two different ways to avoid simultaneous broadcast, but the first applies
only for secrets from polynomial-size domains (and yields round complexity linear in the domain
size), while the second yields round complexity linear in t.

Motivated by recent work on fairness (in the malicious setting) [GHKL08, GK08], we suggest
the following, new approach: delay the signal indicating whether a given iteration is real or fake
until the following iteration. As before, a party cannot risk aborting until it is sure that the real
iteration has occurred; the difference is that now, by the time it is sure of this fact, the real iteration
is over and all parties are able to reconstruct the secret. This eliminates the need for simultaneous
channels, while increasing the (expected) round complexity by only a single round. This approach
can be adapted to the case of t-out-of-n secret sharing for any t ≤ n and works even when the
parties communicate over a asynchronous, point-to-point network.

1.2.1 Comparison to the Kol-Naor Scheme

The only prior rational secret-sharing scheme that avoids an on-line dealer, is computationally
efficient, and does not require simultaneous broadcast or physical assumptions is that of Kol and
Naor [KN08b]. They also use the strict Nash solution concept (though their protocol without
simultaneous channels is only shown to be ε-Nash) and so their work provides an especially good
point of comparison with ours. Our protocols have the following advantages with respect to theirs:
Share size. In the Kol-Naor scheme, the shares of the parties have unbounded length. While not
a significant problem in its own right, this is problematic when rational secret sharing is used as a
sub-routine for rational computation of general functions. (See [KN08a].) Moreover, the expected
length of the parties’ shares in the Kol-Naor scheme is large: in the 2-out-of-2 case, shares of a secret
s have expected size O(β−1 · (|s|+ k)) in their scheme; shares in our scheme have size |s|+ O(k).
Round complexity. The version of the Kol-Naor scheme that does not rely on simultaneous
broadcast [KN08b, Section 6] has expected round complexity O(β−1 · t), whereas our protocol has
expected round complexity O(β−1). (The value of β is roughly the same in both cases.)
Resistance to coalitions. For the case of t-out-of-n secret sharing, the Kol-Naor scheme is
susceptible to coalitions of two or more players. We show t-out-of-n secret-sharing protocols resilient
to coalitions of up to (t− 1) parties; see Section 4 for further details.
Avoiding broadcast. The Kol-Naor scheme for n > 2 assumes synchronous broadcast, whereas
our protocols work even if parties communicate over an asynchronous, point-to-point network.

4

2 Model and Definitions

We denote the security parameter by k. Let ε : N → R be a function which may take negative
values. We say ε is negligible if for all c > 0 there is a kc > 0 such that ε(k) < 1/kc for all k > kc,
and let negl denote a generic negligible function. We say ε is noticeable if there exist c, kc such that
ε(k) > 1/kc for all k > kc. Note that it is possible for ε to be neither negligible nor noticeable.

2.1 Secret Sharing and Players’ Utilities

We define our model and then describe the game-theoretic concepts used. Even readers familiar
with prior work in this area should skim these sections, since we formalize certain aspects of the
problem slightly differently from prior work, and define new equilibrium notions.

A t-out-of-n secret-sharing scheme for domain S (with |S| > 1) is a two-phase protocol carried
out by a dealer D and a set of n parties P1, . . . , Pn. In the first phase (the sharing phase), the
dealer chooses a secret s ∈ S. Based on this secret and a security parameter 1k, the dealer generates
shares s1, . . . , sn and gives si to player Pi. In the second phase (the reconstruction phase), some
set of t∗ ≥ t parties jointly reconstruct s. We impose the following requirements:

Secrecy: The shares of any t−1 parties reveal nothing about s, in a computational sense. Formally,
for any s0, s1 ∈ S and any i1, . . . , it−1 the following are computationally indistinguishable:

{
(s1, . . . , sn) ← D(1k, s0) : (si1 , . . . , sit−1)

}
and

{
(s1, . . . , sn) ← D(1k, s1) : (si1 , . . . , sit−1)

}
.

Correctness: For any set of t∗ ≥ t parties who run the reconstruction phase honestly, the correct
secret s will be reconstructed, except possibly with probability negligible in k.

The above definition views parties as either malicious or honest. To model parties as rational,
we first define players’ utilities. Given some set of t∗ ≥ t parties active during the reconstruction
phase, let the outcome o of the reconstruction phase be a binary vector of length t∗ with oi = 1 iff
the output of Pi is equal to the initial secret s (i.e., Pi “learned the secret”). In contrast to prior
work, we consider a party to have learned the secret s if and only if it outputs s, and do not care
whether that party “really knows” the secret or not. In particular, in our formulation a party who
outputs a random value in S without running the reconstruction phase at all “learns” the secret
with probability 1/|S|. We model the problem this way for at least two reasons:

1. Our formulation lets us model a player learning partial information about the secret, some-
thing not reflected in prior work. In particular, partial information that increases the proba-
bility with which a party outputs the correct secret increases that party’s expected utility.

2. It is difficult, in general, to formally model what it means for a party to “really” learn the
secret, especially when considering arbitrary protocols and behaviors. In contrast, in our
definition it is easy to tell whether a player learns the secret by just looking at their output.
Our notion also appears better suited for a computational setting, where a party might “know”
the secret from an information-theoretic point of view, yet be unable to output it.

Let µi(o) denote the utility of player Pi for the outcome o. Following [HT04] and all subsequent
work in this area, we make the following assumptions about the utility functions of the players:

• If oi > o′i, then µi(o) > µi(o′).

• If oi = o′i and
∑

i oi <
∑

i o
′
i, then µi(o) > µi(o′).

5

That is, player Pi first prefers outcomes in which he learns the secret; otherwise, Pi prefers strategies
in which the fewest number of other players learn the secret. For simplicity, in our analysis we
distinguish three cases, described from the point of view of Pi (though we stress that we could also
work with utilities satisfying the more general constraints above):

1. If o is an outcome in which Pi learns the secret and no other player does, then µi(o)
def= U+.

2. If o is an outcome in which everyone learns the secret, then µi(o)
def= U .

3. If o is an outcome in which Pi does not learn the secret, then µi(o)
def= U−.

(Note that U+, U, U− are considered constants, and are independent of the security parameter.)
Our conditions impose U+ > U > U−. Define

Urandom
def=

1
|S| · U

+ +
(

1− 1
|S|

)
· U− ; (1)

this is the expected utility of a party who outputs a random guess for the secret (assuming other
parties abort without any output, or with the wrong output). We will also assume that U > Urandom;
otherwise, players have essentially no incentive to run the reconstruction phase at all.

Strategies in our context refer to interactive Turing machines executing some protocol. Given a
vector of strategies ~σ for some set of t∗ parties active in the reconstruction phase, we let Ui(~σ) denote
the expected utility of Pi; note that this is a function of the security parameter k. The expectation
is taken over the initial choice of s (which we will always assume1 to be uniform), the dealer’s
randomness, and the randomness of the players’ strategies. Following standard game-theoretic
notation, define ~σ−i

def= (σ1, . . . , σi−1, σi+1, . . . , σt∗) and (σ′i, ~σ−i)
def= (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σt∗);

that is, (σ′i, ~σ−i) denotes the strategy vector ~σ with Pi’s strategy changed to σ′i.
In the following sections, we motivate and define the equilibrium notions used in this work. We

focus on single-player deviations here, and defer the case of coalitions to Appendix D.1.

2.2 Notions of Game-Theoretic Equilibria: A Discussion

The starting point for any discussion of game-theoretic equilibria is the Nash equilibrium. Roughly
speaking, a protocol induces a Nash equilibrium if no party gains any advantage by deviating from
the protocol, as long as all other parties follow the protocol. (In a computational Nash equilibrium,
no efficient deviation confers any advantage.) As observed by Halpern and Teague [HT04], however,
the Nash equilibrium concept is too weak for rational secret sharing. Halpern and Teague suggest,
instead, to design protocols that induce a Nash equilibrium surviving iterated deletion of weakly
dominated strategies; this notion was used in subsequent work of [GK06, LT06, ADGH06].

