
Efficient Rational Secret Sharing in Standard

Communication Networks

Georg Fuchsbauer∗ Jonathan Katz† Eric Levieil∗ David Naccache∗

Abstract

We propose a new methodology for rational secret sharing leading to various instantiations
that are simple and efficient in terms of computation, share size, and round complexity. Our
protocols do not require physical assumptions or simultaneous channels, and can even be run
over asynchronous, point-to-point networks.

Of additional interest, we propose new equilibrium notions for this setting (namely, compu-
tational versions of strict Nash equilibrium and stability with respect to trembles) and prove that
our protocols satisfy them.

1 Introduction

The classical problem of t-out-of-n secret sharing [27, 5] involves a dealer D who distributes shares
of a secret s to a group of n players P1, . . . , Pn so that (1) any group of t or more players can
reconstruct the secret without further involvement of the dealer, yet (2) any group of fewer than t
players cannot recover the secret. For example, in Shamir’s scheme [27] the secret s lies in a finite
field F, with |F| > n. The dealer chooses a random polynomial f(x) of degree at most t − 1 with
f(0) = s, and gives each player Pi the “share” f(i). To reconstruct the secret s, any t players
simply broadcast their shares and interpolate the polynomial. On the other hand, any set of fewer
than t players has no information about s given their shares.

The implicit assumption in the original formulation of the problem is that each party is either
honest or corrupt, and honest parties are all willing to cooperate when reconstruction of the secret
is desired. Beginning with the work of Halpern and Teague [12], protocols for secret sharing and
other cryptographic tasks have begun to be re-evaluated in a game-theoretic light (see [7, 15] for
an overview of work in this direction). In this setting, parties are neither honest nor corrupt but
are instead viewed as rational and are assumed (only) to act in their own self-interest.

Under natural assumptions regarding the utilities of the parties, standard secret-sharing schemes
completely fail. For example, assume as in [12] that all players want to learn the secret above all
else, but otherwise prefer that no other players learn the secret. (Later, we will treat the utilities of
the players more precisely.) For t parties to reconstruct the secret in Shamir’s scheme, each party

∗École Normale Supérieure, LIENS -CNRS - INRIA, Paris, France. Email: {georg.fuchsbauer, eric.levieil,

david.naccache}@ens.fr. The first author is supported by EADS, the French ANR-07-SESU-008-01 PAMPA
Project, and the European Commission through the IST Program under Contract ICT-2007-216646 ECRYPT II.

†University of Maryland, USA. Email: jkatz@cs.umd.edu. Work done while visiting ENS and IBM, and supported
by NSF CyberTrust grant #0830464, NSF CAREER award #0447075, and DARPA. The contents of this paper do
not necessarily reflect the position or the policy of the US Government, and no official endorsement should be inferred.

1

is supposed to broadcast their share simultaneously. It is easy to see, however, that each player
is better off withholding their share no matter what the other players do. Consider P1: If fewer
than t− 1 other players reveal their shares, then P1 does not learn the secret regardless of whether
P1 reveals his share or not. If more than t − 1 other players reveal their shares, then everyone
learns the secret and P1’s actions again have no effect. On the other hand, if exactly t − 1 other
players reveal their shares, then P1 learns the secret (using his share) but prevents other players
from learning the secret by not publicly revealing his own share. The result is that if all players
are rational then no one will broadcast their share and the secret will not be reconstructed.

A series of recent works [12, 10, 23, 1, 17, 18, 26, 25, 4] has focused on designing rational secret-
sharing protocols immune to the above problem. Protocols for rational secret sharing also follow
from the more general results of Lepinski et al. [19, 20, 14, 13]. Each of these works has some or
all of the following disadvantages:

On-line dealer or trusted/honest parties. Halpern and Teague [12] introduced a general
approach to solving the problem that has been followed in most subsequent work. Their solution,
however, requires the continual involvement of the dealer, even after the initial shares have been
distributed. The solution proposed by Halpern and Teague also applies only when t, n ≥ 3.

Recent work of [13, 25] requires the involvement of some (minimally trusted) external parties
during the reconstruction phase. Ong et al. [26] assume that sufficiently many parties behave
honestly during the reconstruction phase.

Computational inefficiency. To eliminate the on-line dealer, several researchers [10, 23, 1, 17]
have suggested solutions that rely on multiple invocations of protocols for generic secure multi-
party computation. Because the function being computed by these protocols is complex, it is
unclear whether computationally efficient protocols with suitable functionality can be designed.
The solutions of [19, 20, 14, 13], though following a different high-level approach, also rely on
generic secure multi-party computation.

Non-standard communication models. The solutions in [12, 10, 23, 1] assume simultaneous
broadcast which means that parties must decide on what value (if any) to broadcast in a given round
before observing the values broadcast by other parties. The solutions of [19, 20, 14] rely on phys-
ical assumptions such as secure envelopes and ballot boxes. Secure envelopes imply simultaneous
broadcast (but not vice versa) and hence represent a strictly stronger class of assumptions.

Kol and Naor [17] show how to avoid simultaneous broadcast, at the cost of increasing the
round complexity by a (multiplicative) factor linear in the size of the domain from which the secret
is chosen; their approach thus has super-polynomial complexity for secrets of super-logarithmic
length. Subsequent work by Kol and Naor [18] (see also [4]) shows how to avoid the assumption
of simultaneous broadcast at the expense of increasing the round complexity by a (multiplicative)
factor of t. We provide a detailed comparison of our results to those of [18] in Section 1.2.1.

As far as we are aware, all prior schemes for n > 2 assume the existence of broadcast (whether
simultaneous or not).

1.1 Our Results

Our solutions do not suffer from any of the drawbacks mentioned above. We do not assume
an on-line dealer or any trusted/honest parties, nor do we resort to generic secure multi-party
computation. Our protocols are (arguably) simpler than previous solutions; they are also extremely
efficient in terms of round complexity, share size, and required computation. Although our protocols

2

do not require simultaneous channels (as discussed below), the efficiency advantages of our protocols
hold even in comparison to prior work that does require simultaneous channels.

As an added benefit, our protocols also do not require simultaneous communication but can
instead rely on synchronous (but non-simultaneous) point-to-point channels. To the best of our
knowledge, all prior schemes for n > 2 assume broadcast (whether simultaneous or not); note that
the obvious approach of simulating broadcast by running a broadcast protocol over a point-to-point
network will not, in general, work in the rational setting. Moreover, we show that our protocol can
be adapted to work even in asynchronous point-to-point networks. We thus answer a question that
had been open since the work of Halpern and Teague [12].

As an independent contribution, we also introduce two new equilibrium notions and prove
that our protocols satisfy them. (A discussion of game-theoretic equilibrium notions used in this
and prior work is given in Section 2.2. We stress that our protocol also satisfies the notion of
“surviving iterated deletion” considered in other work [12, 10].) The first notion we introduce
is a computational version of strict Nash equilibrium. A similar notion was propounded by Kol
and Naor [18], but they used an information-theoretic version of strict Nash and showed some
inherent limitations of doing so. As in all of cryptography, we believe computational relaxations
are meaningful and should be considered; this also allows us to circumvent the limitations that
hold in the information-theoretic case.

Motivated by [15], we also formalize a notion of stability with respect to trembles; a different
formalization of this notion, with somewhat different motivation, is given in [26].

An interesting feature of our definitions is that they effectively rule out “signalling” via sub-
liminal channels in the protocol. In fact, at every point in our protocols there is a unique legal
message each party can send. This prevents a party from outwardly appearing to follow the protocol
while subliminally communicating (or trying to organize collusion) with other parties. Preventing
subliminal communication is an explicit goal of some prior work (e.g., [14, 20, 3, 2]), which achieved
it only by relying on non-standard communication models.

1.2 Overview of Our Approach

We follow the same high-level approach as in [12, 10, 23, 1, 17, 18, 4]. Our reconstruction protocol
proceeds in a sequence of “fake” iterations followed by a single “real” iteration. Roughly speaking,
these satisfy the following requirements:

• In the real iteration, everyone learns the secret (assuming everyone follows the protocol).

• In a fake iteration, no information about the secret is revealed.

• No party can tell, in advance, whether the next iteration will be real or fake.

