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Abstract

We introduce HAIL (High-Availability and Integrity
Layer), a distributed cryptographic system that permits a
set of servers to prove to a client that a stored file is in-
tact and retrievable. Proofs in HAIL are efficiently com-
putable by servers and highly compact—typically tens or
hundreds of bytes, irrespective of file size. HAIL crypto-
graphically verifies and reactively reallocates file shares. It
is robust against an active, mobile adversary, i.e., one that
may progressively corrupt the full set of servers. We pro-
pose a strong, formal adversarial model for HAIL, and rig-
orous analysis and parameter choices. We also report on a
prototype implementation.

HAIL strengthens, formally unifies, and streamlines dis-
tinct approaches from the cryptographic and distributed-
systems communities. HAIL also includes an optional new
tool for proactive protection of stored files. HAIL is primar-
ily designed to protect static stored objects, such as backup
files or archives.

1 Introduction

Cloud storage denotes a family of increasingly popular
on-line services for archiving, backup, and even primary
storage of files. Amazon S3 [1] is a well known exam-
ple. Cloud-storage providers offer users clean and simple
file-system interfaces, abstracting away the complexities of
direct hardware management. At the same time, though,
such services eliminate the direct oversight of component
reliability and security that enterprises and other users with
high service-level requirements have traditionally expected.

To restore security assurances eroded by cloud environ-
ments, researchers have proposed two basic approaches to
client verification of file availability and integrity. The cryp-
tographic community has proposed tools called proofs of
retrievability (PORs) and proofs of data possession (PDPs)
[2, 23]. A POR is a challenge-response protocol that en-
ables a prover (cloud-storage provider) to demonstrate to

a verifier (client) that a file F is retrievable, i.e., recover-
able without any loss or corruption. The benefit of a POR
over simple transmission of F is efficiency. The response
can be highly compact (tens of bytes), and the verifier can
complete the proof using a small fraction of F . Roughly
speaking, a PDP provides weaker assurances than a POR,
but potentially greater efficiency.1

As a standalone tool for testing file retrievability against
a single server, though, a POR is of limited value.2 De-
tecting that a file is corrupted is not helpful if the file is irre-
trievable and thus the client has no recourse. Thus PORs are
mainly useful in environments where F is distributed across
multiple systems, such as independent storage services. In
such environments, F is stored in redundant form across
multiple servers. A verifier (user) can test the availability of
F on individual servers via a POR. If it detects corruption
within a given server, it can appeal to the other servers for
file recovery. Surprisingly, the application of PORs to dis-
tributed systems has remained unexplored in the literature.

A POR uses file redundancy within a server for verifi-
cation. In a second, complementary approach, researchers
have proposed distributed protocols that rely on queries
across servers to check file availability [25, 31]. In a
distributed file system, a file F is typically spread across
servers with redundancy—often via an erasure code. Such
redundancy supports file recovery in the face of server er-
rors or failures. It can also enable a verifier (e.g., a client) to
check the integrity of F by retrieving fragments of F from
individual servers and cross-checking their consistency.

In this paper, we unify the two approaches to remote file-
integrity assurance in a system that we call HAIL (High-
Availability and Integrity Layer). HAIL reaps the benefits
from both approaches to achieve the following characteris-
tics:

Intactness proofs: HAIL enables a set of servers to prove

1PDPs do not carry the rigorous formal guarantees we wish to establish
in HAIL, so we explore only PORs in this paper.

2A standalone POR is useful for quality-of-service testing. The speed
of the verifier’s response gives an upper bound on expected delivery
throughput for F . We don’t treat QoS issues in this paper.
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to a client that a stored file F is fully intact—more precisely,
that the client can run an interactive extraction algorithm
that retrieves F with overwhelming probability. HAIL pro-
tects against even small, e.g., single-bit, changes to F .

Low overhead: The per-server computation and band-
width required for HAIL is comparable to that of previously
proposed PORs. Apart from its use of a natural file shar-
ing across servers, HAIL improves on PORs by eliminating
check values and reducing within-server file expansion.

Strong adversarial model: HAIL protects against an ad-
versary that is active, i.e., can corrupt servers and alter file
blocks and mobile, i.e., can corrupt every server over time.

Direct client-server communication: HAIL involves
one-to-one communication between a client and servers.
Servers need not intercommunicate—or even be aware of
other servers’ existence. (In contrast, some information dis-
persal algorithms involve server-to-server protocols, e.g.,
[16, 18, 9, 20].) The client stores just a secret key.

Static files: HAIL aims to protect static stored objects,
such as backup files and archives. It is not generally effi-
cient for highly dynamic objects.

HAIL has the following main technical components:

Three error-correcting codes: As in previous POR con-
structions, HAIL uses two error-correcting codes within
each server, an inner code for response computation and
outer code for file redundancy. HAIL also uses a third error-
correcting code called a dispersal code across servers—
essentially a form of Rabin information dispersal [29].

Homomorphic message-authentication code (MAC): We
introduce in HAIL a cryptographic primitive that we call
a homomorphic MAC. This tool allows proof values across
multiple points in a file to be compressed into a single value.

Reactive reallocation of file shares: HAIL employs a re-
active strategy that we call test-and-reallocate (TAR). When
the client detects a faulty server, it reallocates file shares.
(We also describe stronger, proactive techniques.)

In more detail, our major technical contributions in
HAIL are:

Security modeling We propose a strong, formal model
that involves a mobile adversary, much like the model that
motivates proactive cryptographic systems [22, 21]. A mo-
bile adversary is one capable of progressively attacking
storage providers—and in principle, ultimately corrupting
all providers at different times.

None of the existing approaches to client-based file-
integrity verification treats the case of a mobile adversary.
The POR literature emphasizes primitive-level design and
does not explicitly model distributed systems, while the dis-
tributed file-system literature usually dispenses with formal
adversarial modeling altogether.

We argue that the omission of mobile adversaries in
previous work is a serious oversight. In fact, we claim

that a mobile adversarial model is the only one in which
dynamic, client-based verification of file integrity makes
sense. The most common alternative model is one in which
an adversary (static or adaptive) corrupts a bounded num-
ber of servers. As real-world security model for long-term
file storage, this approach is unduly optimistic: It assumes
that some servers are never corrupted. More importantly,
though, an adversarial model that assumes a fixed set of
honest servers for all time does not require dynamic in-
tegrity checking at all: A robust file encoding can guarantee
file recovery irrespective of whether or not file corruptions
are detected beforehand.

HAIL design strategy: Test-and-Redistribute (TAR)
While designed like a proactive cryptographic system to
withstand a mobile adversary, HAIL aims to protect in-
tegrity, rather than secrecy. It can therefore be reactive.
We base HAIL on a new protocol-design strategy that we
call TAR (Test-And-Redistribute). With TAR, HAIL relies
on PORs to detect file corruption and trigger reallocation of
resources when needed—and only when needed. On detect-
ing a fault in a given server, the client communicates with
the other servers, recovers the corrupted shares from cross-
server redundancy built in the encoded file, and resets the
faulty server with a correct share.

Our TAR strategy reveals that for many practical applica-
tions, PORs and PDPs are overengineered. PORs and PDPs
assume a need to store explicit check values with the prover.
In a distributed setting like that for HAIL, it is possible
to obtain such check values from the collection of service
providers itself. On the other hand, distributed protocols,
e.g. [25, 31], are largely underengineered: Lacking robust
testing and reallocation, they provide inadequate protection
against mobile adversaries.