The notion of surviving iterated deletion, though, is also problematic in several respects. Kol
and Naor [KN08b] show a secret-sharing protocol that is “intuitively bad” yet satisfies the definition
because no strategy weakly dominates any other: for any strategies σ, σ′, there exist (contrived)
strategies of the remaining players for which σ is the better strategy, and vice versa. (See [Kat08a,
Kat08b] for other arguments against this notion.) Also, a definition of surviving iterated deletion
taking computational issues into account has not yet been given and appears difficult to do.2

1This can be relaxed to assuming merely that s has high min-entropy; we assume a uniform distribution only for
simplicity. Note that the assumption that s has high min-entropy is implicit in all prior work; if not, a party could
guess the secret with high probability without running the protocol at all!

2The formal definition allows for infinitely many iterations in which strategies are deleted.

6

Motivated by these drawbacks (and more), Kol and Naor propose other strengthenings of Nash
equilibrium: resistance to backward induction [KN08a], everlasting equilibrium, and strict Nash
equilibrium [KN08b]. The latter two notions are defined in an information-theoretic sense, and
are overly conservative in that they rule out protocols using cryptography; indeed, Kol and Naor
state [KN08b] that these equilibrium notions should be considered sufficient but not necessary.

Nevertheless, the notion of strict Nash equilibrium is appealing. A protocol is in Nash equi-
librium if no deviations are advantageous; it is in strict Nash equilibrium if all deviations are
disadvantageous. Put differently, in the case of a Nash equilibrium there is no incentive to deviate
whereas in the case of a strict Nash equilibrium there is an incentive not to deviate. Furthermore,
if a protocol is strict Nash then it also survives iterated deletion of weakly dominated strategies.

Another advantage of strict Nash is that protocols satisfying this notion deter subliminal com-
munication in the following sense: since any detectable deviation from the protocol results in lower
utility (assuming other parties are following the protocol), a party who tries to use the messages of
the protocol as a covert channel risks a loss in utility as long as there is some reasonable probability
(not necessarily 1!) that other players are following the protocol. In fact, our protocols satisfy the
following, stronger condition: at every point in the protocol, there is a unique legal message that a
party can send. Our protocols thus rule out subliminal communication in a strong sense; this was
an explicit goal in work such as [LMPS04, LMS05b, LMS05a, ASV08].

We propose here a computational version of strict Nash equilibrium. We believe our definition
retains the intuitive appeal of strict Nash, while also meaningfully taking computational limitations
into account (and thus enabling the use of cryptography).

Motivated by the suggestion in [Kat08a], we also define a computational notion of stability with
respect to trembles. Intuitively, stability with respect to trembles means that even if a party Pi

believes that the other parties might play some arbitrary strategy with small probability δ (but
will follow the protocol with probability 1− δ), there is still no better strategy for Pi than to follow
the protocol. This turns out to imply our notion of computational strict Nash; see Appendix A.

As should be clear from the above, determining the “right” game-theoretic notions for rational
secret sharing is the subject of ongoing research. We do not suggest that the definitions proposed
here are the only ones to consider, but we do believe they increase our understanding of the problem.

2.3 Definitions of Game-Theoretic Equilibria

Here we focus on single-player deviations; coalitions are dealt with in Appendix D.1. Throughout
this section, Π is a t-out-of-n secret-sharing scheme and σi denotes the prescribed actions of Pi in
the reconstruction phase.

Definition 1 Π induces a computational Nash equilibrium if for any t∗ ≥ t, any set I = {i1, . . . , it∗}
of size t∗, any i ∈ I, and any ppt strategy σ′i we have that Ui(σ′i, ~σ−i) ≤ Ui(~σ) + negl(k). ♦

Our definitions of strict Nash and resistance to trembles require us to first define what it
means to “follow a protocol”. This is non-trivial since two different Turing machines σ, ρ might
be “functionally identical” as far as a protocol is concerned; for example, ρ may be the same as σ
except that it first performs some useless computation. Other subtleties are discussed below.

Definition 2 Strategies σi, ρi yield equivalent play with respect to Π, denoted σi
Π≈ ρi, if for all

ppt distinguishers D we have
∣∣∣Pr[D(1k, view−i(σi, ~σ−i)) = 1]− Pr[D(1k, view−i(ρi, ~σ−i)) = 1]

∣∣∣ ≤ negl(k),

7

where view−i denotes the view of P−i up to the point where the protocol ends. ♦
We write σi

Π
6≈ ρi if σi, ρi do not yield equivalent play with respect to Π. Note that σi, ρi can

yield equivalent play with respect to Π even if (1) they differ when interacting with some other
set of strategies ~σ′−i (we only care about their behavior when other parties run Π); (2) they differ
in their local computation or output; and (3) they differ in messages sent after the protocol ends
(once the protocol ends, there is no way to force players to behave one way or the other).

We now define the notion that detectable deviations from the protocol decrease a player’s utility.

Definition 3 Π induces a computational strict Nash equilibrium if

1. Π induces a computational Nash equilibrium;

2. For any t∗ ≥ t, any set I = {i1, . . . , it∗}, any i ∈ I, and any ppt strategy σ′i for which σ′i
Π
6≈ σi,

there is a c > 0 such that Ui(~σ) ≥ Ui(σ′i, ~σ−i) + 1/kc for infinitely many values of k. ♦
We now turn to defining stability with respect to trembles. We say that ~ρ−i is δ-close to ~σ−i if

~ρ−i takes the following form: with probability 1− δ the parties play according to ~σ−i, while with
probability δ they follow an arbitrary ppt strategy ~σ′−i. (In other words, ~ρ−i differs from ~σ−i with
probability at most δ.) In this case, we refer to ~σ′−i as the residual strategy of ~ρ−i.

Definition 4 Π induces a computational Nash equilibrium that is stable with respect to trembles if

1. Π induces a computational Nash equilibrium;

2. There exists a noticeable function δ such that for any t∗ ≥ t, any set I = {i1, . . . , it∗}, any
i ∈ I, any vector of ppt strategies ~ρ−i that is δ-close to ~σ−i, and any ppt strategy ρi, there

exists a ppt strategy σ′i
Π≈ σi such that Ui(ρi, ~ρ−i) ≤ Ui(σ′i, ~ρ−i) + negl(k). ♦

Intuitively, the definition means that even if a party Pi believes that the other parties might
play some different strategy with some small probability δ, there is still no better strategy for Pi

than to outwardly follow the protocol3 (while possibly performing some additional local computa-
tion). Moreover, if Π induces a computational Nash equilibrium then any (polynomial-time) local
computation performed by Pi will not help as long as other parties follow the protocol.

In Appendix A, we show that if Π is stable with respect to trembles then it induces a com-
putational strict Nash equilibrium. In our proofs, we show that our protocols satisfy the former,
possibly stronger definition.

2.4 Verifiable Random Functions (VRFs)

A VRF is a keyed function whose output is “random-looking” but can still be verified as correct,
given an associated proof. The notion was introduced by Micali, Rabin, and Vadhan [MRV99],
and various constructions in the standard model are known [MRV99, Dod02, Lys02, DY05, CL07].
The definition we use (see Appendix B) is stronger than the “standard” one in that it includes an
uniqueness requirement on the proof as well, but the constructions of [Dod02, DY05] achieve it.
(Also, we use VRFs only as a stepping stone to our construction based on trapdoor permutations.)