The iteration number i∗ of the real iteration is chosen according to a geometric distribution with
parameter β ∈ (0, 1) (where β depends on the players’ utilities). To reconstruct the secret, parties
run a sequence of iterations until the real iteration is identified, at which point all parties output
the secret. If some party fails to follow the protocol, all parties abort. Intuitively, it is rational
for Pi to follow the protocol as long as the expected gain of deviating, which is positive only if Pi

aborts exactly in iteration i∗, is outweighed by the expected loss if Pi aborts before iteration i∗.
In most prior work [10, 23, 1, 17], a secure multi-party computation was performed in each

iteration to determine whether the given iteration should be real or fake. Instead we use the
following approach, described in the 2-out-of-2 case (we omit some technical details in order to

3

focus on the main idea): The dealer D chooses i∗ from the appropriate distribution in advance, at
the time of sharing. The dealer then generates two key-pairs (vk1, sk1), (vk2, sk2) for a verifiable
random function (VRF) [24], where vk represents a verification key and sk represents a secret
key, and we denote by VRFsk(x) the evaluation of the VRF on input x using secret key sk. (See
Section 2.4 for formal definitions.) The dealer gives the verification keys to both parties, gives sk1

to P1, and gives sk2 to P2. It also gives s1 = s⊕ VRFsk2(i
∗) to P1, and s2 = s⊕ VRFsk1(i

∗) to P2.
Each iteration consists of one message from each party: in iteration i, party P1 sends VRFsk1(i)
while P2 sends VRFsk2(i). Observe that a fake iteration reveals nothing about the secret, in a
computational sense. Furthermore, neither party can identify the real iteration in advance. (The
description above relies on VRFs. We show that, in fact, trapdoor permutations suffice.)

To complete the protocol, we need to provide a way for parties to identify the real iteration.
Previous work allows parties to identify the real iteration as soon as it occurs. We could use this
approach for our protocol as well if we were content to assume simultaneous channel, since then each
party must decide on its current-iteration message before it learns whether the current iteration is
real or fake. When simultaneous channels are not available, however, this approach is vulnerable to
an obvious rushing strategy. Kol and Naor [17, 18] show two different ways to avoid simultaneous
broadcast, but the first applies only for secrets from polynomial-size domains (and yields round
complexity linear in the domain size), while the second yields round complexity linear in t.

Motivated by recent work on fairness (in the malicious setting) [9, 11], we suggest the following,
new approach: delay the signal indicating whether a given iteration is real or fake until the following
iteration. As before, a party cannot risk aborting until it is sure that the real iteration has occurred;
the difference is that now, once a party learns that the real iteration occurred, the real iteration is
over and all parties can reconstruct the secret. This eliminates the need for simultaneous channels,
while adding only a single round. This approach can be adapted for t-out-of-n secret sharing and
can be shown to work even when parties communicate over asynchronous, point-to-point channels.

A drawback of our protocol is that it assumes parties have no auxiliary information about the
secret s. Prior work in the non-simultaneous model [17, 18] shares this disadvantage, and in fact the
results of [4] can be extended to show that this is inherent. (If simultaneous channels are assumed,
then our protocol does tolerate auxiliary information about s as in previous work.)

1.2.1 Comparison to the Kol-Naor Scheme

The only prior rational secret-sharing scheme that assumes no honest parties, is computationally
efficient, and does not require simultaneous broadcast or physical assumptions is that of Kol and
Naor [18]. They also use the strict Nash solution concept and so their work provides an especially
good point of comparison. Our protocols have the following advantages with respect to theirs:
Share size. In the Kol-Naor scheme, the shares of the parties have unbounded length. While
not a significant problem in its own right, this is problematic when rational secret sharing is used
as a sub-routine for rational computation of general functions. (See [17].) Moreover, the expected
length of the parties’ shares in their scheme is large: in the 2-out-of-2 case, shares of a secret s have
expected size O(β−1 · (|s|+ k)) in the Kol-Naor scheme (where k is a security parameter), whereas
shares in our scheme have size |s|+ O(k).
Round complexity. The version of the Kol-Naor scheme that does not rely on simultaneous
broadcast [18, Section 6] has expected round complexity O(β−1 · t), whereas our protocol has
expected round complexity O(β−1). (The value of β is roughly the same in both cases.)

4

Resistance to coalitions. For the case of t-out-of-n secret sharing, the Kol-Naor scheme is
susceptible to coalitions of two or more players. We show t-out-of-n secret-sharing protocols resilient
to coalitions of up to (t− 1) parties; see Section 4 for further details.
Avoiding broadcast. The Kol-Naor scheme for n > 2 assumes synchronous broadcast, whereas
our protocols work even if parties communicate over an asynchronous, point-to-point network.

2 Model and Definitions

We denote the security parameter by k. Let ε : N → R be a function which may take negative
values. We say ε is negligible if for all c > 0 there is a kc > 0 such that ε(k) < 1/kc for all k > kc,
and let negl denote a generic negligible function. We say ε is noticeable if there exist c, kc such that
ε(k) > 1/kc for all k > kc. Note that it is possible for ε to be neither negligible nor noticeable.

We define our model and then describe the game-theoretic concepts used. Even readers familiar
with prior work in this area should skim the next few sections, since we formalize certain aspects
of the problem slightly differently from prior work, and define new equilibrium notions.

2.1 Secret Sharing and Players’ Utilities

A t-out-of-n secret-sharing scheme for domain S (with |S| > 1) is a two-phase protocol carried out
by a dealer D and a set of n parties P1, . . . , Pn. In the first phase (the sharing phase), the dealer
chooses a secret s ∈ S. Based on this secret and a security parameter 1k, the dealer generates
shares s1, . . . , sn and gives si to player Pi. In the second phase (the reconstruction phase), some
set I of t∗ ≥ t active parties jointly reconstruct s. We impose the following requirements:

Secrecy: The shares of any t−1 parties reveal nothing about s, in a computational sense. Formally,
for any s0, s1 ∈ S and any i1, . . . , it−1 the following are computationally indistinguishable:

{
(s1, . . . , sn) ← D(1k, s0) : (si1 , . . . , sit−1)

}
and

{
(s1, . . . , sn) ← D(1k, s1) : (si1 , . . . , sit−1)

}
.

Correctness: For any set I of t∗ ≥ t parties who run the reconstruction phase honestly, the correct
secret s will be reconstructed, except possibly with probability negligible in k.

The above views parties as either malicious or honest. To model rationality, we define players’
utilities. Given a set I of t∗ ≥ t parties active during the reconstruction phase, let the outcome o
of the reconstruction phase be a vector of length t∗ with oi = 1 iff the output of Pi is equal to the
initial secret s (i.e., Pi “learned the secret”). We consider a party to have learned the secret s if
and only if it outputs s, and do not care whether that party “really knows” the secret or not. In
particular, a party who outputs a random value in S without running the reconstruction phase at
all “learns” the secret with probability 1/|S|. We model the problem this way for two reasons:

1. Our formulation lets us model a player learning partial information about the secret, some-
thing not reflected in prior work. In particular, partial information that increases the proba-
bility with which a party outputs the correct secret increases that party’s expected utility.

2. It is difficult, in general, to formally model what it means for a party to “really” learn the
secret, especially when considering arbitrary protocols and behaviors. In contrast, in our
definition it is easy to tell whether a player learns the secret by just looking at their output.
Our notion also appears better suited for a computational setting, where a party might “know”
the secret from an information-theoretic point of view, yet be unable to output it.

5

Let µi(o) be the utility of player Pi for the outcome o. Following [12] and most subsequent work
(an exception is [4]), we make the following assumptions about the utility functions of the players:

• If oi > o′i, then µi(o) > µi(o′).

• If oi = o′i and
∑

i oi <
∑

i o
′
i, then µi(o) > µi(o′).

That is, player Pi first prefers outcomes in which he learns the secret; otherwise, Pi prefers strategies
in which the fewest number of other players learn the secret. For simplicity, in our analysis we
distinguish three cases, described from the point of view of Pi (though we stress that we could also
work with utilities satisfying the more general constraints above):

1. If o is an outcome in which Pi learns the secret and no other player does, then µi(o)
def= U+.

2. If o is an outcome in which Pi learns the secret and at least one other player does also, then
µi(o)

def= U .

3. If o is an outcome in which Pi does not learn the secret, then µi(o)
def= U−.

(Note that U+, U, U− are treated as fixed constants, independent of the security parameter.) Our
conditions impose U+ > U > U−. Define

Urandom
def=

1
|S| · U

+ +
(

1− 1
|S|

)
· U− ; (1)

this is the expected utility of a party who outputs a random guess for the secret (assuming other
parties abort without any output, or with the wrong output). We will also assume that U > Urandom;
otherwise, players have (almost) no incentive to run the reconstruction phase at all.