As an additional, novel contribution, we propose an op-
tional proactivizing operation that strengthens HAIL at the
cost of local scrambling of file contents by servers.

Unified framework for error-coding Previous proposals
have relied on a patchwork of error-correcting and error-
detection techniques, often fragmentary or disguised ver-
sions of earlier constructions. As a first step in our construc-
tion of HAIL, we uncover formal technical foundations im-
plicit in previous work, resulting in both unifications and
improvements. We create a general framework for file-
integrity checking in a construction that we call an integrity-
protected homomorphic ECC (IPH-ECC). This construc-
tion draws together PRFs, ECCs, and universal hash func-
tions into a single primitive. It is based on three properties
of (certain) universal hash functions h, briefly: (1) h is ho-
momorphic, i.e., hκ(m) + hκ(m′) = hκ(m + m′) for mes-
sages m and m and key κ; (2) For a pseudorandom function
(PRF) g, the function hκ(m) + gκ(m) is a cryptographic
message-authentication codes (MAC) on m; and (3) hκ(m)
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may be treated as a parity block in an error-correcting code
applied to m.

Organization We review related work in section 2. We
describe technical building blocks for error-correction and
error-detection in HAIL in section 3, and present our adver-
sarial model in section 4. We present the HAIL protocol
itself in section 5, and give implementation results in sec-
tion 6. We conclude in section 7.

2 Related Work

HAIL may be viewed loosely as a new, service-oriented
version of RAID (Redundant Arrays of Inexpensive Disks).
While RAID manages file redundancy dynamically across
hard-drives, HAIL manages such redundancy across cloud
storage providers. Recent multi-hour failures in S3 [17] il-
lustrate the need to protect against basic service failures in
cloud environments. In view of the rich targets for attack
that cloud storage providers will present, HAIL is designed
to withstand Byzantine adversaries. (RAID is mainly de-
signed for crash-recovery.)

Information dispersal Distributed information dispersal
algorithms (IDA) that tolerate Byzantine servers have been
proposed in both synchronous networks [16], as well as
asynchronous ones [18, 9, 20]. In these algorithms, file in-
tegrity is enforced within the pool of servers itself. Some
protocols protect against faulty clients that send inconsis-
tent shares to different servers [18, 9, 20]. In contrast,
HAIL places the task of file-integrity checking in the hands
of the client or some other trusted, external service and
avoids communication among servers. HAIL assumes syn-
chronous communication between the client and servers.
Unlike previous work, which verifies integrity at the level
of individual file blocks, HAIL operates at the granularity
of a full file. This difference motivates the use of PORs in
HAIL, rather than block-level integrity checks.

Universal Hash Functions Our IPH-ECC primitive fuses
several threads of research that have emerged independently
(and without mutual awareness). At the heart of this re-
search are Universal Hash-Functions (UHFs). (In the dis-
tributed systems literature, a common term for essentially
the same construction is algebraic fingerprint [26, 31, 20].)
UHFs can be used to construct message-authentication
codes (MAC) [5, 19, 14], essentially secret-key digital sig-
natures (see [28] for a performance evaluation of various
schemes). In particular, a natural combination of UHFs with
pseudorandom functions (PRFs) yields MACs that are ho-
momorphic; these MACs can be aggregated over many data
blocks and thus support compact proofs over large file sam-
ples. One of our contributions in this paper is to show how
UHFs and MACs crop up implicitly in several research pa-

pers and to extend hitherto unidentified connections in pre-
vious work.

PORs and PDPs Juels and Kaliski (JK) [23] propose a
formal POR protocol definition and security definitions that
we describe below. The main JK protocol supports only
a limited number of challenges, whose responses are pre-
computed and appended to the encoded file. Shacham and
Waters (SW) [32] use an implicit homomorphic MAC con-
struction that enables an unlimited number of queries, at the
expense of larger storage overhead. Their homomorphic
MAC construction is based on the UHF + PRF paradigm,
but they seem unaware of their implicit use of a UHF. They
construct a UHF based on a random linear function, rather
than a more efficient, standard error-correcting code.

Bowers et al. (BJO) [7] give a general framework for
POR protocols that generalizes and improves both the JK
and SW protocols. We adopt elements of their framework
in the construction of the HAIL protocol.

Ateniese et al. [2] propose a closely related construction
called a proof of data possession (PDP). A PDP demon-
strates to a client that a server possesses a file F (in an in-
formal sense). It is weaker than a POR in not guaranteeing
that the client can retrieve F . The lack of error correction
and extraction algorithms in basic PDP constructions per-
mit file updates to be performed efficiently [3]. Curtmola et
al. [13] proposed an extension of PDPs to multiple servers.
Their proposal essentially involves computational cost re-
duction through PDP invocations across multiple replicas
of a single file, rather than a share-based approach.

Filho and Barreto [15] describe an impractical PDP
scheme based on full-file processing. Shah et al. [33] con-
sider a symmetric-key variant, but their scheme only works
for encrypted files, and auditors must maintain long-term
state. Naor and Rothblum [27], extending the memory-
checking schemes of Blum et al. [6], describe a theoreti-
cal model that may be viewed as a generalization of PORs.
However, NR do not naturally model PORs with non-trivial
challenge-response protocols, as required for our purposes
in this paper.

Distributed protocols for dynamic file-integrity check-
ing Lillibridge et al. [25] propose a distributed scheme
in which blocks of a file F are dispersed across n servers
using an (m,n)-erasure code. Servers spot-check the in-
tegrity of one another’s fragments using message authenti-
cation codes (MACs).

Schwartz and Miller (SM) [31] propose a scheme that
ensures file integrity through distribution across multiple
servers, using error-correcting codes and block-level file in-
tegrity checks. They employ keyed algebraic encoding and
stream-cipher encryption to detect file corruptions. While
they do not explicitly recognize the fact, their keyed encod-
ing function is equivalent to a Reed-Solomon code in which
codewords are generated through keyed selection of symbol

3



positions. Their corruption-detection system is in this view
the message-authentication code (MAC) construction pro-
posed in [35]. (In general, they propose ad-hoc but clever
techniques.) We adopt this tool of simultaneous MACing
and error-correcting in our HAIL constructions.

Neither Lillibridge et al. nor SM gives a formal adversar-
ial model or rigorous security analysis of their protocols.

Proactive cryptography Our adversarial model is in-
spired by the literature on proactive cryptography initiated
by [22], which has yielded protocols resilent to mobile
adversaries for secret sharing [22, 8] as well as signature
schemes [21].

Proactive recovery has been proposed for the BFT sys-
tem by Castro and Liskov [11]. Their system constructs
a replicated state machine that tolerates a third of faulty
replica in a window of vulnerability, but any number of
faults over the lifetime of the system.

In previous proactive systems, key compromise is a
silent event; consequently, these systems must redistribute
shares automatically and provide protections that are proac-
tive. Corruption of a stored file, however, is not a silent
event. It results in a change in server state that a verifier can
detect. For this reason, HAIL can rely on remediation that
is reactive. It need not automatically refresh file shares at
each interval, but only on detecting a fault.

3 Building Blocks

3.1 UHFs

Let I denote an integer field, with operations (+,×). For
example, in our prototype implementation, we work with
GF [2l] for l = 256.