3Specifically, for any strategy ρi that does not yield equivalent play w.r.t. Π, there exists a strategy σ′i that does
yield equivalent play w.r.t. Π and performs essentially as well.

8

Reconstruction phase

At the outset of this phase, P1 chooses s
(0)
1 uniformly from S = {0, 1}` and P2 chooses s

(0)
2 the same

way. Then in each iteration i, the parties do the following:

(P2 sends message to P1:) P2 computes y
(i)
2 := Evalsk2(i), π

(i)
2 := Provesk2(i) and z

(i)
2 :=

Eval′sk′2
(i), π̄

(i)
2 := Prove′sk′2

(i). It sends (y(i)
2 , π

(i)
2 , z

(i)
2 , π̄

(i)
2) to P1.

(P1 receives message from P2:) P1 receives (y(i)
2 , π

(i)
2 , z

(i)
2 , π̄

(i)
2) from P2. If P2 does not send

anything, or if Vrfypk2
(i, y(i)

2 , π
(i)
2) = 0 or Vrfy′pk′2

(i, z(i)
2 , π̄

(i)
2) = 0, then P1 outputs s

(i−1)
1 and halts.

(P1 sends message to P2:) P1 computes y
(i)
1 := Evalsk1(i), π

(i)
1 := Provesk1(i) and z

(i)
1 :=

Eval′sk′1
(i), π̄

(i)
1 := Prove′sk′1

(i). It sends (y(i)
1 , π

(i)
1 , z

(i)
1 , π̄

(i)
1) to P2.

If signal1 = z
(i)
2 then P1 outputs s

(i−1)
1 and halts. Otherwise, it sets s

(i)
1 := share1⊕y

(i)
2 and continues.

(P2 receives message from P1:) P2 receives (y(i)
1 , π

(i)
1 , z

(i)
1 , π̄

(i)
1) from P1. If P1 does not send

anything, or if Vrfypk1
(i, y(i)

1 , π
(i)
1) = 0 or Vrfy′pk′1

(i, z(i)
1 , π̄

(i)
1) = 0, then P2 outputs s

(i−1)
2 and halts.

If signal2 =z
(i)
1 then P2 outputs s

(i−1)
2 and halts. Otherwise, it sets s

(i)
2 := share2⊕y

(i)
1 and continues.

Figure 1: The reconstruction phase of secret-sharing protocol Π.

3 2-out-of-2 Rational Secret Sharing using VRFs

We give a protocol Π for 2-out-of-2 secret sharing, and show that Π induces a computational Nash
equilibrium stable with respect to trembles. Let S = {0, 1}` be the domain of the secret, where `
may depend on k. Let (Gen, Eval, Prove, Vrfy) be a VRF with range {0, 1}`, and let (Gen′, Eval′,
Prove′, Vrfy′) be a VRF with range {0, 1}k (cf. Appendix B). The protocol is defined as follows:

Sharing phase: Let s denote the secret. The dealer chooses an integer i∗ ∈ N according to
a geometric distribution with parameter4 β, where β is a constant that depends on the players’
utilities but is independent of the security parameter; we discuss how to set β below. We assume
i∗ < 2k − 1 since this occurs with all but negligible probability. (Technically, if i∗ ≥ 2k − 1 the
dealer can just send a special error message to each party.)

The dealer computes (pk1, sk1), (pk2, sk2) ← Gen(1k) and (pk′1, sk
′
1), (pk′2, sk

′
2) ← Gen′(1k), and:

• share1 := Evalsk2(i
∗)⊕ s and share2 := Evalsk1(i

∗)⊕ s;

• signal1 := Eval′sk′2(i
∗ + 1) and signal2 := Eval′sk′1(i

∗ + 1).

Finally, the dealer gives to P1 the values (sk1, sk
′
1, pk2, pk′2, share1, signal1), and gives to P2 the

values (sk2, sk
′
2, pk1, pk′1, share2, signal2).

Reconstruction phase: A high-level overview of the protocol was given in Section 1.1, and we
give the formal specification in Figure 1. The reconstruction phase proceeds in a series of iterations,
where each iteration consists of one message sent by each party. Although these messages could
be sent at the same time (since they do not depend on each other), we do not want to assume
synchronous communication and therefore simply require P2 to communicate first in each iteration.

We give some intuition as to why the reconstruction phase of Π is a computational Nash
equilibrium for an appropriate choice of β. Assume P2 follows the protocol, and consider possible

4That is, the dealer flips a biased coin whose probability of landing heads is β and sets i∗ to be the number of
coin flips until the first head occurs.

9

deviations by P1. (Deviations by P2 can be analyzed symmetrically. In fact, that case is easier
to analyze since P2 goes first in every iteration.) There are essentially two things P1 can do: it
can abort in iteration i = i∗ + 1 (i.e., as soon as it receives z

(i)
2 = signal1), or it can abort in some

iteration i < i∗ + 1. In the first case, when P1 aborts in iteration i∗ + 1, party P1 “knows” that it
learned the dealer’s secret in the preceding iteration (that is, in iteration i∗) and can thus output
the correct secret; however, P2 will output s

(i∗)
2 = s and so learns the secret as well (cf. Section 2.1).

Thus, in this case, P1 does not increase its utility beyond what it would achieve by following the
protocol. In the second case, when P1 aborts in some iteration i < i∗ + 1, party P1 does not know
whether i = i∗ or not. The best strategy it can adopt is to output s

(i)
1 and hope that i = i∗. The

expected utility that P1 obtains by following this strategy can be calculated as follows:

• The probability that P1 aborts exactly in iteration i = i∗ is roughly β.

• When i < i∗, player P1 has “no information” about s and so the best it can do is guess. The
expected utility of P1 in this case is thus at most Urandom (cf. Equation (1)).

• U+ is always an upper bound for the utility of P1, even when i = i∗.

Putting everything together, the expected utility of P1 following this strategy is at most

β × U+ + (1− β)× Urandom .

Since Urandom < U by assumption, it is possible to set β so that the entire expression above is
strictly less than U ; in that case, P1 has no incentive to deviate. This is formalized in the following
theorem, whose proof is given in Appendix C.

Theorem 1 Let β be such that U > β · U+ + (1 − β) · Urandom. Then Π, using this value of β,
induces a computational Nash equilibrium stable with respect to trembles.

3.1 Using Trapdoor Permutations Instead of VRFs

The protocol from the previous section can be adapted rather easily to use trapdoor permutations
rather than VRFs. The key observation is that the VRFs in the previous protocol were used only
in a very specific way: the VRF was applied to inputs in order. What we can do instead is to use
a trapdoor permutation f with associated hardcore bit h to instantiate the VRF in our scheme in
the following way: The public key will be a description of f and a random element y in the domain
of f ; the secret key will be the trapdoor enabling inversion of f . In iteration i, the “evaluation” of
the VRF on “input” i will be the `-bit sequence

h
(
f−(i−1)`−1(y)

)
, h

(
f−(i−1)`−2(y)

)
, . . . , h

(
f−(i−1)`−`(y)

)
,

and the “proof” will be πi = f−(i−1)`−`(y). Verification can be done with respect to the original
point y, but can also be done in time independent of i by using the previous proof πi−1 (namely,
by checking that f `(πi) = πi−1).

The key point is that the essential properties we need still hold: the properties of verifiability
and uniqueness of proofs are easy to see, and pseudorandomness still holds but with respect to a
modified game where the adversary queries Evalsk(1), . . . ,Evalsk(i) and then the adversary has to
guess whether it is given Evalsk(i + 1) or a random string. We omit further details.

10

Sharing Phase

To share a secret s ∈ {0, 1}`, the dealer does the following:

• Choose r∗ ∈ N according to a geometric distribution with parameter β.

• Generatea (pk1, sk1), . . . , (pkn, skn) ← Gen(1k) and (pk′1, sk
′
1), . . . , (pk′n, sk′n) ← Gen′(1k).