Strategies in our context refer to probabilistic polynomial-time interactive Turing machines.
Given a vector of strategies ~σ for a set of t∗ parties active in the reconstruction phase, we let
Ui(~σ) denote the expected utility of Pi. (Note that the expected utility is a function of the
security parameter k.) This expectation is taken over the initial choice of s (which we will al-
ways assume to be uniform), the dealer’s randomness, and the randomness of the players’ strate-
gies. Following standard game-theoretic notation, define ~σ−i

def= (σ1, . . . , σi−1, σi+1, . . . , σt∗) and
(σ′i, ~σ−i)

def= (σ1, . . . , σi−1, σ
′
i, σi+1, . . . , σt∗); that is, (σ′i, ~σ−i) denotes the strategy vector ~σ with Pi’s

strategy changed to σ′i.

2.2 Notions of Game-Theoretic Equilibria: A Discussion

The starting point for any discussion of game-theoretic equilibria is the Nash equilibrium. Roughly
speaking, a protocol induces a Nash equilibrium if no party gains any advantage by deviating from
the protocol, as long as all other parties follow the protocol. (In a computational Nash equilibrium,
no efficient deviation confers any advantage.) As observed by Halpern and Teague [12], however,
the Nash equilibrium concept is too weak for rational secret sharing. Halpern and Teague suggest,
instead, to design protocols that induce a Nash equilibrium surviving iterated deletion of weakly
dominated strategies; this notion was used in subsequent work of [10, 23, 1].

The notion of surviving iterated deletion, though, is also problematic in several respects. Kol
and Naor [18] show a secret-sharing protocol that is “intuitively bad” yet satisfies the definition
because no strategy weakly dominates any other: for any strategies σ, σ′, there exist (contrived)

6

strategies of the remaining players for which σ is the better strategy, and vice versa. (See [15, 16]
for other arguments against this notion.) Also, a notion of surviving iterated deletion taking
computational issues into account has not yet been defined (and doing so appears difficult).

Motivated by these drawbacks (and more), researchers have recently proposed other strength-
enings of the Nash equilibrium concept [15, 17, 18, 4]. Kol and Naor define the notions of resistance
to backward induction [17], everlasting equilibrium, and strict Nash equilibrium [18]. The latter two
notions are defined in an information-theoretic sense, and are overly conservative in that they rule
out protocols using cryptography; indeed, Kol and Naor state [18] that these equilibrium notions
should be considered sufficient but not necessary. Nevertheless, the notion of strict Nash equilib-
rium is appealing. A protocol is in Nash equilibrium if no deviations are advantageous; it is in
strict Nash equilibrium if all deviations are disadvantageous. Put differently, in the case of a Nash
equilibrium there is no incentive to deviate whereas in the case of a strict Nash equilibrium there
is an incentive not to deviate.

Another advantage of strict Nash is that protocols satisfying this notion deter subliminal com-
munication in the following sense: since any detectable deviation from the protocol results in lower
utility (assuming other parties are following the protocol), a party who tries to use the messages of
the protocol as a covert channel risks a loss in utility as long as there is some reasonable probability
that other players are following the protocol. In fact, our protocols satisfy the following, stronger
condition: at every point in the protocol, there is a unique legal message that a party can send.
Our protocols thus rule out subliminal communication in a strong sense; this was an explicit goal
in work such as [19, 21, 20, 3].

We propose here a computational version of strict Nash equilibrium. We believe our definition
retains the intuitive appeal of strict Nash, while also meaningfully taking computational limitations
into account (and thus enabling the use of cryptography).

We also define a computational notion of stability with respect to trembles. Intuitively, stability
with respect to trembles models players’ uncertainty about other parties’ behavior, and guarantees
that even if a party Pi believes that other parties might play some arbitrary strategy with small
probability δ (but follow the protocol with probability 1 − δ), there is still no better strategy for
Pi than to follow the protocol. Our formulation of this notion follows the general suggestion of
Katz [15], but we flesh out the (non-trivial) technical details. An alternate formulation (trembling-
hand perfect equilibrium), with somewhat different motivation, is discussed in [26].

As should be clear, determining the “right” game-theoretic notions for rational secret sharing
is the subject of ongoing research. We do not suggest that the definitions proposed here are the
only ones to consider, but we do believe they contribute to our understanding of the problem.

2.3 Definitions of Game-Theoretic Equilibria

Here we focus on the two-party case; definitions for the multi-party case, for both single-player
deviations and coalitions, are given in Appendix B. In this section, Π is a 2-out-of-2 secret-sharing
scheme and σi (for i ∈ {1, 2}) denotes the prescribed actions of Pi in the reconstruction phase. We
first define the most basic equilibrium notion for secret sharing.

Definition 1 Π induces a computational Nash equilibrium if for any ppt strategy σ′1 of P1 we have
U1(σ′1, σ2) ≤ U1(σ1, σ2) + negl(k), and similarly for P2. ♦

Our definitions of strict Nash and resistance to trembles require us to first define what it means
to “follow a protocol”. This is non-trivial since a different Turing machine ρ1 might be “functionally

7

identical” to the prescribed strategy σ1 as far as the protocol is concerned: for example, ρ1 may
be the same as σ1 except that it first performs some useless computation; the strategies may be
identical except that ρ1 uses pseudorandom coins instead of random coins; or, the two strategies
may differ in the message(s) they send after the protocol ends. In any of these cases we would like
to say that ρ1 is essentially “the same” as σ1. This motivates the following definition, stated for
the case of a deviating P1 (with an analogous definition for a deviating P2):

Definition 2 Define the random variable viewΠ
2 as follows:

P1 and P2 interact, following σ1 and σ2, respectively. Let trans denote the messages
sent by P1 not including any messages sent by P1 after it writes to its output tape. Then
viewΠ

2 includes the information given by the dealer to P2, the random coins of P2, and
the (partial) transcript trans.

Fix a strategy ρ1 and an algorithm T . Define the random variable viewT,ρ1
2 as follows:

P1 and P2 interact, following ρ1 and σ2, respectively. Let trans denote the messages sent
by P1. Algorithm T , given the entire view of P1, outputs an arbitrary truncation trans′

of trans. (That is, it defines a cut-off point and deletes any messages sent after that
point.) Then viewT,ρ1

2 includes the information given by the dealer to P2, the random
coins of P2, and the (partial) transcript trans′.

Strategy ρ1 yields equivalent play with respect to Π, denoted ρ1 ≈ Π, if there exists a ppt algorithm
T such that for all ppt distinguishers D

∣∣∣Pr[D(1k, viewT,ρ1
2) = 1]− Pr[D(1k, viewΠ

2) = 1]
∣∣∣ ≤ negl(k). ♦

We write ρ1 6≈ Π if ρ1 does not yield equivalent play with respect to Π. Note that ρ1 can yield
equivalent play with respect to Π even if (1) it differs from the prescribed strategy when interacting
with some other strategy σ′2 (we only care about the behavior of ρ1 when the other party runs Π);
(2) it differs from the prescribed strategy in the local computation or output; and (3) it differs
from the prescribed strategy after P1 computes its output. This last point models the fact that we
cannot force P1 to send “correct” messages once, as far as P1 is concerned, the protocol is finished.

We now define the notion that detectable deviations from the protocol decrease a player’s utility.

Definition 3 Π induces a computational strict Nash equilibrium if

1. Π induces a computational Nash equilibrium;
2. For any ppt strategy σ′1 with σ′1 6≈ Π, there is a c > 0 such that U1(σ1, σ2) ≥ U1(σ′1, σ2)+1/kc

for infinitely many values of k (with an analogous requirement for a deviating P2). ♦
We next turn to defining stability with respect to trembles. We say that ρi is δ-close to σi if

ρi takes the following form: with probability 1 − δ party Pi plays σi, while with probability δ it
follows an arbitrary ppt strategy σ′i. (In this case, we refer to σ′i as the residual strategy of ρi.)
The notion of δ-closeness is meant to model a situation in which Pi plays σi “almost always,” but
with some (small) probability plays some other arbitrary strategy.

Intuitively, a pair of strategies (σ1, σ2) is stable with respect to trembles if σ1 (resp., σ2) remains
a best response even if the other party plays a strategy other than σ2 (resp., σ1) with some small
(but noticeable) probability δ. As in the case of strict Nash equilibrium, this notion is difficult to
define formally because of the possibility that one party can do better (in case the other deviates)

8

by performing some local computation.1 Our definition essentially requires that this is the only
way for either party to do better and so, in particular, each party will (at least outwardly) continue
to follow the protocol until the other deviates. Moreover, any (polynomial-time) local computation
performed by either party is of no benefit as long as the other party follows the protocol.