A UHF [10] is an algebraic function h : K × Ik → I
that compresses a message or file element m ∈ Ik into a
compact digest or “hash” based on a key κ ∈ K. We de-
note the output of h as hκ(m). A UHF has the property
that given two inputs x and y, with overwhelming proba-
bility over keys κ, it is the case that hκ(x) 6= hκ(y). In
other words, a UHF is collision-resistant when the message
pair (x, y) is selected independently of the key κ. A related
notion is that of almost exclusive-or universal (AXU) hash
functions that have the property that given three input mes-
sages, the probability that the XOR of the hashes of the first
two inputs matches the third input is small. Formally:

Definition 1 h is an ε-universal hash function family if for
any x 6= y ∈ Ik: Prκ←K[hκ(x) = hκ(y)] ≤ ε.

h is an ε-AXU family if for any x 6= y ∈ Ik, and for any
z ∈ I: Prκ←K[hκ(x)⊕ hκ(y) = z] ≤ ε.

Many common UHFs are also linear, meaning that for
any message pair (m1,m2), it is the case that hκ(m1) +

hκ(m2) = hκ(m1 + m2). In fact, it is possible to construct
a UHF based on a linear error-correcting code (ECC).

For example, as we assume for convenience in our work
here, a UHF may be based on a generalized (n, k)-Reed-
Solomon code over I . Let ~m = (m1,m2, . . . ,mk), where
mi ∈ I . In this case, recall that an R-S code may be viewed
in terms of a polynomial representation of m of the form
p~m(x) = mkxk−1 + mk−1x

k−2 + . . . + m1. A gener-
alized R-S codeword, then, may be defined in terms of a
vector ~x = (x1, . . . , xn): The corresponding codeword is
(p~m(x1), p~m(x2), . . . , p~m(xn)).

A UHF of interest, then, is simply hκ(m) = p~m(κ), the
κth symbol of the Reed-Solomon codeword for m. Here
K = I . It is well known that this construction, which we
refer to as RS-UHF, is indeed a good UHF [34]:

Fact 1 RS-UHF is a k−1
2l -AXU hash family.

3.2 Homomorphic MACs: The UHF +
PRF construction

A UHF, however, is not a cryptographically secure prim-
itive. That is, it is not generally collision-resistant against
an adversary that can choose messages after selection of κ.
Given a digest y = hκ(m), an adversary may be able to
construct a new message m′ such that hκ(m′) = y. Thus a
UHF is not in general a secure message-authentication code
(MAC). A MAC is formally defined as follows:

Definition 2 A MAC is given by three algorithms: κ ←
MGen generates a secret key given a security parameter;
τ ← MACκ(m) computes a MAC on a message m with key
κ; and MVerκ(m, τ) outputs 1 if τ is a valid MAC on m,
and 0 otherwise. Consider an adversary A with access to
the MAC and MVer oracles, whose goal is to output a valid
MAC on a message not queried to MAC. We define:

Advuf-mac
MAC (A) = Pr[κ ← MGen; (m, τ) ←

AMACκ,MVer : MVer(m, τ) = 1∧m not queried to MACκ].
We denote by Advuf-mac

MAC (q1, q2, t) the maximum advan-
tage of all adversaries making q1 queries to MAC, q2

queries to MVer and running in time at most t.

It is well known that a MAC may be constructed as the
straightforward composition of a UHF with a pseudoran-
dom function (PRF) [35, 24, 30, 34]. A PRF is a keyed
family of functions g : KPRF×D → R that maps messages
from domain D to range R such that, intuitively, a random
function from the PRF family is indistinguishable from a
true random function from D to R.

More formally, consider an adversary algorithm A that
participates in two experiments: one in which she has ac-
cess to a function chosen randomly from family g and the
second in which she has access to a random function from
D to R. The goal of the adversary is to distinguish the two
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worlds: she outputs 1 if she believes the oracle is a function
from the PRF family, and 0 otherwise.

We define the prf-advantage of A for family g as
Advprf

g (A) = |Pr[κ ← KPRF : Agκ = 1] − Pr[z ←
FD→R : Az = 1]|, where F is the set of all functions
from D to R. We denote by Advprf

g (q, t) the maximum prf-
advantage of an adversary making q queries to its oracle and
running in time t.

Given a UHF family h : K × Ik → I and a PRF family
g : K′ × L → I , the function f : K × K′ × Ik × L → I
defined as fκ,κ′(m, r) = hκ(m) + gκ′(r), with key (κ, κ′)
generated uniformly at random fromK×K′, and r a unique
message tag or label from space L, is a MAC, whose prop-
erties are as follows [34].

Fact 2 Assume that h is an εUHF-AXU family of hash func-
tions and g is a PRF family. Then f is a MAC with advan-
tage: Advuf-mac

f (q1, q2, t) ≤ Advprf
g (q1 + q2, t) + εUHFq2.

Given a linear UHF, an interesting feature of the MAC f
is that it is homomorphic. Let ~M = (m1, . . . , mv) ∈ Iv

be a set of messages and let ~A = (α1, . . . , αv) ∈ Iv

be a set of scalar values. We define
∑v

i=1 αif(mi) =
f(

∑v
i=1 αimi) as the composite MAC of ~M for coefficients

α1, . . . , αv . If τ is the composite MAC of {mi, ri}v
i=1 for

coefficients {αi}v
i=1, the composite MAC verification al-

gorithm CMVer({mi, ri, αi}v
i=1, τ) outputs 1. Consider an

adversary that has access to MAC and CMVer oracles. Intu-
itively, a homomorphic MAC is such that the adversary can
generate a vector of messages and a composite MAC with
negligible probability if it does not query the MAC oracle
for all component messages of the vector.

We give a formal definition of homomorphic MACs be-
low, the first in the literature to the best of our knowledge.

Definition 3 Let (MGen,MAC,MVer) be a MAC algo-
rithm. Consider an adversary A with access to MAC
and CMVer oracles whose goal is to output a set of mes-
sages m1, . . . ,mv with tags r1, . . . , rv , a set of coefficients
α1, . . . , αv and a composite MAC τ . We define:

Advh-mac
MAC (A) = Pr[κ ← MGen; ({mi, ri, αi}v

i=1, τ) ←
AMACκ,CMVer : CMVer({mi, ri, αi}v

i=1, τ) = 1 ∧ ∃i ∈
[1, v] for which mi was not queried to MACκ].

We denote by Advh-mac
MAC (q1, q2, t) the maximum success

probability of all adversaries making q1 queries to MAC, q2

queries to CMVer and running in time t.

Lemma 1 The homomorphic MAC f defined above has ad-
vantage: Advh-mac

f (qh
1 , qh

2 , th) ≤ Advuf-mac
f (qh

1 +vqh
2 +v−

1, 0, (v + 1)th).

Proof: Assume that there exists an adversary A for the
homomorphic MAC f that makes qh

1 queries to the MAC
oracle, qh

2 queries to the composite MAC verification oracle
and runs in time th.

We build an adversary A′ that targets the MAC. A′ runs
A. For any query that A makes to the MAC oracle, A′
returns the output of its own MAC oracle. For any query
that A makes to the composite MAC verification oracle, A′
queries its MAC oracle v times, and checks the linear rela-
tion.