• Choose random (t − 1)-degree polynomials G ∈ F2` [x] and H ∈ F2k [x] such that G(0) = s
and H(0) = 0.

• Send ski, sk
′
i to player Pi, and send to all parties the following values:

1. {(pkj , pk′j)}1≤j≤n

2. {gj := G(j)⊕ Evalskj
(r∗)}1≤j≤n

3. {hj := H(j)⊕ Eval′sk′j
(r∗ + 1)}1≤j≤n

Reconstruction Phase

Let I denote the set of the indices of the t active players. Each party Pi (for i ∈ I) chooses s
(0)
i

uniformly from {0, 1}`. In each iteration r, the parties do:

• For all i ∈ I (in ascending order, say), Pi sends the following to all players:

(
y
(r)
i := Evalski(r), z

(r)
i := Eval′sk′i

(r), Proveski(r), Prove′sk′i
(r)

)
.

• If some party Pi receives an incorrect proof (or nothing) from some other party Pj , then Pi

terminates and outputs s
(r−1)
i . Otherwise, Pi does as follows:

– Set h
(r)
j := hj ⊕ z

(r)
j for all j ∈ I. Interpolate a degree-(t− 1) polynomial H(r) through

the t points {h(r)
j }j∈I . If H(r)(0) = 0 then output s

(r−1)
i and terminate.

– Otherwise, compute s
(r)
i as follows: set g

(r)
j := gj ⊕ y

(r)
j for all j ∈ I. Interpolate a

degree-(t− 1) polynomial G(r) through the points {g(r)
j }j∈I , and set s

(r)
i := G(r)(0).

aGen outputs VRF keys with range {0, 1}`, and Gen′ outputs VRF keys with range {0, 1}k.

Figure 2: Protocol Πt,n for “exactly t-out-of-n” secret sharing.

4 Extension to the t-out-of-n Case

In this section we describe extensions of our protocol to the t-out-of-n case, where we consider
deviations by coalitions of up to t− 1 parties. For formal definitions of our game-theoretic equilib-
rium notions in the case of coalitions, see Appendix D.1; these definitions are fairly straightforward
extensions of the definitions given in Section 2.3.

In describing our protocols we use VRFs for notational simplicity, but all the protocols given
here can be instantiated using trapdoor permutations using the ideas from the previous section.

A protocol for “exactly t-out-of-n” secret sharing. We begin by describing a protocol Πt,n for
t-out-of-n secret sharing that assumes exactly t parties are active during the reconstruction phase,
and is resilient to coalitions of up to t− 1 of these parties. For now, we assume communication is
over a synchronous (but not simultaneous) point-to-point network.

As in the 2-out-of-2 case, every party is associated with two keys for a VRF. The dealer chooses
an iteration r∗ according to a geometric distribution, and also chooses two random polynomials

11

G and H of degree t − 1 such that G(0) = s and H(0) = 0. Each party receives blinded versions
of all n points G(j) and H(j): each G(j) is blinded by the value of Pj ’s VRF on the point r∗,
and each H(j) is blinded by the value of Pj ’s VRF on the point r∗ + 1. In each iteration r, all
parties are supposed to send to all parties the value of their VRFs evaluated on the current iteration
number r; once this is done, every party can interpolate a polynomial to obtain candidate values
for G(0) and H(0). When H(0) = 0 parties know the protocol is over, and output the G(0) value
reconstructed in the previous iteration. See Figure 2 for details.

Theorem 2 For appropriate choice of β, protocol Πt,n induces a (t − 1)-resilient computational
Nash equilibrium stable with respect to trembles as long as exactly t parties are active during the
reconstruction phase.

The proof is very similar to the proof of Theorem 1, and is given in Appendix D.2

Handling the general case. The prior solution assumes exactly t parties are active during
reconstruction. If t∗ > t parties are active, the “natural” modification of the protocol — where the
lowest-indexed t parties run Πt,n and all other parties remain silent — does not work. To see why,
assume the active parties are I = {1, . . . t + 1} and let C = {3, . . . , t + 1} be a coalition of t − 1
parties. In each iteration r, as soon as P1 and P2 send their values, the parties in C can compute
t + 1 points {g(r)

j }j∈I . Because of the way these points are constructed, they are guaranteed to lie
on a (t− 1)-degree polynomial when r = r∗, but are unlikely to lie on a (t− 1)-degree polynomial
when r < r∗. This gives the parties in C a way to determine r∗ in advance, at which point they
can abort and learn the secret while preventing P1 and P2 from doing the same.

Nevertheless, a relatively simple modification works: simply have the dealer run independent
instances Πt,n, Πt+1,n, . . . , Πn,n. Then, in the reconstruction phase, the parties run Πt∗,n where t∗

denotes the number of active players. It follows as an easy corollary of Theorem 2 that this induces
a (t−1)-resilient computational Nash equilibrium stable with respect to trembles regardless of how
many parties are active during the reconstruction phase.

One remaining problem is with regard to coalitions C (with |C| > 1) where some members of
C are not active during the reconstruction phase; in this case, the same attack described above
applies. (We remark that all prior work appears to assume implicitly that all players in a coalition
are active during reconstruction.) This can be addressed by having the dealer run independent
instances of Πt,n for all

(
n
t

)
subsets of size t. Then any t∗ active players can reconstruct the secret

by having the t lowest-indexed players run the instance corresponding to their subset while the
remaining players are silent. Obviously, this is only efficient for small values of t and we leave it as
an open question to deal with this, more challenging case for general t, n.

Asynchronous networks. Our protocol Πt,n can be adapted fairly easily to work even when the
parties communicate over an asynchronous point-to-point network. (In the asynchronous model,
messages can be delayed arbitrarily and delivered out of order, but any message that is sent is
eventually delivered.) In the asynchronous case, parties cannot distinguish an abort from a message
that is delayed and so we modify the protocol as follows: each party proceeds to the next iteration
r as soon as it has received t − 1 valid messages for the previous iteration, and only halts if it
receives an invalid message from some party.

As before, we can handle the general case by having the dealer run independent instances of
the “exactly t∗-out-of-n” protocol just described for all values of t∗ ∈ {t, . . . , n}. (We assume that
all parties are aware of how many other parties are active during the reconstruction phase.) This
is resilient against any coalition C of size at most t − 1 as long as all members of the coalition
are active during reconstruction. The inefficient solution mentioned earlier, where

(
n
t

)
independent

12

instances of the basic protocol are run, applies here as well to ensure resilience in the more general
case when members of C may not be active during reconstruction.

More formal treatment of the asynchronous case, including a discussion of definitions in this
setting, is deferred to Appendix D.3.

References

[ADGH06] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game
theory: Robust mechanisms for rational secret sharing and multiparty computation. In
ACM Conf. on Principles of Distributed Computing (PODC) 2006, pages 53–62. ACM
Press, 2006.

[ASV08] J. Alwen, A. Shelat, and I. Visconti. Collusion-free protocols in the mediated model. In
Advances in Cryptology — Crypto 2008, volume 5157 of LNCS, pages 497–514. Springer,
2008.

[Bla79] G.R. Blakley. Safeguarding cryptographic keys. National Computer Conference, 48:313–
317, 1979.

[CL07] M. Chase and A. Lysyanskaya. Simulatable VRFs with applications to multi-theorem
NIZK. In Advances in Cryptology — Crypto 2007, volume 4622 of LNCS, pages 303–322.
Springer, 2007.

[Dod02] Y. Dodis. Efficient constructions of (distributed) verifiable random functions. In Public-
Key Cryptography (PKC) 2003, volume 2567 of LNCS, pages 1–17. Springer, 2002.