Definition 4 Π induces a computational Nash equilibrium that is stable with respect to trembles if

1. Π induces a computational Nash equilibrium;

2. There is a noticeable function δ such that for any ppt strategy ρ2 that is δ-close to σ2, and any
ppt strategy ρ1, there exists a ppt strategy σ′1 ≈ Π such that U1(ρ1, ρ2) ≤ U1(σ′1, ρ2)+negl(k)
(with an analogous requirement for the case of deviations by P2). ♦

Stated differently, even if a party Pi believes that the other party might play a different strategy
with some small probability δ, there is still no better strategy for Pi than to outwardly follow the
protocol2 (while possibly performing some additional local computation). Moreover, if Π induces
a computational Nash equilibrium then any (polynomial-time) local computation performed by Pi

will not help as long as the other party follows the protocol.

2.4 Verifiable Random Functions (VRFs)

A VRF is a keyed function whose output is “random-looking” but can still be verified as correct,
given an associated proof. The notion was introduced by Micali, Rabin, and Vadhan [24], and
various constructions in the standard model are known [24, 6, 22, 8]. The definition we use is
stronger than the “standard” one in that it includes a uniqueness requirement on the proof as
well, but the constructions of [6, 8] achieve it. (Also, we use VRFs only as a stepping stone to our
construction based on trapdoor permutations.)

Definition 5 A verifiable random function (VRF) with range R = {Rk} is a tuple of probabilistic
polynomial-time algorithms (Gen, Eval, Prove, Vrfy) such that the following hold:

Correctness: For all k, any (pk, sk) output by Gen(1k), the algorithm Evalsk maps k-bit inputs
to the set Rk. Furthermore, for any x ∈ {0, 1}k we have Vrfypk (x,Evalsk(x),Provesk(x)) = 1.

Verifiability: For all (pk, sk) output by Gen(1k), there does not exist a tuple (x, y, y′, π, π′) with
y 6= y′ and Vrfypk(x, y, π) = 1 = Vrfypk(x, y′, π′).

Unique proofs: For all (pk, sk) output by Gen(1k), there does not exist a tuple (x, y, π, π′) with
π 6= π′ and Vrfypk(x, y, π) = 1 = Vrfypk(x, y, π′).

Pseudorandomness: Consider the following experiment involving an adversary A:

1. Generate (pk, sk) ← Gen(1k) and give pk to A. Then A adaptively queries a sequence of
strings x1, . . . , x` ∈ {0, 1}k and is given yi = Evalsk(xi) and πi = Provesk(xi) in response
to each such query xi.

2. A outputs a string x ∈ {0, 1}k subject to the restriction x 6∈ {x1, . . . , x`}.
1As a trivial example, consider the case where with probability δ one party just sends its share to the other.
2Specifically, for any strategy ρi that does not yield equivalent play w.r.t. Π, there exists a strategy σ′i that does

yield equivalent play w.r.t. Π and performs essentially as well.

9

3. A random bit b ← {0, 1} is chosen. If b = 0 then A is given y = Evalsk(x); if b = 1 then
A is given a random y ←Rk.

4. A makes more queries as in step 2, as long as none of these queries is equal to x.

5. At the end of the experiment, A outputs a bit b′. We say A succeeds if b′ = b.

We require that for any ppt adversary A, the success probability of A is 1
2 + negl(k). ♦

3 Rational Secret Sharing: The 2-out-of-2 Case

Let S = {0, 1}` be the domain of the secret, where ` may depend on the security parameter k. Let
(Gen, Eval, Prove, Vrfy) be a VRF with range {0, 1}`, and let (Gen′, Eval′, Prove′, Vrfy′) be a VRF
with range {0, 1}k. Protocol Π is defined as follows:

Sharing phase: Let s denote the secret. The dealer chooses an integer i∗ ∈ N according to a
geometric distribution with parameter β, where β is a constant that depends on the players’ utilities
but is independent of the security parameter; we discuss how to set β below. We assume i∗ < 2k−1
since this occurs with all but negligible probability. (Technically, if i∗ ≥ 2k − 1 the dealer can just
send a special error message to each party.)

The dealer computes (pk1, sk1), (pk2, sk2) ← Gen(1k) and (pk′1, sk
′
1), (pk′2, sk

′
2) ← Gen′(1k), and:

• share1 := Evalsk2(i
∗)⊕ s and share2 := Evalsk1(i

∗)⊕ s;

• signal1 := Eval′sk′2(i
∗ + 1) and signal2 := Eval′sk′1(i

∗ + 1).

Finally, the dealer gives to P1 the values (sk1, sk
′
1, pk2, pk′2, share1, signal1), and gives to P2 the

values (sk2, sk
′
2, pk1, pk′1, share2, signal2).

Reconstruction phase

At the outset of this phase, P1 chooses s
(0)
1 uniformly from S = {0, 1}` and P2 chooses s

(0)
2 the same

way. Then in each iteration i = 1, . . ., the parties do the following:

(P2 sends message to P1:) P2 computes y
(i)
2 := Evalsk2(i), π

(i)
2 := Provesk2(i) and z

(i)
2 :=

Eval′sk′2
(i), π̄

(i)
2 := Prove′sk′2

(i). It sends (y(i)
2 , π

(i)
2 , z

(i)
2 , π̄

(i)
2) to P1.

(P1 receives message from P2:) P1 receives (y(i)
2 , π

(i)
2 , z

(i)
2 , π̄

(i)
2) from P2. If P2 does not send

anything, or if Vrfypk2
(i, y(i)

2 , π
(i)
2) = 0 or Vrfy′pk′2

(i, z(i)
2 , π̄

(i)
2) = 0, then P1 outputs s

(i−1)
1 and halts.

If signal1
?= z

(i)
2 then P1 outputs s

(i−1)
1 , send its iteration-i message to P2 (see below), and halts.

Otherwise, it sets s
(i)
1 := share1 ⊕ y

(i)
2 and continues.

(P1 sends message to P2:) P1 computes y
(i)
1 := Evalsk1(i), π

(i)
1 := Provesk1(i) and z

(i)
1 :=

Eval′sk′1
(i), π̄

(i)
1 := Prove′sk′1

(i). It sends (y(i)
1 , π

(i)
1 , z

(i)
1 , π̄

(i)
1) to P2.

(P2 receives message from P1:) P2 receives (y(i)
1 , π

(i)
1 , z

(i)
1 , π̄

(i)
1) from P1. If P1 does not send

anything, or if Vrfypk1
(i, y(i)

1 , π
(i)
1) = 0 or Vrfy′pk′1

(i, z(i)
1 , π̄

(i)
1) = 0, then P2 outputs s

(i−1)
2 and halts.

If signal2
?=z

(i)
1 then P2 outputs s

(i−1)
2 and halts. Otherwise, it sets s

(i)
2 := share2⊕y

(i)
1 and continues.

Figure 1: The reconstruction phase of secret-sharing protocol Π.

10

Reconstruction phase: A high-level overview of the protocol was given in Section 1.1, and we
give the formal specification in Figure 1. The reconstruction phase proceeds in a series of iterations,
where each iteration consists of one message sent by each party. Although these messages could
be sent at the same time (since they do not depend on each other), we do not want to assume
simultaneous communication and therefore simply require P2 to communicate first in each iteration.
(If one were willing to assume simultaneous channels then the protocol could be simplified by having
P2 send Eval′sk′2(i + 1) at the same time as Evalsk2(i), and similarly for P1.)

We give some intuition as to why the reconstruction phase of Π is a computational Nash
equilibrium for an appropriate choice of β. Assume P2 follows the protocol, and consider possible
deviations by P1. (Deviations by P2 are even easier to analyze since P2 goes first in every iteration.)
P1 can abort in iteration i = i∗+1 (i.e., as soon as it receives z

(i)
2 = signal1), or it can abort in some

iteration i < i∗+1. In the first case P1 “knows” that it learned the dealer’s secret in the preceding
iteration (that is, in iteration i∗) and can thus output the correct secret; however, P2 will output
s
(i∗)
2 = s and so learns the secret as well. So P1 does not increase its utility beyond what it would

achieve by following the protocol. In the second case, when P1 aborts in some iteration i < i∗ + 1,
the best strategy P1 can adopt is to output s

(i)
1 and hope that i = i∗. The expected utility that P1

obtains by following this strategy can be calculated as follows:

• P1 aborts exactly in iteration i = i∗ with probability β. In this case, P1 gets utility at
most U+.

• When i < i∗, player P1 has “no information” about s and so the best it can do is guess. The
expected utility of P1 in this case is thus at most Urandom (cf. Equation (1)).