When A outputs a set of messages (m1, . . . , mv), a set
of coefficients (α1, . . . , αv), and a valid composite MAC
τ , A′ queries the MAC oracle for m1, . . . , mv−1 and then
outputs mv and its MAC computed as f(mv) = α−1

v (τ −∑v−1
j=1 αjf(mj)).
A′ makes q1 = qh

1 + vqh
2 + (v − 1) queries to the MAC

oracle and no queries to the verification oracle. Its running
time is at most v + 1 times the running time of A. The
lemma follows.

Schwartz and Miller propose an ad-hoc construction that
appeals implicitly to this lemma. (They appear to be un-
aware, however, of the UHF + PRF construction, and do not
specify formal properties.) Similarly, Shacham and Waters
use a homomorphic MAC construction of essentially this
type. They, however, appear to be unaware of their implicit
use of a UHF. They construct a UHF based on a random
linear function, rather than benefitting from the efficiencies
of a canonical error-correcting code.

3.3 An integrity-protected, homomorphic
error-correcting code (IPH-ECC)

The homomorphic MAC construction we have outlined
presumes the ordinary cryptographic mode of use in which
a MAC is appended to a message. A more general view
is possible in which the message is transformed into a
codeword and the output of a PRF is applied to an arbi-
trary subset of symbols (and possibly all of them). In this
more general view, knowledge of (κ, κ′) permits message
recovery with the full properties of the underlying error-
correcting code. This is particularly useful in a distributed
setting. Intuitively, thanks to use of a PRF, it is possible
to “piggyback” on the redundancy across servers to con-
struct a MAC with no additional storage costs. Schwartz
and Miller adopt essentially this approach (again, without
the knowledge that they are implementing a homomorphic
MAC scheme). We define an integrity-protected, homomor-
phic ECC (IPH-ECC) as follows:

Definition 4 An (n, k, d) integrity-protected homomorphic
ECC is defined as an error-correcting code that encodes
messages of k symbols into codewords of n symbols using
a secret key κ and has minimum distance d. It has the ad-
ditional property that the codeword (c1, . . . , cn) is a homo-
morphic MAC on the message (m1, . . . , mk). (A similar
definition is possible for erasure codes.)
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Our IPH-ECC construction is a function H in which a
generalized Reed-Solomon code is applied to a message
M = (m1,m2, . . . ,mk), followed by the application of
a PRF function g. In particular, let ~κ = (κ1, . . . , κn) and
likewise for ~κ′. We define the encoding of message M and
a unique message “tag” (the file handle concatenated with
the position of the message in a file), as H~κ,~κ′(M, τ) =
(c1, . . . , cn), where ci = RS-UHFκi

(M) + gκ′i(τ), i =
[1, n].

For a systematic version of H , we apply the PRF func-
tion only to the parity blocks. We define ci = mi, i = [1, k]
and ci = RS-UHFκi(M) + gκ′i(τ), i = [k + 1, n]. We
employ this systematic IPH-ECC construction for our pro-
tocols in this paper.

Lemma 2 If RS-UHF is constructed from a (n, k, d)-
Reed-Solomon code and g is a PRF family, then the code H
defined above is a (n, k, d)-integrity-protected homomor-
phic code, with advantage

Advh-mac
H (q1, q2, t) ≤

[
Advh-mac

f (q1, q2, t)
]n−k

.

Proof: H is an error correcting code (or erasure code)
with the same (n, k, d) parameters as the underlying Reed-
Solomon code. The decoding algorithm can be built
straightforward by stripping off the PRF from the codeword
symbols, and then decoding under the Reed-Solomon code
the resulting codeword symbols.

Let A be an adversary algorithm for H that makes q1

queries to the MAC oracle, q2 queries to the composite
MAC verification oracle and runs in time t. It outputs a
message (m1, . . . ,mk) and its encoding (c1, . . . , cn) that
satisfies n− k linear equations in I (to be a valid codeword
in the Reed-Solomon code). We can then build n−k adver-
saries for the homomorphic MAC f , one for each linear re-
lation (i.e., the composite MAC verification oracle for each
adversary is the corresponding linear relation). Each such
adversary runs A, replies to its queries using its own ora-
cles, and outputs what A outputs. If A replies with a valid
codeword, all constructed adversaries succeed in breaking
the homomorphic MAC f .

3.4 Adversarial codes

Adversarial ECCs [7, 23] are codes resistant to a large
fraction of adversarial corruptions. While a standard ECC
is designed to provide information-theoretic properties, an
adversarial ECC uses cryptography to achieve otherwise in-
efficient (or impossible) levels of resilence against a com-
putationally bounded adversary.

An (n, k, d)-error-correcting code corrects up to d
2 er-

rors, and thus it supports a fraction of d
2n adversarial cor-

ruptions. But it is challenging to construct efficiently com-
putable codes with large message sizes and strong error

tolerance against an adversary. A standard technique for
building ECCs with large message sizes is striping, an ap-
proach that encodes consecutive message chunks and then
interleaves them to achieve heightened protection against,
e.g., burst errors. But striping doesn’t offer heightened pro-
tection against adversarial corruption: An adversary that
knows the stripe structure can work around it. And while
several classes of very efficient XOR erasure codes (e.g.,
Tornado, LT, Fountain and Raptor codes) tolerate a large
fraction of randomly distributed errors, their behavior to ad-
versarial corruptions is not understood.

BJO [7] first define adversarial codes formally and give
a construction based on cryptographically protected, striped
Reed-Solomon codes. In their construction, the file is per-
muted first with a secret key and then divided into stripes.
Parity blocks are computed for each stripe and appended to
the unmodified file. To hide stripe boundaries, parity blocks
are encrypted and permuted with another secret key. The
encoding of the file consists of the original file followed by
the permuted and encrypted parity blocks, and is system-
atic. The same construction (without rigorous formaliza-
tion, though) has been proposed independently by Curtmola
et al. [12].

BJO define an adversarial ECC as follows:

Definition 5 An (n, k, d)-adversarial error-correcting code
AECC consists of a private key space SK, an alphabet
Σ, and a triple of functions: (1) a probabilistic function
KGenECC : 1l → κ ∈ SK; (2) a deterministic function
enc : SK × Σk → Σn; and (3) a deterministic function
dec : SK × Σn → Σk.

Consider an adversary A with access to the enc and dec
oracles, whose goal is to output a pair of codewords at
small Hamming distance that decode to different messages.
We define:

Advadv-ecc
AECC (A, ε, δ) = Pr[κ ← SK; (c, c′) ← A() :

(c 6= c′) ∧ (|c− c′| ≤ εn)]− δ.
A (ε, γ, β)-adversarial code is such that

Advadv-ecc
AECC (A, ε, δ) is bounded above by β, for all

polynomial-time adversaries A.

The definition can be easily extended to erasure codes It
is easy to show that an (n, k, d)-ECC that is a maximum-
distance separable (MDS) (ε, γ, β)-adversarial code with
ε ≤ d

2n , is also a (2ε, γ, β)-adversarial erasure code.

4 Adversarial Model

We model a distributed file system for HAIL as a set of n
servers, S1, S2, . . . , Sn, and a trusted, external entity T . We
assume authenticated, private channels between T and each
server. The adversary A is mobile, i.e., can corrupt a dif-
ferent set of servers in each timestep. In practice T may be
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a client or an external auditor. We assume that there exists
known upper bounds on message delivery in the network,
and as such our system operates in a synchronous commu-
nication model.