[DR07] Y. Dodis and T. Rabin. Cryptography and game theory. In N. Nisan, T. Roughgar-
den, É. Tardos, and V.V. Vazirani, editors, Algorithmic Game Theory, pages 181–207.
Cambridge University Press, 2007.

[DY05] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and
keys. In Public Key Cryptography (PKC 2005), volume 3386 of LNCS, pages 416–431.
Springer, 2005.

[GHKL08] D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party
computation. In 40th Annual ACM Symposium on Theory of Computing (STOC), pages
413–422. ACM Press, 2008.

[GK06] S.D. Gordon and J. Katz. Rational secret sharing, revisited. In Security and Cryptog-
raphy for Networks (SCN), volume 4116 of LNCS, pages 229–241. Springer, 2006.

[GK08] D. Gordon and J. Katz. Partial fairness in secure two-party computation, 2008. Avail-
able at http://eprint.iacr.org/2008/206.

[HT04] J. Halpern and V. Teague. Rational secret sharing and multiparty computation. In
36th Annual ACM Symposium on Theory of Computing (STOC), pages 623–632. ACM
Press, 2004.

[ILM08] S. Izmalkov, M. Lepinski, and S. Micali. Verifiably secure devices. In 5th Theory of
Cryptography Conference (TCC), volume 4948 of LNCS, pages 273–301, 2008.

13

[IML05] S. Izmalkov, S. Micali, and M. Lepinski. Rational secure computation and ideal mech-
anism design. In FOCS, pages 585–595. IEEE Computer Society, 2005.

[Kat08a] J. Katz. Bridging game theory and cryptography: Recent results and future directions.
In Theory of Cryptography Conference (TCC), volume 4948 of LNCS, pages 251–272.
Springer, 2008.

[Kat08b] J. Katz. Ruminations on defining rational MPC, 2008. Talk given at SSoRC, Bertinoro,
Italy. Slides available at http://www.daimi.au.dk/~jbn/SSoRC2008/program.

[KN08a] G. Kol and M. Naor. Cryptography and game theory: Designing protocols for exchang-
ing information. In Theory of Cryptography Conference (TCC), volume 4948 of LNCS,
pages 320–339. Springer, 2008.

[KN08b] G. Kol and M. Naor. Games for exchanging information. In 40th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 423–432. ACM Press, 2008.

[LMPS04] M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair SFE and coalition-
safe cheap talk. In ACM Symposium on Principles of Distributed Computing (PODC),
pages 1–10. ACM Press, 2004.

[LMS05a] M. Lepinski, S. Micali, and A. Shelat. Collusion-free protocols. In 37th ACM Symposium
in Theory of Computing (STOC), pages 543–552. ACM Press, 2005.

[LMS05b] M. Lepinski, S. Micali, and A. Shelat. Fair-zero knowledge. In 2nd Theory of Cryptog-
raphy Conference (TCC), volume 3378 of LNCS, pages 245–263, 2005.

[LT06] A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial behavior in multi-
party computation. In Advances in Cryptology — Crypto 2006, volume 4117 of LNCS,
pages 180–197. Springer, 2006.

[Lys02] A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In Advances in Cryptology — Crypto 2002, volume 2442 of LNCS, pages
597–612. Springer, 2002.

[MRV99] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In 40th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 120–130. IEEE, 1999.

[MS09] S. Miclai and A. Shelat. Truly rational secret sharing. In 6th Theory of Cryptography
Conference (TCC), 2009.

[OPRV09] S. J. Ong, D. Parkes, A. Rosen, and S. Vadhan. Fairness with an honest minority and
a rational majority. In 6th Theory of Cryptography Conference (TCC), 2009. Available
at http://eprint.iacr.org/2008/097.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

A Relating Two Equilibrium Notions

The following claim shows that Definition 4 implies Definition 3. We prove the claim for 2-out-of-2
secret sharing, but it extends easily to the general case.

14

Claim 1 Let Π be a 2-out-of-2 secret-sharing protocol, where σi denotes the prescribed strategy of
player Pi. If Π induces a computational Nash equilibrium that is stable with respect to trembles,
then it induces a computational strict Nash equilibrium.

Proof Assume toward a contradiction that Π does not induce a computational strict Nash
equilibrium. Then P1 (say) can deviate from the protocol without decreasing his utility. Formally,

there exists a ppt strategy ρ1 for which ρ1

Π
6≈ σ1, yet U1(σ1, σ2) ≤ U1(ρ1, σ2) + negl(k). Since

U1(σ1, σ2) = U , it must be that case that P1 outputs the correct secret with all but negligible
probability in an execution of ρ1 against σ2.

Since ρ1

Π
6≈ σ1, there exists a ppt distinguisher D and a constant c such that

Pr[D(1k, view2(ρ1, σ2)) = 1]− Pr[D(1k, view2(σ1, σ2)) = 1] > 1/kc

for infinitely many values of k. Define

p
def= Pr[D(1k, view2(ρ1, σ2)) = 1], p′ def= Pr[D(1k, view2(σ1, σ2)) = 1].

Consider the following strategy ρ2 for player P2, parameterized by δ: with probability (1− δ),
play σ2; with probability δ, run σ2 until the last protocol message is sent and then run D on the
view. If D outputs 1 then output ⊥; otherwise, output whatever is dictated by the protocol.

We have

U1(ρ1, ρ2) = (1− δ) · U1(ρ1, σ2) + δp · U+ + δ · (1− p) · U1(ρ1, σ2)
= (1− δp) · U1(ρ1, σ2) + δp · U+

≥ (1− δp) · U + δp · U+ − negl(k).

On the other hand, let σ′1 be any ppt strategy with σ′1
Π≈ σ1. Then

U1(σ′1, ρ2) ≤ (1− δ) · U1(σ′1, σ2) + δ · (1− p′) · U1(σ′1, σ2) + δ · p′ · U+

≤ (
1− δp′

) · U + δp′ · U+.

So
U1(ρ1, ρ2)− U1(σ′1, ρ2) = δ · (p− p′) · (U+ − U)− negl(k),

and for any noticeable function δ the difference U1(ρ1, ρ2)− U1(σ′1, ρ2) is not negligible. This con-
tradicts the assumption that Π induces a Nash equilibrium that is stable with respect to trembles.

B Verifiable Random Functions

Definition 5 A verifiable random function (VRF) with range R = {Rk} is a tuple of probabilistic
polynomial-time algorithms (Gen, Eval, Prove, Vrfy) such that the following hold:

Correctness: For all k, any (pk, sk) output by Gen(1k), the algorithm Evalsk maps k-bit inputs
to the set Rk. Furthermore, for any x ∈ {0, 1}k we have Vrfypk (x,Evalsk(x),Provesk(x)) = 1.

Verifiability: For all (pk, sk) output by Gen(1k), there does not exist a tuple (x, y, y′, π, π′) with
y 6= y′ and Vrfypk(x, y, π) = 1 = Vrfypk(x, y′, π′).

15

Unique proofs: For all (pk, sk) output by Gen(1k), there does not exist a tuple (x, y, π, π′) with
π 6= π′ and Vrfypk(x, y, π) = 1 = Vrfypk(x, y, π′).

Pseudorandomness: Consider the following experiment involving an adversary A:

1. Generate (pk, sk) ← Gen(1k) and give pk to A.

2. A adaptively queries a sequence of strings x1, . . . , x` ∈ {0, 1}k and is given yi = Evalsk(xi)
and πi = Provesk(xi) in response to each such query xi.

3. A outputs a string x ∈ {0, 1}k subject to the restriction x 6∈ {x1, . . . , x`}.
4. A random bit b ← {0, 1} is chosen. If b = 0 then A is given y = Evalsk(x); if b = 1 then
A is given a random y ←Rk.