Putting everything together, the expected utility of P1 following this strategy is at most

β × U+ + (1− β)× Urandom .

Since Urandom < U by assumption, it is possible to set β so that the entire expression above is
strictly less than U ; in that case, P1 has no incentive to deviate.

That Π induces a strict computational Nash equilibrium (that is also stable with respect to
trembles) follows from the fact that there is always a unique valid message that a party can send;
anything else is treated as an abort. A proof of the following appears in Appendix A.

Theorem 1 Let β > 0 be such that U > β ·U+ +(1−β) ·Urandom. Then Π induces a computational
strict Nash equilibrium that is stable with respect to trembles.

3.1 Using Trapdoor Permutations Instead of VRFs

The protocol from the previous section can be adapted easily to use trapdoor permutations instead
of VRFs. The key observation is that the VRFs in the previous protocol are used only in a
very specific way: they applied sequentially to values 1, 2, One can therefore use a trapdoor
permutation f with associated hardcore bit h to instantiate the VRF in our scheme in the following
way: The public key is a description of f along with a random element y in the domain of f ; the
secret key is the trapdoor enabling inversion of f . In iteration i, the “evaluation” of the VRF on
input i is the `-bit sequence

h
(
f−(i−1)`−1(y)

)
, h

(
f−(i−1)`−2(y)

)
, . . . , h

(
f−(i−1)`−`(y)

)
,

11

and the “proof” is πi = f−(i−1)`−`(y). Verification can be done using the original point y, and
can also be done in time independent of i by using πi−1 (namely, by checking that f `(πi) = πi−1),
assuming πi−1 has already been verified.

The key point is that the essential properties we need still hold: verifiability and uniqueness of
proofs are easy to see, and pseudorandomness still holds with respect to a modified game where
the adversary queries Evalsk(1), . . . ,Evalsk(i) and then has to guess whether it is given Evalsk(i+1)
or a random string. We omit further details.

4 Rational Secret Sharing: The t-out-of-n Case

In this section we describe extensions of our protocol to the t-out-of-n case, where we consider
deviations by coalitions of up to t− 1 parties. Formal definitions of game-theoretic notions in the
multi-player setting, both for the case of single-player deviations as well as coalitions, are fairly
straightforward adaptations of the definitions from Section 2.3 and are given in Appendix B.

In describing our protocols we use VRFs for notational simplicity, but all the protocols given
here can be instantiated using trapdoor permutations as described in Section 3.1.

A protocol for “exactly t-out-of-n” secret sharing. We begin by describing a protocol Πt,n

for t-out-of-n secret sharing that is resilient to coalitions of up to t−1 parties under the assumption
that exactly t parties are active during the reconstruction phase. (We also require that the coalition
be a subset of the active parties.) For now, we assume communication over a synchronous (but not
simultaneous) point-to-point network.

As in the 2-out-of-2 case, every party is associated with two keys for a VRF. The dealer chooses
an iteration r∗ according to a geometric distribution, and also chooses two random (t − 1)-degree
polynomials G,H (over some finite field) such that G(0) = s and H(0) = 0. Each party receives
blinded versions of all n points {G(j),H(j)}n

j=1: each G(j) is blinded by the value of Pj ’s VRF
on the input r∗, and each H(j) is blinded by the value of Pj ’s VRF on the input r∗ + 1. In each
iteration r, each party is supposed to send to all other parties the value of their VRFs evaluated
on the current iteration number r; once this is done, every party can interpolate a polynomial to
obtain candidate values for G(0) and H(0). When H(0) = 0 parties know the protocol is over, and
output the G(0) value reconstructed in the previous iteration. See Figure 2 for details.

Theorem 2 Let β > 0 be such that U > β · U+ + (1 − β) · Urandom. Then Πt,n induces a (t − 1)-
resilient computational strict Nash equilibrium that is stable with respect to trembles, as long as
exactly t parties are active during the reconstruction phase.

A proof is exactly analogous to the proof of Theorem 1.

Handling the general case. The prior solution assumes exactly t parties are active during
reconstruction. If t∗ > t parties are active, the “natural” implementation of the protocol — where
the lowest-indexed t parties run Πt,n and all other parties remain silent — is not a (t− 1)-resilient
computational Nash equilibrium. To see why, let the active parties be I = {1, . . . t + 1} and let
C = {3, . . . , t + 1} be a coalition of t − 1 parties. In each iteration r, as soon as P1 and P2 send
their values the parties in C can compute t + 1 points {g(r)

j }j∈I . Because of the way these points
are constructed, they are guaranteed to lie on a (t − 1)-degree polynomial when r = r∗, but are
unlikely to lie on a (t − 1)-degree polynomial when r < r∗. This gives the parties in C a way to

12

Sharing Phase

To share a secret s ∈ {0, 1}`, the dealer does the following:

• Choose r∗ ∈ N according to a geometric distribution with parameter β.

• Generatea (pk1, sk1), . . . , (pkn, skn) ← Gen(1k) and (pk′1, sk
′
1), . . . , (pk′n, sk′n) ← Gen(1k).

• Choose random (t − 1)-degree polynomials G ∈ F2` [x] and H ∈ F2k [x] such that G(0) = s
and H(0) = 0.

• Send ski, sk
′
i to player Pi, and send to all parties the following values:

1. {(pkj , pk′j)}1≤j≤n

2. {gj := G(j)⊕ Evalskj (r
∗)}1≤j≤n

3. {hj := H(j)⊕ Eval′sk′j
(r∗ + 1)}1≤j≤n

Reconstruction Phase

Let I be the set of indices of the t active players. Each party Pi (for i ∈ I) chooses s
(0)
i uniformly

from {0, 1}`. In each iteration r = 1, . . ., the parties do:

• For all i ∈ I (in ascending order), Pi sends the following to all players:

(
y
(r)
i := Evalski(r), z

(r)
i := Eval′sk′i

(r), Proveski(r), Prove′sk′i
(r)

)
.

• If a party Pi receives an incorrect proof (or nothing) from any other party Pj , then Pi termi-
nates and outputs s

(r−1)
i . Otherwise:

– Pi sets h
(r)
j := hj ⊕ z

(r)
j for all j ∈ I, and interpolates a degree-(t− 1) polynomial H(r)

through the t points {h(r)
j }j∈I . If H(r)(0) ?= 0 then Pi outputs s

(r−1)
i immediately, and

terminates after sending its current-iteration message.

– Otherwise, Pi compute s
(r)
i as follows: set g

(r)
j := gj ⊕ y

(r)
j for all j ∈ I. Interpolate a

degree-(t− 1) polynomial G(r) through the points {g(r)
j }j∈I , and set s

(r)
i := G(r)(0).

aGen outputs VRF keys with range {0, 1}`, and Gen′ outputs VRF keys with range {0, 1}k.

Figure 2: Protocol Πt,n for “exactly t-out-of-n” secret sharing.

determine r∗ as soon as that iteration is reached, at which point they can abort and output the
secret while preventing P1 and P2 from doing the same.

Fortunately, a simple modification works: simply have the dealer run independent instances
Πt,n, Πt+1,n, . . . , Πn,n; in the reconstruction phase, the parties run Πt∗,n where t∗ denotes the number
of active players. It follows as an easy corollary of Theorem 2 that this induces a (t − 1)-resilient
computational strict Nash equilibrium (that is also stable with respect to trembles) regardless of
how many parties are active during the reconstruction phase. (As in previous work, we only consider
coalitions that are subsets of the parties who are active during reconstruction. The protocol is no
longer a computational Nash equilibrium if this is not the case.3)

3This case can be addressed, however, by having the dealer run independent instances of Πt,n for all
(

n
t

)
subsets

of size t; to reconstruct, the t lowest-indexed active players run the instance corresponding to their subset while the
remaining active players are silent. This is only efficient for small values of t.

13

Asynchronous networks. Our protocol Πt,n can be adapted to work even when the parties
communicate over an asynchronous point-to-point network. (Here messages can be delayed arbi-
trarily and delivered out of order, but any message that is sent is eventually delivered.) In the
asynchronous case, parties cannot distinguish an abort from a delayed message and so we modify
the protocol as follows: each party proceeds to the next iteration r as soon as it receives t− 1 valid
messages from the previous iteration, and only halts if it receives an invalid message from someone.
More formal treatment of the asynchronous case, including a discussion of definitions in this setting
and a proof for the preceding protocol, is deferred to Appendix C.

As before, we can handle the general case by having the dealer run independent instances of
the “exactly t∗-out-of-n” protocol just described for all values of t∗ ∈ {t, . . . , n}. (We continue to
restrict attention to coalitions that consist only of active players.)