A time step consists of three phases:
A corruption phase: The adversary A chooses a set of

up to d servers to corrupt (where d is a security parameter).
A challenge phase: The trusted entity T challenges some

or all of the servers.
A remediation phase: If T detects any corruptions in the

challenge phase, it may modify / restore servers’ file shares.

Let F denote the file distributed by T . Let F
(i)
t denote

the file share held by server Si at the beginning of timestep
t, i.e., prior to the corruption phase, and let F̂

(i)
t denote the

file share held by Si after the corruption phase. (Of course,
F

(i)
t+1 reflects the results of remediation in timestep t.)

Our model can characterize Byzantine adversariesA that
can corrupt F

(i)
t arbitrarily. More limited adversaries may

also be modelled. For instance, for erasing adversary, F̂
(i)
t

is a subset of F
(i)
t .

After a server undergoes remediation, we assume that it
then operates honestly, i.e., presents a correct application-
level interface, until it is again corrupted. This assump-
tion is necessary for a meaningful security model. As every
server may ultimately be corrupted at some time, permanent
software corruption would allow the adversary to cause all
servers to fail simultaneously. For example, A might pro-
gram all servers to fail at a pre-determined time or collec-
tively refuse to respond when the client seeks to retrieve F .

4.1 POR

Following [23], a POR comprises six functions. We
present modified versions of these functions for the dis-
tributed setting, and refer to them collectively as a HAIL
system. For clarity, we assume that the client is stateful and
omit the state variable ω. We also omit file handle η and
leave the system parameters π implicit where clearer (in-
cluding key lengths, etc.). A system HAIL comprises the
following POR functions:

• keygen → κ: The function keygen generates a key κ =
(sk, pk). (For symmetric-key PORs, pk may be null.)
• encode(F ; k, n, b, κ) → {F (i)

0 }n
i=1: The function encode

encodes F as a set of file segments, where F
(i)
0 is the seg-

ment designated for server i. The encoding is designed to
provide k-out-of-n redundancy across servers and to pro-
vide resilience against an adversary that can corrupt at most
b servers in any time step.
• challenge(κ) → {ci}n

i=1: The function challenge gener-
ates a challenge value ci for each server i.

• respond(i, c) → r: The function respond generates re-
sponse r from server i to challenge c.
• verify({ci, ri}n

i=1; κ) → b ∈ {0, 1}. The function verify
checks whether r1, . . . , rn is a valid response to challenge
c1, . . . , cn. It outputs a ‘1’ bit if verification succeeds, and
‘0’ otherwise. We assume for simplicity that verify is sound,
i.e., returns 1 for any correct response.
• extract(κ) → F ′: The function extract exploits the
challenge-response interface of the POR in the HAIL sys-
tem to recover the file. It dynamically determines a se-
quence of challenges that the client sends to each server.
If successful, F ′ = F ; otherwise, we assume that F ′ =⊥.

To extend the POR definition for HAIL, we require an
additional function:
• redistribute(κ): The function redistribute is an interactive
protocol that replaces {F̂ (i)

j }n
i=1 with {F (i)

j+1}n
i=1. It imple-

ments a recreation and distribution of segments of F . We
leave the definition of redistribute as general as possible.
The function may involve the client extracting segments,
reconstructing F , and reinvoking encode.

We also consider an optional function:
• proactivize(κ(i)

t , F
(i)
t ) → (κ

′(i)
t+1, F

′(i)
t+1): A server i exe-

cutes the function proactivize using server-specific key κ
(i)
t

to reorder a subset of file blocks in segment F
(i)
t , typically

through file-block permutation. The function updates both
F (i) and the key.

More general definitions for HAIL are possible, but ex-
cluded here. For example challenge and respond might be
defined as multi-server interactive protocols.

4.2 Security model

The adversary A is assumed to be stateful and have ac-
cess to oracles encode and verify; we assume that A re-
spects the bound b on the number of permitted corrup-
tions in a given epoch. Denote by π the system parameters
(k, n, b, T, εc, nc).
A participates in the two-phase experiment in Figure 1.

In the test phase, A outputs a file F , which is encoded
and distributed to servers. The second phase is a challenge
phase that runs for T time intervals. In each time interval,
A is allowed to corrupt the shares of at most b out of the n
servers. Each server is challenged nc times in each inter-
val, and A responds to the challenges sent to the corrupted
servers. If more than a fraction εc of its responses are incor-
rect, the redistribute algorithm is invoked.
A is successful if the experiment outputs 1, i.e., the

file can not be correctly extracted. We define the HAIL-
advantage of A as: AdvHAIL

A (π) = Pr[ExpHAIL
A (π) = 1].

We denote by AdvHAIL(π, q1, le, q2, t) the maximum advan-
tage of all adversaries making q1 queries to encode of total
length le, q2 queries to verify, and running in time at most t.
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Figure 2. Encoding of file F : on the left, original file represented as a matrix; on the right, encoded
file with parity blocks added for both the outer and dispersal codes.

Experiment ExpHAIL
A (π):

κ = (sk, pk) ← keygen
F ← A(“test”, pk, π)

{F (i)
0 }n

i=1 ← encode(F ; k, n, b, κ)
for j = 0 to T do

Cj ← A(“corrupt servers”, j)
{F̂ (i)

j }i∈Cj
← A(“modify segments”, {F (i)

j }i∈Cj
)

V ← 0
for l = 1 to nc do

c = (c1, . . . , cn) ← challenge(κ)
for i = 1 to n do

if i ∈ Cj then ri ← A(“respond”, ci)
else ri ← respond(i, ci)

if verify({ci, ri}n
i=1; κ) = 1 then

V ← V + 1

if V
nc

< 1− εc then redistribute

else {F (i)
j+1}n

i=1 ← {F̂ (i)
j }n

i=1

if extract(κ) = F then output ‘0’
else output ‘1’

Figure 1. HAIL security experiment.

5 HAIL: Protocol Specification

In this section, we give full details on the HAIL protocol.
We first review the key pieces of intuition.

In HAIL, the file F is distributed such that each server
Sj holds a fragment F (j) (whose exact form we specify be-
low). This fragment F (j) is encoded under a code ECCout

referred to in [7] as the outer code. The effect of the outer
code ECCout is to render F (j) robust to corruptions within
Sj . With a good choice of outer code, F (j) can be made
robust to multiple errors. For example, in a practical param-
eterization of our system, we might choose a code ECCout

that tolerates corruption of up to 10% of the blocks in F (j).
Given the use of a good outer code, then, an adversary

must corrupt a substantial fraction of F (j) to render it ir-

retrievable. Consequently, by performing random integrity
checks on the blocks of F (j), the client can detect irretriev-
able corruption of F (j) with high probability. (In contrast,
without encoding, a single bit corruption could be fatal, but
nearly undetectable.)

While the client could check individual blocks in F (j), a
more efficient approach is to check multiple blocks of F (j)

simultaneously. This is where the homomorphic MAC con-
struction has its place. The client can specify multiple posi-
tions in F (j), and verify their correctness via a single, com-
posite response from Sj . (For extra bandwidth savings, the
client can specify positions implicitly using a pseudoran-
dom seed.)