5. A makes more queries as in step 2, as long as none of these queries is equal to x.

6. At the end of the experiment, A outputs a bit b′. We say A succeeds if b′ = b.

We require that for any ppt adversary A, the success probability of A is 1
2 + negl(k). ♦

C Proof of Theorem 1

We must first show that Π is a valid secret-sharing scheme. The secrecy property will follow from
the proof that the reconstruction phase is a computational Nash equilibrium: if secrecy did not
hold then computing the secret locally and not participating in the reconstruction phase at all
would be a profitable deviation. We therefore focus on correctness. Assuming both parties run the
protocol honestly, the correct secret is reconstructed unless:

• i∗ ≥ 2k − 1.

• For some i < i∗ + 1, either signal1 = Eval′sk′2(i) or signal2 = Eval′sk′1(i).

The first event occurs with negligible probability. Pseudorandomness of the VRF easily implies
that the latter two events happen with only negligible probability as well.

We next prove that Π induces a computational Nash equilibrium. Assume P2 follows the
strategy σ2 as prescribed by the protocol, and let σ′1 denote any probabilistic polynomial-time
strategy followed by P1. (The other case, where P1 follows the protocol and we look at deviations
by P2, follows similarly with an even simpler proof.) In a given execution of the reconstruction
phase, let i denote the iteration, if any, in which P1 aborts; if P1 never aborts then we set i = ∞.
Let early be the event that i < i∗; let exact be the event that i = i∗; and let late be the event
that i > i∗. Let correct be the event that P1 outputs the correct secret s. We will consider the
probabilities of these events in two experiments: the experiment defined by running the actual
secret-sharing scheme, and a second experiment where P1 is given share1, signal1 chosen uniformly
at random from the appropriate ranges. Probabilities in the first experiment will be denoted by
Prreal[·], and probabilities in the second experiment will be denoted by Prideal[·]. We have

U1(σ′1, σ2) (2)
≤ U+ · Prreal[exact] + U+ · Prreal[correct ∧ early] + U− · Prreal[correct ∧ early] + U · Prreal[late],

using the fact (as discussed in the intuition preceding the theorem) that whenever late occurs P2

outputs the correct secret s. Since when both parties follow the protocol P1 gets utility U , we need
to show that there exists a negligible function ε such that U1(σ′1, σ2) ≤ U + ε(k). This is proved by
the following claims.

16

Claim 2 There exists a negligible function ε such that

|Prreal[exact]− Prideal[exact]| ≤ ε(k)
|Prreal[late]− Prideal[late]| ≤ ε(k)

|Prreal[correct ∧ early]− Prideal[correct ∧ early]| ≤ ε(k)
|Prreal[correct ∧ early]− Prideal[correct ∧ early]| ≤ ε(k).

Proof This follows easily from the pseudorandomness of the VRFs.

Let abort be the event that P1 aborts before iteration i∗ + 1 (so abort = exact ∨ early). Define

Uideal
def= U+ · Prideal[exact ∧ abort] + U+ · Prideal[correct ∧ early ∧ abort]

+ U− · Prideal[correct ∧ early ∧ abort] + U · Prideal[late].

Claim 2 shows that |U1(σ′1, σ2)− Uideal| ≤ ε(k) for some negligible function ε. It remains to bound
Uideal. Information-theoretically, we have

Prideal[exact | abort] = β and Prideal[correct | early] =
1
|S| ;

therefore,

Uideal = U+ ·
(

β · Prideal[abort] +
1
|S| · (1− β) · Prideal[abort]

)

+ U− ·
(

1− 1
|S|

)
(1− β) · Prideal[abort] + U · (1− Prideal[abort])

= U +
(

U+ ·
(

β +
1
|S| · (1− β)

)
+ U− ·

(
1− 1

|S|
)

(1− β)− U

)
· Prideal[abort]

= U +
(
β · U+ + (1− β) · Urandom − U

) · Prideal[abort] ≤ U (3)

using the fact that β · U+ + (1− β) · Urandom − U < 0. This completes the proof that Π induces a
computational Nash equilibrium.

To complete the proof, we show that Π induces a computational Nash equilibrium stable with
respect to trembles. This part of the proof relies heavily on the uniqueness property of the VRFs. In
particular, the uniqueness property implies that in each iteration each party has a unique message
it can send that will not be treated as an abort.

Let δ be a parameter we will fix later. Let ρ2 denote any ppt strategy for P2 that is δ-close
to σ2, and let ρ1 be an arbitrary ppt strategy for P1. We show the existence of a ppt strategy σ′1
satisfying the requirements of Definition 2. (Once again we focus on deviations by P1 but the case
of P2 is analogous.)

Say an iteration-i message (y(i)
2 , π

(i)
2 , z

(i)
2 , π̄

(i)
2) from P2 represents an abort if Vrfypk2

(i, y(i)
2 , π

(i)
2) =

0 or Vrfy′pk′2
(i, z(i)

2 , π̄
(i)
2) = 0. Say P2 aborts if it sends nothing or sends a message representing an

abort. (These notions are defined analogously for P1.) Strategy σ′1 is defined as follows:

1. Given input (sk1, sk
′
1, pk2, pk′2, share1, signal1), run ρ1 on this input. Set aborted := 0.

2. In each iteration i:

(a) Receive the iteration-i message mi from P2. If P2 aborts, then set aborted := 1.

17

(b) Give mi to ρ1 and get in response some message m′
i.

(c) If aborted = 1 then forward m′
i to P2; otherwise, compute the response (y(i)

1 , π
(i)
1 , z

(i)
1 , π̄

(i)
1)

as prescribed by Π and send that to P2.

3. If aborted = 0 then output whatever is prescribed by Π; otherwise, output whatever ρ1

outputs.

When σ′1 interacts with σ2, then aborted is never set to 1; thus, σ′1 and σ1 yield equivalent
play with respect to σ2. It remains to show that U1(ρ1, ρ2) ≤ U1(σ′1, ρ2) + ε(k) for some negligible
function ε. Let ρ̂2 denote the “residual strategy” of ρ2; i.e., ρ̂2 is run only with probability δ by ρ2.
In an interaction where P1 follows strategy ρ1, let abort denote the event that P1 aborts before P2

aborts, and let pabort(σ) be the probability of this event when P2 follows strategy σ. We first claim
that the only “advantage” to P1 of playing ρ1 rather than σ′1 arises due to ρ1 aborting first.

Claim 3 U1(ρ1, ρ̂2)− U1(σ′1, ρ̂2) ≤ pabort(ρ̂2) · (U+ − U−).

Proof Note that abort is well-defined in the interaction of σ′1 with ρ̂2 since σ′1 runs a copy of ρ1

as a sub-routine. When abort does not occur, there are two possibilities: neither ρ1 nor P2 ever
aborts, or P2 aborts first. We consider these in turn:

• When neither ρ1 nor P2 aborts, the output of P2 is unchanged whether P1 is running σ′1 or
ρ1. Furthermore, the output of P1 when running σ′1 is equal to the correct secret. Thus, the
utility of P1 when running σ′1 is at least the utility of P1 when running ρ1.

• If P2 aborts first, the outputs of both P1 and P2 will be identical regardless of whether P1

runs σ′1 or ρ1; this follows because as soon as P2 aborts, strategy σ′1 “switches” to playing
strategy ρ1.

So, the utility obtained by playing σ′1 can only possibly be less than the utility obtained by playing
ρ1 when abort occurs. The maximum difference in the utilities in this case is U+ − U−.

The next claim shows that abort occurs at least as often when ρ1 interacts with σ2 as when ρ1

interacts with ρ̂2.

Claim 4 pabort(σ2) ≥ pabort(ρ̂2).