References

[1] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game theory:
robust mechanisms for rational secret sharing and multiparty computation. In 25th ACM
Symposium Annual on Principles of Distributed Computing, pages 53–62. ACM Press, 2006.

[2] J. Alwen, J. Katz, Y. Lindell, G. Persiano, A. Shelat, and I. Visconti. Collusion-free multiparty
computation in the mediated model. In Advances in Cryptology — Crypto 2009 (to appear),
volume ??? of LNCS, pages ???–??? Springer, 2009.

[3] J. Alwen, A. Shelat, and I. Visconti. Collusion-free protocols in the mediated model. In
Advances in Cryptology — Crypto 2008, volume 5157 of LNCS, pages 497–514. Springer,
2008.

[4] G. Asharov and Y. Lindell. Utility dependence in correct and fair rational secret sharing.
In Advances in Cryptology — Crypto 2009 (to appear), volume ??? of LNCS, pages ???–???
Springer, 2009.

[5] G. Blakley. Safeguarding cryptographic keys. National Computer Conference, 48:313–317,
1979.

[6] Y. Dodis. Efficient construction of (distributed) verifiable random functions. In PKC 2003:
6th International Workshop on Theory and Practice in Public Key Cryptography, volume 2567
of LNCS, pages 1–17. Springer, 2003.

[7] Y. Dodis and T. Rabin. Cryptography and game theory. In N. Nisan, T. Roughgarden,
E. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, pages 181–207. Cambridge
University Press, 2007.

[8] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In
PKC 2005: 8th International Workshop on Theory and Practice in Public Key Cryptography,
volume 3386 of LNCS, pages 416–431. Springer, 2005.

[9] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party
computation. In 40th Annual ACM Symposium on Theory of Computing (STOC), pages 413–
422. ACM Press, 2008.

14

[10] S. D. Gordon and J. Katz. Rational secret sharing, revisited. In 5th Intl. Conf. on Security
and Cryptography for Networks (SCN), volume 4116 of LNCS, pages 229–241. Springer, 2006.

[11] S. D. Gordon and J. Katz. Partial fairness in secure two-party computation, 2008. Available
at http://eprint.iacr.org/2008/206.

[12] J. Halpern and V. Teague. Rational secret sharing and multiparty computation: Extended
abstract. In 36th Annual ACM Symposium on Theory of Computing (STOC), pages 623–632.
ACM Press, 2004.

[13] S. Izmalkov, M. Lepinski, and S. Micali. Verifiably secure devices. In 5th Theory of Cryptog-
raphy Conference — TCC 2008, volume 4948 of LNCS, pages 273–301. Springer, 2008.

[14] S. Izmalkov, S. Micali, and M. Lepinski. Rational secure computation and ideal mechanism
design. In 46th Annual Symposium on Foundations of Computer Science (FOCS), pages 585–
595. IEEE, Oct. 2005.

[15] J. Katz. Bridging game theory and cryptography: Recent results and future directions. In
5th Theory of Cryptography Conference — TCC 2008, volume 4948 of LNCS, pages 251–272.
Springer, 2008.

[16] J. Katz. Ruminations on defining rational MPC, 2008. Talk given at SSoRC, Bertinoro, Italy.
Slides available at http://www.daimi.au.dk/~jbn/SSoRC2008/program.

[17] G. Kol and M. Naor. Cryptography and game theory: Designing protocols for exchanging
information. In 5th Theory of Cryptography Conference — TCC 2008, volume 4948 of LNCS,
pages 320–339. Springer, 2008.

[18] G. Kol and M. Naor. Games for exchanging information. In 40th Annual ACM Symposium
on Theory of Computing (STOC), pages 423–432. ACM Press, 2008.

[19] M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair SFE and coalition-safe cheap
talk. In 23rd ACM Symposium Annual on Principles of Distributed Computing, pages 1–10.
ACM Press, 2004.

[20] M. Lepinski, S. Micali, and A. Shelat. Collusion-free protocols. In 37th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 543–552. ACM Press, 2005.

[21] M. Lepinski, S. Micali, and A. Shelat. Fair-zero knowledge. In 2nd Theory of Cryptography
Conference — TCC 2005, volume 3378 of LNCS, pages 245–263. Springer, 2005.

[22] A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH sep-
aration. In Advances in Cryptology — Crypto 2002, volume 2442 of LNCS, pages 597–612.
Springer, 2002.

[23] A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial behavior in multi-party
computation. In Advances in Cryptology — Crypto 2006, volume 4117 of LNCS, pages 180–197.
Springer, 2006.

[24] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In 40th Annual
Symposium on Foundations of Computer Science (FOCS), pages 120–130. IEEE, 1999.

15

[25] S. Miclai and A. Shelat. Truly rational secret sharing. In 6th Theory of Cryptography Confer-
ence — TCC 2009, volume 5444 of LNCS, pages 54–71. Springer, 2009.

[26] S. J. Ong, D. Parkes, A. Rosen, and S. Vadhan. Fairness with an honest minority and a
rational majority. In 6th Theory of Cryptography Conference — TCC 2009, volume 5444 of
LNCS, pages 36–53. Springer, 2009.

[27] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

A Proof of Theorem 1

We first show that Π is a valid secret-sharing scheme. Secrecy follows from the proof that the
reconstruction phase is a computational Nash equilibrium, below, for if secrecy did not hold then
computing the secret locally and not participating in the reconstruction phase at all would be a
profitable deviation. We therefore focus on correctness. Assuming both parties run the protocol
honestly, the correct secret is reconstructed unless:

• i∗ ≥ 2k − 1.

• For some i < i∗ + 1, either signal1 = Eval′sk′2(i) or signal2 = Eval′sk′1(i).
The first event occurs with negligible probability. Pseudorandomness of the VRF, along with the
fact that i∗ ≤ k with all but negligible probability, easily imply that the latter two events happen
with only negligible probability as well.

We next prove that Π induces a computational Nash equilibrium. Assume P2 follows the
strategy σ2 prescribed by the protocol, and let σ′1 denote any ppt strategy followed by P1. (The
other case, where P1 follows the protocol and we look at deviations by P2, follows similarly with
an even simpler proof.) In a given execution of the reconstruction phase, let i denote the iteration
in which P1 aborts (where an incorrect message is viewed as an abort); if P1 never aborts then set
i = ∞. Let early be the event that i < i∗; let exact be the event that i = i∗; and let late be the
event that i > i∗. Let correct be the event that P1 outputs the correct secret s. We will consider
the probabilities of these events in two experiments: the experiment defined by running the actual
secret-sharing scheme, and a second experiment where P1 is given share1, signal1 chosen uniformly
at random from the appropriate ranges. Probabilities in the first experiment will be denoted by
Prreal[·], and probabilities in the second experiment will be denoted by Prideal[·]. We have

U1(σ′1, σ2) (2)
≤ U+ · Prreal[exact] + U+ · Prreal[correct ∧ early] + U− · Prreal[correct ∧ early] + U · Prreal[late],

using the fact (as discussed in the intuition preceding the theorem) that whenever late occurs P2

outputs the correct secret s. Since when both parties follow the protocol P1 gets utility U , we need
to show that there exists a negligible function ε such that U1(σ′1, σ2) ≤ U + ε(k).

The next claim follows easily from the pseudorandomness of the VRFs.

Claim 1 There exists a negligible function ε such that

|Prreal[exact]− Prideal[exact]| ≤ ε(k)
|Prreal[late]− Prideal[late]| ≤ ε(k)

|Prreal[correct ∧ early]− Prideal[correct ∧ early]| ≤ ε(k)
|Prreal[correct ∧ early]− Prideal[correct ∧ early]| ≤ ε(k).

16

Define

Uideal

def= U+ · Prideal[exact] + U+ · Prideal[correct ∧ early] + U− · Prideal[correct ∧ early] + U · Prideal[late].