An important guarantee provided by the use of a POR
in HAIL is that the fragment F (j) can be extracted: The
client can retrieve F (j) with overwhelming probability us-
ing the challenge-response interface. To ensure extraction,
the homomorphically composed responses in the challenge-
response protocol in HAIL assume a special form. The re-
sponses are computed on the fly as symbols in a second
error-correcting code known as the inner code. (While tech-
nically important, the inner code isn’t essential to an intu-
itive understanding of HAIL.)

How does the client verify the correctness of the homo-
morphic MAC responses made by Sj? In the single-server
POR constructions of prior work, check values on F (j) are
explicitly stored on Sj along with F (j) itself. For instance,
in the Shacham-Waters construction, homomorphic MACs
are stored on segments of F (j). In contrast, in HAIL, there
are no explicit check values within servers. Instead, file re-
dundancy across servers provides the check values needed
to verify server responses within the POR framework.

This redundancy across servers is achieved via a third
error-correcting code that we call a dispersal code and de-
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note by ECCdisp. The dispersal code is an (n, kdisp)-error
correcting code that distributes the file F across n servers.
Natural choices of ECCdisp are systematic ones, i.e., codes
that partition F across kdisp servers and place parity blocks
on the remaining n − kdisp servers. A key feature of HAIL
is the choice of a dispersal code that contains an embed-
ded homomorphic MAC, namely an integrity-protected-
homomorphic code IPH-ECC. As explained above, the
combination of cryptography and error correction in our
integrity-protected-homomorphic code IPH-ECC imposes
no more storage costs than error-correction alone; the only
added cost is that of PRF computation.

Following our reactive design strategy TAR in HAIL,
file shares are recovered and redistributed only when de-
tecting faults through the challenge-response mechanism.
Upon detecting a fault, the client downloads all file frag-
ments, decodes the file, and redistributes only the corrupted
shares, while leaving unchanged the correct shares.

Notation Let (kdisp, n, ddisp), (kout, nout, dout) and
(kin, nin, din) be the parameters of the dispersal, outer and
inner codes, respectively. We assume that all the codes use
symbols derived from the same alphabet (the Galois field
I = GF [2l]), and thus have the same symbol size |I| = 2l.
We require that the codeword size of the dispersal code
equal the number of servers n and the number of faults
tolerated in each round b be at most ddisp .

5.1 Encoding Files

A graphical representation of our encoding algorithm
is given in Figure 2. Before transforming the file F into
a distributed, encoded representation Fd, we partition F
into kdisp distinct segments F (1), . . . , F (kdisp) and distribute
these segments across servers S1, . . . , Skdisp

respectively.
This distributed cleartext representation of the file remains
untouched by our subsequent encoding steps.

We then encode each segment F (j) under the outer code.
The effect of the outer code is to extend the ”columns” of
Fd by adding parity blocks. Next, we apply the dispersal
code. The dispersal code creates the parity blocks that re-
side on servers Skdisp+1, . . . , Sn. It extends the ”rows” of
Fd across the full set of n servers. (The dispersal code
and outer code in fact commute, so we can swap these two
encoding steps, if desired.) To embed the dispersal code
in a full-blown IPH-ECC, we also add PRF values on the
parity blocks for each row, i.e., on the blocks contained in
servers Skdisp+1, . . . , Sn. Viewed another way, we “encrypt”
columns kdisp+1 through n, thereby turning them into cryp-
tographic MAC values.

Finally, we compute a MAC over the full file F , and store
this MAC value on the client. This full-file MAC allows the
client to confirm when it has successfully downloaded the
file F .

Recall that inner code values are computed on the fly
during the challenge-response protocol. The inner code
plays no role in the initial file encoding. The steps of encode
are detailed below:

1. [File partitioning] Partition the file into kdisp seg-
ments and store segment F (j) on server j, for j = [1, kdisp].
Denote by mF = |F |/kdisp the number of symbols in
each segment. We have thus obtained a (mF , kdisp) matrix
{Fij}i=[1,mF ],j=[1,n] containing the original file blocks.

2. [Outer code application] Encode each file segment
F (j) under the outer systematic code ECCout, and obtain a
segment of m blocks at each server (where blocks mF +
1, . . . ,m are parity blocks for the outer code).

3. [Dispersal code / IPH-ECC application] Apply the
dispersal code ECCdisp constructed from the IPH-ECC code
to the rows of the encoded matrix obtained in step 2. We
determine thus the segments F (kdisp+1), . . . , F (n).

If we denote by Fd = {F d
ij}i=[1,m],j=[1,n] the en-

coded representation of F at the end of this step, then
F d

ij = Fij (i.e., block i in F (j)), for i = [1,mF ], and
F d

ij = RS-UHFκdisp
j

(Fi1 . . . Fikdisp
) + gκP RF

j
(τij), for i =

[mF + 1, m]. κdisp
j and κPRF

j are secret keys for selecting
the dispersal code symbol and for keying the PRF, respec-
tively. τij is a position index that depends on the file handle,
as well as the block index i and the server position j, e.g.,
file name concatenated with i and j.

4. [Whole-file MAC computation] Lastly, a crypto-
graphic MAC of the file (and its handle) is computed and
stored with the file.

The initial share at time 0 for each server Sj is F
(j)
0 =

{F d
ij}i=[1,m].

5.2 The Challenge-Response Proofs

In the HAIL challenge-response protocol, the client ver-
ifies the correctness of a random subset of rows D =
i1, . . . , iv in the encoded matrix. The client’s challenge con-
sists of the set D, as well as a challenge key u. Each server
Sj returns a homomorphic aggregate (linear combination)
of the blocks in the row positions of D. We denote this
aggregate value by Rj .

Intuitively here, because all servers operate over the
same subset of rows D, the sequence R = (R1, . . . , Rn)
is itself a codeword in the dispersal code—with aggregate
PRF pads ”layered” onto the responses Rkdisp+1, . . . , Rn of
the parity servers Skdisp+1, . . . , Sn. Thanks to our IPH-ECC,
the client can check the validity of the response R by strip-
ping away the PRF pads and verifying that the result is a
valid codeword in the dispersal code.

Other details are exactly as in the POR scheme in [7].
In particular, to ensure that the challenge-response interface
can be used for file extraction, each response Rj is com-
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puted as the uth symbol in the inner code ECCin. And for
bandwidth efficiency, the client can, of course, specify D as
pseudorandom subset computed from a seed s. The client
only transmits s then, not D.

To give more details, a challenge c consists of a seed κc,
from which v = kin positions i1, . . . , iv , as well as an index
u are derived. Each server responds with the u-th symbol in
the codeword obtained from the encoding of this message
under ECCin. The response to challenge c from server j is
Rj = pF d

i1j ...F d
ivj

(u).
To verify the responses received from the servers, the

client applies the verification algorithm of the integrity-
protected homomorphic MAC construction. More specifi-
cally, the client first strips off the PRF from the responses.
This can be done by the client with its PRF secret key:

R′j = Rj − us − 1
u− 1

m∑

i=1

gkP RF
j

(τij).

In order to check that (R′1, . . . , R
′
n) is a codeword of

ECCdisp, the client needs to check n− kdisp equations:

n∑

j=1

R′j
(κdisp

j )i−1

∏
l 6=j(κ

disp
j − κdisp

l )
= 0, 1 ≤ i ≤ n− kdisp.

5.3 Decoding Files

To recover the original file from the encoded matrix Fd,
two layers of decoding (of the dispersal and outer codes) are
applied.