Proof To see this, consider some view of ρ1 on which it aborts first when interacting with ρ̂2.
(The view includes both the information d1 given to ρ1 by the dealer as well as the messages from
P2.) Since ρ1 aborts first and, in every iteration, there is a unique non-aborting message that
P2 can send, it follows that ρ1 will also abort when interacting with σ2 (who never aborts first)
whenever ρ1 is given d1 from the dealer. The claim follows.

Define U∗ def= β · U+ + (1− β) · Urandom and recall that U∗ < U by assumption. Now,

U1(ρ1, ρ2) = (1− δ) · U1(ρ1, σ2) + δ · U1(ρ1, ρ̂2)
≤ (1− δ) · (U + (U∗ − U) · pabort(σ2)

)
+ δ · U1(ρ1, ρ̂2) + negl(k),

using Equation (3). Also,

U1(σ′1, ρ2) = (1− δ) · U1(σ′1, σ2) + δ · U1(σ′1, ρ̂2)
= (1− δ) · U + δ · U1(σ′1, ρ̂2) .

18

It follows that

U1(ρ1, ρ2)− U1(σ′1, ρ2)
= (1− δ) · (U∗ − U) · pabort(σ2) + δ · (U1(ρ1, ρ̂2)− U1(σ′1, ρ̂2)

)
+ negl(k)

≤ (1− δ) · (U∗ − U) · pabort(ρ̂2) + δ · (U+ − U−) · pabort(ρ̂2) + negl(k) ,

using Claims 3 and 4. Since U∗ − U is strictly negative, δ > 0 can be found for which the above
expression is negligible for k large enough. This completes the proof.

D The t-out-of-n Case

D.1 Game-Theoretic Definitions for the Case of Coalitions

We view a coalition C as a set of parties who may coordinate their strategies in an arbitrary way.
Since the coalition acts in unison, we treat the utility of the coalition as a whole and, in particular,
view the coalition as having only a single output value (rather than viewing each member of the
coalition as potentially outputting a different value). Let µC(·) denote the utility of the coalition C.
As before, we assume the following utilities:

1. If o is an outcome in which C learns the secret and no player outside C does, then µC(o) = U+.

2. If o is an outcome in which all parties active during the reconstruction phase (including C)
learn the secret, then µC(o) = U .

3. If o is an outcome in which C does not learn the secret, then µC(o) = U−.

If ~σ = (σC , ~σ−C) then UC(~σ) denotes the expected utility of C when parties in C follow σC and every
other party Pi follows σi.

As for the 2-out-of-2 case, we assume that a coalition has an incentive to run the protocol rather
than just output a random value. Thus, we continue to assume that Urand < U , where Urand is
defined in (1). This implies that there exists a β > 0 such that

β · U+ + (1− β) · Urand < U . (4)

We adapt the definitions from Section 2.3, specialized to the case of coalitions. Throughout
this section, Π denotes a t-out-of-n secret-sharing scheme and σi denotes the prescribed actions of
Pi during the reconstruction phase.

Definition 6 Π induces an r-resilient computational Nash equilibrium if for any t∗ ≥ t, any set
I = {i1, . . . , it∗} of size t∗, any C ⊂ I with |C| ≤ r, and any ppt strategy σ′C we have that
Ui(σ′C , ~σ−C) ≤ Ui(~σ) + negl(k). ♦

Definition 7 Π induces an r-resilient computational strict Nash equilibrium if

1. Π induces an r-resilient computational Nash equilibrium;

2. For any t∗ ≥ t, any set I = {i1, . . . , it∗}, any C ⊂ I with |C| ≤ r, and any ppt strategy σ′C for

which σ′C
Π
6≈ {σi}i∈C , there is a c > 0 such that Ui(~σ) ≥ Ui(σ′C , ~σ−C) + 1/kc for infinitely many

values of k.

19

♦

Definition 8 Π induces an r-resilient computational Nash equilibrium stable with respect to trem-
bles if

1. Π induces an r-resilient computational Nash equilibrium;

2. There is a noticeable function δ such that for any t∗ ≥ t, any set I = {i1, . . . , it∗}, any C ⊂ I
with |C| ≤ r, any vector of ppt strategies ~ρ−C that is δ-close to ~σ−C , and any ppt strategy

ρC , there exists a ppt strategy σ′C
Π≈ {σi}i∈C such that Ui(ρC , ~ρ−C) ≤ Ui(σ′C , ~ρ−C) + negl(k).♦

D.2 Proof of Theorem 2

We re-state the theorem for convenience.

Theorem 3 Protocol Πt,n (cf. Figure 2) with β satisfying (4) induces a (t− 1)-resilient computa-
tional Nash equilibrium stable with respect to trembles, as long as exactly t parties are active during
the reconstruction phase. (That is, it satisfies Definition 8 when t∗ = t.)

Proof Assume there are t active players I := {i1, . . . , it}. Let C ⊂ I with |C| ≤ t− 1.
We say that a player sends a bad message to another player if either he does not send anything

or at least one of the proofs is invalid. Let σ′C be an arbitrary ppt strategy, and in an execution
of the protocol let r be the round where the first player in C sends a bad message to a player in
C = I \C. Let Prreal[·] refer to the probability of events in an execution of the actual secret-sharing
scheme. Let early be the event that r < r∗, let exact be the event that r = r∗, and let late be the
event that r > r∗. Let correct be the event that C outputs the correct secret. We have

UC(σ′C , ~σ−C)
≤ U+ · Prreal[exact] + U+ · Prreal[correct ∧ early] + U− · Prreal[correct ∧ early] + U · Prreal[late],

using the fact that when r > r∗ all players learn the secret.
Let Prideal[·] denote the probabilities in an experiment in which the coalition is given random

values for {gj , hj}1≤j≤n.

Claim 5 There exists a negligible function ε such that:

|Prreal[exact]− Prideal[exact]| ≤ ε(k)
|Prreal[late]− Prideal[late]| ≤ ε(k)

|Prreal[correct ∧ early]− Prideal[correct ∧ early]| ≤ ε(k)
|Prreal[correct ∧ early]− Prideal[correct ∧ early]| ≤ ε(k).

Proof We consider the coalition’s knowledge after receiving all other parties’ messages in some
iteration r ≤ r∗ (with y

(r)
i = Evalski(r) and z

(r)
i = Eval′sk′i(r)):

Their shares (for j ∈ [n]) gj = G(j)⊕ y
(r∗)
j , hj = H(j)⊕ z

(r∗+1)
j

Their own VRF values (i ∈ C) y
(1)
i , z

(1)
i , . . . , y

(r)
i , z

(r)
i , y

(r+1)
i , z

(r+1)
i , . . .

The received values (j ∈ I \ C) y
(1)
j , z

(1)
j , . . . , y

(r)
j , z

(r)
j

20

The claim follows from the fact that G is a random polynomial (since s is chosen at random) and
pseudorandomness of the VRF.

Define abort
def= exact ∨ early. Define

Uideal
def= U+ · Prideal[exact ∧ abort] + U+ · Prideal[correct ∧ early ∧ abort]

+ U− · Prideal[correct ∧ early ∧ abort] + U · Prideal[late].

In the ideal setting, the coalition has (information theoretically) no information on the secret,
so if the coalition aborts prior to round r∗ it correctly guesses the secret with probability at most
1
|S| . Moreover Prideal[exact | abort] = β. We thus have

Uideal ≤ U+ · β · Prideal[abort] + Urand · (1− β) · Prideal[abort] + U · (1− Prideal[abort])
= U +

(
β · U+ + (1− β) · Urand − U

) · Prideal[abort] (5)
≤ U

by the choice of β satisfying (4). This completes the proof that Π induces a (t − 1)-resilient
computational Nash equilibrium.