Claim 1 shows that |U1(σ′1, σ2)− Uideal| ≤ ε(k) for some negligible function ε. It remains to
bound Uideal. Let abort = exact ∨ early, so that abort is the event that P1 aborts before itera-
tion i∗ + 1. Information-theoretically, we have

Prideal[exact | abort] = β and Prideal[correct | early] =
1
|S| ;

therefore,

Uideal

= U+ ·
(
Prideal[exact | abort] + Prideal[correct | early] · Prideal[early | abort]

)
· Prideal[abort]

+ U− · Prideal[correct | early] · Prideal[early | abort] · Prideal[abort] + U · Prideal[late]

= U+ ·
(

β +
1
|S| · (1− β)

)
· Prideal[abort]

+ U− ·
(

1− 1
|S|

)
(1− β) · Prideal[abort] + U · (1− Prideal[abort])

= U +
(

U+ ·
(

β +
1
|S| · (1− β)

)
+ U− ·

(
1− 1

|S|
)

(1− β)− U

)
· Prideal[abort]

= U +
(
β · U+ + (1− β) · Urandom − U

) · Prideal[abort] ≤ U (3)

using the fact that β · U+ + (1− β) · Urandom − U < 0. This completes the proof that Π induces a
computational Nash equilibrium.

That Π induces a computational strict Nash equilibrium follows easily from the above analysis
along with the fact that there is always a unique valid message each party can send. Specifically, say
P1 plays a strategy σ′1 with σ′1 6≈ Π. This implies4 that Prreal[abort] ≥ 1/poly(k) for infinitely many
values of k. Claim 1 then shows that Prideal[abort] ≥ 1/poly(k) for infinitely many values of k, and
so U − Uideal ≥ 1/poly(k) infinitely often as well (see Equation (3)). Since |U1(σ′1, σ2)− Uideal| is
negligible, we conclude that U −U1(σ′1, σ2) ≥ 1/poly(k) for infinitely many values of k, as required.

To complete the proof, we show that Π induces a computational Nash equilibrium stable with
respect to trembles. The following table will be useful when reading the proof.

Strategy Description
σ1/σ2 Prescribed by the protocol

ρ2
A ppt strategy δ-close to σ2;

plays ρ̂2 with prob. δ, and σ2 otherwise
ρ̂2 The ppt ‘residual strategy’ of ρ2

ρ1 Arbitrary ppt strategy for P1

σ′1
ppt strategy with σ′1 ≈ Π;

runs ρ1 as a subroutine

4Recall that our definition of “equivalent play” (Definition 2) ignores deviations once P1 could compute its output
if it were following the prescribed protocol. So if σ′1 6≈ Π, then the probability that P1 aborts before iteration i∗ + 1
is not negligible.

17

Let δ be a parameter we fix later. Let ρ2 be any ppt strategy that is δ-close to σ2, and let ρ1 be an
arbitrary ppt strategy for P1. We show the existence of a ppt strategy σ′1 satisfying Definition 4.
(Once again we focus on deviations by P1, but the case of P2 is analogous.) Strategy σ′1 is defined
as follows:

1. Given input (sk1, sk
′
1, pk2, pk′2, share1, signal1), run ρ1 on this input. Set aborted := 0.

2. In each iteration i:

(a) Receive the iteration-i message mi from P2. If P2 aborts, then set aborted := 1.
(b) Give mi to ρ1 and get in response some message m′

i.

(c) If aborted = 1 then forward m′
i to P2; otherwise, compute the response (y(i)

1 , π
(i)
1 , z

(i)
1 , π̄

(i)
1)

as prescribed by Π and send that to P2 instead.

3. If aborted = 0 determine the output according to Π; otherwise, output whatever ρ1 outputs.

When σ′1 interacts with σ2, then aborted is never set to 1; thus, σ′1 yields equivalent play with
respect to Π, and U1(σ′1, σ2) = U1(σ1, σ2) = U . It remains to show that U1(ρ1, ρ2) ≤ U1(σ′1, ρ2) +
negl(k). Let ρ̂2 denote the “residual strategy” of ρ2; i.e., ρ̂2 is run only with probability δ by ρ2.
In an interaction where P1 follows strategy ρ1, let abort denote the event that ρ1 aborts before P2

aborts, and let pabort(σ) be the probability of abort when P2 follows strategy σ. We first claim that
the only “advantage” to P1 of playing ρ1 rather than σ′1 arises due to ρ1 aborting first, i.e., due to
the occurrence of abort:

Claim 2 U1(ρ1, ρ̂2)− U1(σ′1, ρ̂2) ≤ pabort(ρ̂2) · (U+ − U−).

Proof Note that abort is well-defined in the interaction of σ′1 with ρ̂2, because σ′1 runs a copy of
ρ1 as a sub-routine. When abort does not occur, there are two possibilities: neither ρ1 nor P2 ever
aborts, or P2 aborts first. We consider these in turn:

• When neither ρ1 nor P2 aborts, the output of P2 is unchanged whether P1 is running σ′1 or
ρ1. Furthermore, the output of P1 when running σ′1 is equal to the correct secret. Thus, the
utility of P1 when running σ′1 is at least the utility of P1 when running ρ1.

• If P2 aborts first, the outputs of both P1 and P2 are identical whether P1 runs σ′1 or ρ1; this
follows because as soon as P2 aborts, strategy σ′1 “switches” to playing strategy ρ1.

So, the utility obtained by playing σ′1 can only possibly be less than the utility obtained by playing
ρ1 when abort occurs. The maximum difference in the utilities in this case is U+ − U−.

The next claim shows that abort occurs at least as often when ρ1 interacts with σ2 as when ρ1

interacts with ρ̂2.

Claim 3 pabort(σ2) ≥ pabort(ρ̂2).

Proof Consider some view of ρ1 on which it aborts first when interacting with ρ̂2. (The view
includes both the information d1 obtained from the dealer as well as the messages from P2.) Since
ρ1 aborts first and, in every iteration, there is a unique non-aborting message that P2 can send, it
follows that ρ1 will also abort first when interacting with σ2 (who never aborts first) whenever ρ1

is given d1 from the dealer. The claim follows.

18

Define U∗ def= β · U+ + (1− β) · Urandom and recall that U∗ < U by assumption. Now,

U1(ρ1, ρ2) = (1− δ) · U1(ρ1, σ2) + δ · U1(ρ1, ρ̂2)
≤ (1− δ) · (U + (U∗ − U) · pabort(σ2)

)
+ δ · U1(ρ1, ρ̂2) + negl(k),

using Equation (3) and Claim 1. Also,

U1(σ′1, ρ2) = (1− δ) · U1(σ′1, σ2) + δ · U1(σ′1, ρ̂2)
= (1− δ) · U + δ · U1(σ′1, ρ̂2) .

It follows that

U1(ρ1, ρ2)− U1(σ′1, ρ2)
= (1− δ) · (U∗ − U) · pabort(σ2) + δ · (U1(ρ1, ρ̂2)− U1(σ′1, ρ̂2)

)
+ negl(k)

≤ (1− δ) · (U∗ − U) · pabort(ρ̂2) + δ · (U+ − U−) · pabort(ρ̂2) + negl(k) ,

using Claims 2 and 3. Since U∗ − U is strictly negative, there exists δ > 0 for which the above
expression is negligible for k large enough. This completes the proof.

B Game-Theoretic Definitions for the Multi-Party Setting

Throughout this section, Π is a t-out-of-n secret-sharing scheme and σi denotes the prescribed
actions of Pi in the reconstruction phase. We begin by giving definitions for the case of single-
player deviations, and then consider the case of coalitions.

B.1 Single-Player Deviations

Following standard notation, we let ~σ = (σi1 , . . . , σi`) denote a vector of strategies with the indices
i1, . . . , i` in some (implicit) index set I. For ~σ of this sort and i∗ ∈ I, we set ~σ−i∗ = (σi)i∈I\{i∗}.

Definition 6 Π induces a computational Nash equilibrium if for any set I = {i1, . . . , it∗} of t∗ ≥ t
active parties, any i ∈ I, and any ppt strategy σ′i we have that Ui(σ′i, ~σ−i) ≤ Ui(~σ) + negl(k). ♦
We next define the notion of two strategies yielding equivalent play with respect to Π:

Definition 7 Fix I ⊆ [n], an index i ∈ I, and a strategy ρi. Define viewΠ
−i as follows:

All parties play their prescribed strategies. Let trans denote the messages sent by Pi

not including any messages sent by Pi after it writes to its output tape. Then viewΠ
−i

includes the information given by the dealer to all parties in I \ {i}, the random coins
of all parties in I \ {i}, and the (partial) transcript trans.

Given algorithm T , define the random variable viewT,ρi
−i as follows:

Pi and the parties in I \ {i} interact, with Pi playing ρi and the other parties following
their prescribed strategies. Let trans denote the messages sent by Pi. Algorithm T ,
given the entire view of Pi, outputs an arbitrary truncation trans′ of trans. Then viewT,ρi

−i

includes the information given by the dealer to all parties in I \ {i}, the random coins
of all parties in I \ {i}, and the (partial) transcript trans′.