Decode from the dispersal code. The first decoding step
for the client is to check the MAC implicit in each row of
the encoded matrix. If a row is corrupted, there are sev-
eral options for reconstructing it, depending on the choice
of dispersal code:

• If the dispersal code is an error-correcting code, then
ddisp

2 errors can be corrected in each row. This choice
imposes the requirement on A that b <

ddisp

2 .

• If the dispersal code is an erasure code, then it can cor-
rect ddisp erasures. In this case, a mechanism for con-
verting the erasure code into an error-correcting code
is needed. We can find erroneous blocks using the em-
bedded MAC. This approach requires brute force: We
try erasing each set of ddisp blocks, recover the mes-
sage from the other n−ddisp blocks using the dispersal
code, and accept if the result matches the embedded
MAC.

Using an erasure code instead of an error-correcting code
for ECCdisp requires fewer servers. The required brute-force

decoding, though, is asymptotically inefficient, since
(

n
ddisp

)

combinations of blocks have to be examined. We recom-
mend use of an erasure code for ECCdisp for small values of
n (e.g., n < 10), and a full-blown error-correcting code for
larger values of n.

Decode from the outer code. The blocks in the rows that
cannot be reconstructed from the dispersal code are marked
as erasures in the matrix. The outer code is then applied to
recover those erasures.

5.4 Redistribution of Shares

When a server corruption is detected through the
challenge-response mechanism at time t, the client contacts
all servers to download their current shares and build matrix
Fd. The client applies the decoding algorithm to decode the
file and recover the corrupted shares. The new shares are
redistributed to the corrupted servers at the beginning of the
next time interval t + 1 (after the corruption has been re-
moved through a reboot or alternative mechanism). Shares
for the servers that reply correctly can remain unchanged
for time t + 1.

5.5 Extraction

Since our encoding of files is systematic, the client could
recover the file from the first kdisp servers, assuming that
they return correct shares. If this first process is unsuc-
cessful, the client downloads the shares from all servers,
applies the decoding algorithm, and verifies that the recon-
structed file matches the integrity MAC stored locally. If
this fails as well, then the client invokes the extract algo-
rithm that uses the challenge-response mechanism provided
above. We omit here the full details of the extract algo-
rithm, as it is a straightforward generalization of the algo-
rithm given in [7] for the single-server case.

5.6 Optional Proactivization of Shares

To strengthen the security of our HAIL protocol, it is
possible periodically to invoke a proactivize algorithm. This
algorithm hides the component blocks of rows by indepen-
dently permuting file blocks within each server. This per-
mutation operation is keyed using a secret key shared be-
tween the server and client, so that the client remains aware
of the current ordering of each server’s file blocks. In sys-
tematic file encoding such as we consider here, proactivize
permutes only the parity blocks of the outer code in each
server (i.e., rows between mF + 1 and m in the encoded
matrix). To achive proactive security, a new shared per-
mutation key must be generated on each invocation of
proactivize in a forward-secure manner [4].
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5.7 Security Analysis

In our security analysis, we restrict ourselves to the case
in which the shares at each server are not proactivized. We
assume use of the Reed-Solomon-based adversarial outer
code ECCout proposed in BJO—but employed for efficiency
as an erasure code. The dispersal code ECCdisp is an
integrity-protected, homomorphic code (IPH-ECC as de-
fined in Section 3.3). Our goal is to bound the advantage of
the adversary in experiment ExpHAIL. Here is a roadmap of
our proof strategy:

1. [Filter correct replies] The homomorphic MACs in
the dispersal code enable us to check the replies received
from servers in the challenge-response protocol. Given the
properties of homomorphic MACs, we can bound the prob-
ability that the adversary is able to forge a correct reply.

2. [Bound fraction of correct replies] Drawing on the al-
gorithmic abstraction of BJO, the challenge-response proto-
col performed in each interval is used to ensure that a server
adversary replies correctly to a fraction 1−εc of challenges.
By specifying enough challenges nc in each time interval,
we can obtain the desired εc with overwhelming probability.

3. [Bound fraction of corrupted blocks at each server]
Drawing on the proofs of BJO, we are able to specify an
optimal adversarial strategy, i.e., one that achieves the maxi-
mum possible advantage in ExpHAIL. This adversary marks
a fixed set of file blocks on a server as red; all other blocks
are colored blue. If a challenge ”touches,” i.e., includes a
red block, then the adversary provides a corrupted response;
otherwise, the adversary provides a correct response. We
refer to this adversary as a red-blue adversary.

Given a particular inner code and challenge-set size, and
a red-blue adversary that corrupts at most εc-fraction of re-
sponses, we are able to compute a bound εb on the fraction
of red blocks that the adversary creates on each server. The
bounds we prove on the red-blue adversary apply to any ad-
versary.

4. [Extraction with inner code] By specifying enough
challenges in our extract algorithm—and making appropri-
ate use of our inner code—we can filter out all red blocks
and retrieve all blue blocks correctly w.o.p. Given this fil-
tering abstraction provided by techniques in BJO, we can
treat the extract algorithm in HAIL as simply obtaining a
(1− εb)-fraction of correct blocks from the original file.

5. [Extraction with adversarial code] File encoding in
HAIL obtained as a composition of the outer and dispersal
codes is, in fact, an adversarial code, whose exact parame-
ters we determine below. Given a bound on the number of
correct blocks extracted from each server, and the param-
eters of the new adversarial code that, intuitively, random-
izes the positions of red blocks, we can effectively com-
pute the probability with which we are able to recover the

missing blocks, and thus defeat the adversary in experiment
ExpHAIL.

The MACs in our scheme come into play in two places.
First, these MACs serve to verify server responses in the
classification phase of HAIL. Second, the MACs permit the
extract algorithm to filter out corrupted responses when it
uses the challenge-response interface to retrieve file blocks.
This filtering process effectively reduces a corrupting adver-
sary to an erasing one. It allows us to use erasure codes as
our inner code and outer codes, rather than error-correcting
codes.

For filtering correct replies (i.e., step 1 in our outline),
we give the following lemma:

Lemma 3 Consider an adversary A participating in
ExpHAIL

A (π) making q1 queries to the encode oracle of total
length le, q2 queries to the verify oracle, and running in time
at most t. Let r = {ri}n

i=1 be the response sent to challenge
c = {ci}n

i=1. If there exists at least one ri not computed
as in the respond protocol (i.e., as a linear combination of
some blocks with indices derived from ci), then the proba-
bility that the reply is accepted is Advh-mac

H (le/kdisp, q2, t).

Proof: Assume thatA is able to fabricate an incorrect reply
r = {ri}n

i=1 to challenge c = {ci}n
i=1. We construct an

adversary A′ for the homomorphic MAC.
A′ runsA. WhenAmakes a query to encode of length l,

A′ makes l/kdisp queries to the homomorphic MAC oracle.
When A makes a query to verify, A′ makes a query to its
composite MAC verification oracle. When A outputs r, A′
outputs r as a composite MAC on (r1, . . . , rkdisp

). It follows
that the h-mac-advantage ofA′ is the success probability of
A.