To prove resistance to trembles, we show that there is a constant δ > 0 such that

∀ I = {i1, . . . , it} ∀ C ⊂ I (|C| ≤ t− 1) ∀ ~σ′−C (δ-close to ~σ−C) ∀ ρC ∃ σ′C :

σ′C
Π≈ σC ∧ UC(ρC , ~σ′−C) ≤ UC(σ′C , ~σ

′
−C) + negl(k).

Let ρC be an arbitrary coordinated strategy of C. Let ~σ′−C be a strategy for C = I \C that is δ-close
to the prescribed strategy ~σ−C ; this means that with probability (1− δ), all players Pi with i ∈ C
run σi. Let ~ρ−C be their “residual strategies”; i.e., the strategies that the play (with probability δ)
when not running σ−C .

We say that a player aborts if he sends a bad message to any other player.

Claim 6 Given the players’ inputs from the dealer, there is only one possible execution of the
reconstruction protocol in which no player aborts.

Proof This follows immediately from the uniqueness property of the VRFs.

We define strategy σ′C as follows:

• σ′C simulates ρC in the background; i.e., every message received from outside the coalition is
given to it.

• C follows the prescribed strategy σC until the point it receives the first bad message from a
player in C. σ′C then switches to ρC .

Observe that when interacting with ~σ−C , strategies σ′C and σC yield equivalent play; i.e., σ′C
Π≈ σC .

For any strategy ~τ−C , let abort(~τ−C) denote the event following event: when C plays ρC and
C plays ~τ−C , then a player from C sends a bad message to someone in C before C receives a bad
message; let pabort(~τ−C) be the probability of abort(~τ−C).

Claim 7 UC(ρC , ~ρ−C) − UC(σ′C , ~ρ−C) ≤ pabort(~ρ−C) ·
(
U+ − Umin), where Umin is the minimum

value µC′ takes for any C′.

21

Proof U+ is the maximum utility, so U+−Umin is an upper bound for any difference of utilities.
It suffices thus to prove that in the event of abort(~ρ−C), we have

UC(ρC , ~ρ−C) ≤ UC(σ′C , ~ρ−C)

Consider the case where C never sends or receives a bad message. It follows from Claim 6 that ρC
and σ′C look the same to C. Moreover in an execution without abort, running σ′C makes C output
the secret, which is optimal.

Assume that a player in C sends a bad message to C before ρC would send one. In this case, σ′C
switches to ρC . Since there is only one possible set of messages sent so far (ρC did not send bad
messages yet!), this means that the execution is equivalent to one where C played ρC from start.
The two utilities are thus equivalent.

Claim 8 pabort(~ρ−C) ≤ pabort(~σ−C)

Proof We show that each time ρC makes a party in C send the first bad message when playing
against ~ρ−C , this would also have happened against ~σ−C . Due to Claim 6, and the fact that no bad
messages were sent from C to C yet, ~ρ−C must have sent the same messages to C as ~σ−C , which
never aborts first.

Let U∗ := β · U+ + (1− β) · Urand, which is strictly greater than U by (4). From (5) we have

UC(ρC , ~σ−C) ≤ U + (U∗ − U) · pabort(~σ−C) + ε(k) .

Thus,

UC(ρC , ~σ′−C) ≤ (1− δ) ·
(
U + (U∗ − U) · pabort(~σ−C) + ε(k)

)
+ δ · UC(ρC , ~ρ−C).

Moreover, UC(σ′C , ~σ−C) = UC(σC , ~σ−C) = U implies

UC(σ′C , ~σ
′
−C) = (1− δ) · U + δ · UC(σ′C , ~ρ−C).

Putting it all together, we get

UC(ρC , ~σ′−C)− UC(σ′C , ~σ
′
−C)

≤ (1− δ) · (U∗ − U) · pabort(~σ−C) + δ · (UC(ρC , ~ρ−C)− UC(σ′C , ~ρ−C)
)

+ ε(k)
≤ (1− δ) · (U∗ − U) · pabort(~ρ−C) + δ · (U+ − Umin) · pabort(~ρ−C) + ε(k),

using Claims 7 and 8. Setting δ = −(U∗−U)
U+−Umin−(U∗−U)

, which is strictly positive as U∗ − U is strictly
negative, the above is negligible.

D.3 The Asynchronous Case

We begin with a few technical notes as to how we model the asynchronous setting:

1. As is standard in the asynchronous setting, we allow messages to be delayed and to be
delivered in arbitrary order, but we assume eventual message delivery. (I.e., a message sent
from one party to another will be received by time t = ∞.)

22

Sharing Phase

The sharing phase is identical to protocol Πt,n in Figure 2.

Reconstruction Phase

Let I denote the set of the indices of the t active players. Each party Pi (for i ∈ I) chooses s
(0)
i

uniformly from {0, 1}` and writes it on its output tape. For r = 1, . . ., party Pi does:

• Pi sends the following to all players:

(
y
(r)
i := Evalski(r), z

(r)
i := Eval′sk′i

(r), Proveski(r), Prove′sk′i
(r)

)
.

• If Pi receives an incorrect proof from some other party Pj , then Pi terminates. (Note that
if this occurs then the value s

(r−1)
i is written on its output tape.) Otherwise, as soon as Pi

receives t− 1 valid messages for iteration r it does:

– Pi sets h
(r)
j := hj ⊕ z

(r)
j for all j ∈ I, and interpolates a degree-(t− 1) polynomial H(r)

through the t points {h(r)
j }j∈I . If H(r)(0) = 0 then Pi writes the value s

(r−1)
i to its

output tape and terminates.

– Otherwise, Pi sets g
(r)
j := gj ⊕ y

(r)
j for all j ∈ I, and interpolates a degree-(t − 1)

polynomial G(r) through the points {g(r)
j }j∈I . It writes the value s

(r)
i := G(r)(0) to its

output tape and proceeds to the next iteration.

Figure 3: Protocol Π′t,n for “exactly t-out-of-n” secret sharing in the asynchronous case.

2. We define an outcome o by the values recorded on the output tapes of the players at time
t = ∞. In particular, it does not matter whether a party has halted or not; all that matters
is the value written on its output tape (see the next item). This is essential, as even parties
who follow the protocol honestly will not output the correct secret in any fixed time bound,
and a party who deviates from the protocol can cause an honest party to never halt.

3. Due to the above, we allow parties to write a value to their output tape multiple times. Again,
though, we stress that the value that “counts” as far as defining the outcome o is the value
on a party’s output tape at time t = ∞)

4. When considering possible deviations by a coalition C, we allow C to schedule message delivery
in the network (subject to constraint in item 1, above). The definition of “yielding equivalent
play” (cf. Definition 2), however, still refers only to protocol messages sent by C and not to
the way message delivery is scheduled. (We cannot hope to claim that if C changes the order
of message delivery then its utility decreases.)

With this in mind, we present protocol Π′t,n for the asynchronous case in Figure 3. The protocol
is mostly identical to protocol Πt,n (cf. Figure 2) except with regard to how aborts are handled.

We now sketch the proof that this protocol induces a (t − 1)-resilient computational Nash
equilibrium whenever exactly t parties are active in the reconstruction phase. (A formal proof
of this fact, as well as a proof that the protocol induces a (t − 1)-resilient computational Nash
equilibrium stable with respect to trembles, will appear in the full version.) Assume some set of t
parties I running the reconstruction phase, and consider some coalition C ⊂ I of size at most t− 1.
Let P ∗ denote the player in I who is not in C. As usual, the best strategy for C is to wait until it can
definitively identify iteration r∗, which occurs only after it receives the iteration-(r∗ + 1) message

23

from P ∗. But P ∗ only sends its iteration-(r∗ + 1) message after it has received (valid) iteration-r
messages from all the parties in C. By this point, no matter what the parties in C do, P ∗ has the
correct secret s written on its output tape.

24