19

Strategy ρi yields equivalent play with respect to Π, denoted ρi ≈ Π, if there exists a ppt algorithm
T such that for all ppt distinguishers D

∣∣∣Pr[D(1k, viewT,ρi
−i) = 1]− Pr[D(1k, viewΠ

−i) = 1]
∣∣∣ ≤ negl(k). ♦

Definition 8 Π induces a computational strict Nash equilibrium if

1. Π induces a computational Nash equilibrium;
2. For any I ⊆ [n] with |I| ≥ t, any i ∈ I, and any ppt strategy σ′i for which σ′i 6≈ Π, there is a

c > 0 such that Ui(~σ) ≥ Ui(σ′i, ~σ−i) + 1/kc for infinitely many values of k. ♦
We next turn to defining stability with respect to trembles. We say that ~ρ−i is δ-close to ~σ−i

if ~ρ−i takes the following form: with probability 1− δ all parties play according to ~σ−i, while with
probability δ all parties follow an arbitrary (possibly correlated) ppt strategy σ′−i. In this case, we
refer to ~σ′−i as the residual strategy of ~ρ−i.

Definition 9 Π induces a computational Nash equilibrium that is stable with respect to trembles if

1. Π induces a computational Nash equilibrium;

2. There is a noticeable function δ such that for any I ⊆ [n] with |I| ≥ t, any i ∈ I, any vector of
ppt strategies ~ρ−i that is δ-close to ~σ−i, and any ppt strategy ρi, there exists a ppt strategy
σ′i ≈ Π such that Ui(ρi, ~ρ−i) ≤ Ui(σ′i, ~ρ−i) + negl(k). ♦

B.2 Coalitions

We view a coalition C as a set of parties who may coordinate their strategies in an arbitrary way.
Since the coalition acts in unison, we treat the utility of the coalition as a whole and, in particular,
view the coalition as having only a single output value (rather than viewing each member of the
coalition as potentially outputting a different value). Let µC(·) denote the utility of the coalition C.
As before, we assume the following utilities:

1. If o is an outcome in which C learns the secret and no player outside C does, then µC(o) = U+.

2. If o is an outcome in which all parties active during the reconstruction phase (including C)
learn the secret, then µC(o) = U .

3. If o is an outcome in which C does not learn the secret, then µC(o) = U−.

If ~σ = (σC , ~σ−C) then UC(~σ) denotes the expected utility of C when parties in C follow σC and the
remaining parties follow σ−C .

Definition 10 Π induces an r-resilient computational Nash equilibrium if for any I ⊆ [n] with
|I| ≥ t, any C ⊂ I with |C| ≤ r, and any ppt strategy σ′C we have UC(σ′C , ~σ−C) ≤ UC(~σ) + negl(k).

♦
We define the notion of two coalition strategies σC , σ′C yielding equivalent play in a manner

analogous to Definition 7, except that now the transcript included in viewΠ
−C does not include

messages sent by the parties in C once any party in C writes its output.

20

Definition 11 Π induces an r-resilient computational strict Nash equilibrium if

1. Π induces an r-resilient computational Nash equilibrium;
2. For any C ⊂ I ⊆ [n] with |I| ≥ t and |C| ≤ r, and any ppt strategy σ′C for which σ′C 6≈ Π,

there is a c > 0 such that UC(~σ) ≥ UC(σ′C , ~σ−C) + 1/kc for infinitely many values of k. ♦

Definition 12 Π induces an r-resilient computational Nash equilibrium that is stable with respect
to trembles if

1. Π induces an r-resilient computational Nash equilibrium;

2. There is a noticeable function δ such that for any I ⊆ [n] with |I| ≥ t, any C ⊂ I with |C| ≤ r,
any vector of ppt strategies ~ρ−C that is δ-close to ~σ−C , and any ppt strategy ρC , there exists
a ppt strategy σ′C ≈ Π such that UC(ρC , ~ρ−C) ≤ UC(σ′C , ~ρ−C) + negl(k). ♦

C The Asynchronous Case

We begin with a few technical notes as to how we model the asynchronous setting:

1. As is standard in the asynchronous setting, we allow messages to be delayed and to be
delivered in arbitrary order, but we assume eventual message delivery. (I.e., a message sent
from one party to another will be received by time t = ∞.)

2. We define an outcome o by the values recorded on the output tapes of the players at time
t = ∞. In particular, it does not matter whether a party halts in a finite number of steps or
not; all that matters is the value that is eventually written on its output tape (see the next
item). This is essential, as even parties who follow the protocol honestly are not guaranteed
to output the correct secret in any fixed time bound, and a party who deviates from the
protocol can cause an honest party to run indefinitely.

3. Due to the above, we allow parties to write a value to their output tape multiple times. We
stress, however, that the value that “counts” as far as defining the outcome o is the value on
a party’s output tape at time t = ∞.

4. We allow cheating players to schedule message delivery in the network. The definition of
“yielding equivalent play” (cf. Definition 2), however, still refers only to the actual messages
sent by the players, and not to the way message delivery is scheduled. (We cannot hope to
claim that changing the order of message delivery decreases a party’s utility.)

We also modify the definition of “yielding equivalent play” to account for the asynchronous
communication. A message sent by Pj is recursively defined to affect Pi if either (1) it is sent to
Pi, or (2) it is sent to a party Pk who subsequently send a message that affects Pi. Our definition
of “yielding equivalent play” (in the case of single-player deviations) is as follows:

Definition 13 Fix I ⊆ [n], an index i ∈ I, and a strategy ρi. Define viewΠ
−i as follows:

All parties play their prescribed strategies. Let trans denote the messages sent by Pi not
including those messages that do not affect Pi. Then viewΠ

−i includes the information
given by the dealer to all parties in I \ {i}, the random coins of all parties in I \ {i},
and the (partial) transcript trans.

21

Given algorithm T , the random variable viewT,ρi
−i is defined as in Definition 7. Strategy ρi yields

equivalent play with respect to Π, denoted ρi ≈ Π, if there exists a ppt algorithm T such that for
all ppt distinguishers D

∣∣∣Pr[D(1k, viewT,ρi
−i) = 1]− Pr[D(1k, viewΠ

−i) = 1]
∣∣∣ ≤ negl(k). ♦

Sharing Phase
The sharing phase is identical to protocol Πt,n in Figure 2.

Reconstruction Phase
Let I denote the set of the indices of the t active players. Each party Pi (for i ∈ I) chooses s

(0)
i

uniformly from {0, 1}` and writes it on its output tape. For r = 1, . . ., party Pi does:

• Pi sends the following to all players:

(
y
(r)
i := Evalski(r), z

(r)
i := Eval′sk′i

(r), Proveski(r), Prove′sk′i
(r)

)
.

• If Pi receives an incorrect proof from some other party Pj , then Pi terminates. (Note that if
this occurs then the value s

(r−1)
i is already written on its output tape.) Otherwise, as soon as

Pi receives t− 1 valid messages for iteration r it does:

– Pi sets h
(r)
j := hj ⊕ z

(r)
j for all j ∈ I, and interpolates a degree-(t − 1) polynomial

H(r) through the t points {h(r)
j }j∈I . If H(r)(0) = 0 then Pi terminates after sending

its current-iteration message. (Note that if this occurs then the value s
(r−1)
i is already

written on its output tape.)

– Otherwise, Pi sets g
(r)
j := gj ⊕ y

(r)
j for all j ∈ I, and interpolates a degree-(t − 1)

polynomial G(r) through the points {g(r)
j }j∈I . It writes the value s

(r)
i := G(r)(0) to its

output tape and proceeds to the next iteration.

Figure 3: Protocol Π′t,n for “exactly t-out-of-n” secret sharing in the asynchronous case.

Protocol Π′t,n for the asynchronous case is presented in Figure 3. We now sketch the proof that
this protocol induces a (t− 1)-resilient computational Nash equilibrium whenever exactly t parties
are active in the reconstruction phase. (Once again, the fact that there is always a unique legal
message furthermore implies that the protocol induces a (t− 1)-resilient computational strict Nash
equilibrium that is stable with respect to trembles.) Assume some set of t parties I running the
reconstruction phase, and consider some coalition C ⊂ I of size at most t− 1. Let P ∗ be any player
in I who is not in C. As usual, the best strategy for C is to not abort until it can definitively
identify iteration r∗, which occurs only after it receives the iteration-(r∗+1) message from P ∗. But
P ∗ only sends its iteration-(r∗ + 1) message after it has received (valid) iteration-r∗ messages from
all the parties in C. By this point, no matter what the parties in C do, P ∗ has the correct secret s
written on its output tape.

22