A discussion for choosing the number of challenges in
each interval to bound the fraction of incorrect replies to εc

is included in BJO. The following lemma shows the cor-
respondence between the fraction of red blocks εb and the
fraction of correct replies for a red-blue adversary (step 3 in
the outline):

Lemma 4 Consider a red-blue adversary that corrupts one
server that responds correctly to a fraction of 1−εc of chal-
lenges in a time interval. If 0 < εc ≤ din

2nin
, and there exists

an εb for which 0 < εb < dout

4nout
, then we can obtain an upper

bound on εb (the fraction of red blocks on the server) from
the relation [1− (1− εb)kin ] = 2εcnin

din
.

This lemma is part of the proof of the main theorem from
[7], and we do not elaborate on its proof. We could apply
the result in the lemma to compute εc as a function of εb.

The properties of the adversarial outer code construction
given in BJO are as follows:
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Fact 3 Let (ns, ks, ds) be the parameters of the code used
for encoding stripes in the adversarial outer code construc-
tion given in [7]. If εb ≤ ds

4ns
, then the outer code is an

(2εb, δ, 0) adversarial code. (We refer the readers to [7] for
an exact definition of δ).

The composition of the outer and dispersal codes in
HAIL can be viewed as an adversarial code. Let us now
analyze its security (step 5 in the proof outline).

Lemma 5 If εb ≤ ds

4ns
, then the encoding of files in

the HAIL protocol is an (εH
b = 2kdisp

n εb, δ, 0) adversarial
ECC (and, consequently, an (2εH

b , δ, 0) adversarial erasure
code).

Proof: Consider an adversary A for the HAIL encoding
that outputs two encoded files c1 and c2 (i.e., matrices of
dimension m × n) at Hamming distance εH

b mn with prob-
ability bounded by δ. We construct an adversary A′ for the
outer code that outputs c′1 and c′2 constructed from only the
first kdisp columns of the matrix for c1 and c2, respectively
(We effectively remove the parity blocks of the dispersal
code from the encoding).

The Hamming distance between c′1 and c′2 is at most
εH
b mn = 2εbmkdisp. But the size of the file encoded under

the outer code is mkdisp. Then the AECC-advantage of A′
for ECCout is the same as that of A for the HAIL encoding.

We have now all the elements to complete our security
analysis.

Theorem 1 If εb ≤ ds

4ns
, let εH

b = 2kdisp

n εb, εH
c be the frac-

tion of incorrect replies for a red-blue adversary that sets at
most (2εH

b ) red blocks (computed as in Lemma 4) and nH
c

be the number of challenges that are needed to ensure an
εH
c -adversary. Then:

AdvHAIL(π, q1, le, q2, t) ≤ T
[
Advh-mac

H (le/kdisp, q2, t)
]
+ δ.

Proof: Consider a red-blue adversary A that participates
in experiment ExpHAIL

A (π) making q1 queries to encode of
total length le, q2 queries to verify, and running in time at
most t. The advantage of A is the probability that the file
can not be extracted at the end of the experiment. There are
two cases to consider:

1. There exists at least one server for which A marks
as red a fraction of more than 2εH

b blocks at time tc ≥
0. By Lemmas 3 and 4, the probability that A still
replies correctly to a fraction of 1 − εH

c challenges in
each subsequent time interval is upper bounded by (T −
tc)

[
Advh-mac

H (le/kdisp, q2, t)
]
.

2. A marks a fraction of at most 2εH
b red blocks in each

server. Drawing on the BJO framework, we can extract
from the inner code a fraction of at least 1 − 2εH

b correct
blocks (the blue blocks). From Lemma 5, the probability

that the full file can not be extracted from the encoding un-
der the outer and dispersal code is bounded by δ.

The theorem follows immediately.

6 Implementation

We implemented file-encoding functions for the (single-
server) POR algorithm and for HAIL. The POR requires
pre-computed challenge-response check values to be stored
with the file (as there is no cross-server redundancy). The
number of check values depends on how often the server
will be queried, the desired security level, and the expected
lifetime of the file. Reflecting practical parameter choices
in [7], we present graphs with a security level of δ = 10−6,
an (233, 251, 18)-outer code and 1000, 10,000, and 30,000
challenges. These correspond respectively to a one chal-
lenge a day for three years, one a day for thirty years, and
three a day for thirty years.

By comparison, encoding in HAIL does not involve pre-
computed check values, but does involve the dispersal code.
We consider different parameters for the dispersal code,
varying the number of servers from 3 to 15, and the num-
ber of redundant servers from 2 to 8. Due to the use of
homomorphic MACs in HAIL, we could use in HAIL an
outer erasure code, instead of a full error-correcting code,
as used in POR. However, the outer code in HAIL needs to
be resistant to the same percentage of errors as that of POR.
Intuitively, this is due to an adversarial strategy that targets
a subset of same rows of the encoded matrix in all servers.
For correcting the same percentage of errors, we set the dis-
tance of the outer code in HAIL to be 9, i.e, half that of the
POR outer code.

The dispersal and outer codes in our implementa-
tion are constructed using an off-the-shelf Reed-Solomon
(223,255,32) encoder over GF [28], extended via striping to
operate on 32-byte symbols, i.e., GF [2256]. An (223, 223+
d, d) outer code is obtained by encoding messages of size
223, and truncating the codeword to 223 + d symbols. To
obtain an (kdisp, n, ddisp) outer code, the message is padded
with zeros to 223 symbols and the resulting codeword is
truncated to n symbols. Thus several optimizations are pos-
sible, including a native implementation of the dispersal
code and optimizations for small message sizes.

We performed our experiments using Java on an Intel
Core 2 processor running at 2.16 GHz. The JVM was given
1GB of memory and all cryptographic operations use the
Java implementation of RSA BSAFE. Test files were stored
on, and output files were written to, a 7200 RPM Hitachi
100 GB Parallel-ATA drive with an 8MB buffer. The aver-
age latency time for the hard drive is 4.2ms with an average
seek time is 10ms.

The file is encoded in a single pass to minimize the cost
of disk accesses. To make this feasible, intermediate state in
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Figure 3. Encoding Time for HAIL vs POR: on the left, constant number of redundant servers; on the
right, a constant number of primary servers.

the computation of the outer code must be kept in memory.
As shown in [7], this approach encodes 12 GB of file for ev-
ery 1 GB of available memory. (Larger files may be divided
into 12 GB chunks, each requiring separate encoding.)

Figure 3 shows the encoding cost in HAIL compared to
POR. On the left graph, we present the encoding cost as the
number of redundant servers remains constant at 2, and on
the right graph we keep the number of primary kdisp servers
constant at 8, and increase the redundant servers.

We observe that the outer code encoding in HAIL is re-
duced by a third compared to POR, due to the smaller dis-
tance of the outer code. Total encoding time for HAIL with
up to 15 servers is comparable to the cost of POR encoding
with 1000 challenges. While the cost of POR dramatically
increases with the number of challenges, the cost of HAIL
encoding remains the same.

Somewhat counterintuitive is the fact that the dispersal
cost decreases as the number of servers increases. This is
an artifact of our dispersal code implementation: as kdisp

increases, there are fewer calls to the Reed-Solomon en-
coder. We expect that this effect be ameliorated in a code
optimized for small message sizes. As expected, when kdisp

is constant, the dispersal cost increases linearly as more re-
dundant servers are added.

7 Conclusion

We have proposed HAIL, a high-availability and -
integrity layer that extends the basic principles of RAID
into the more adversarial setting of the cloud. HAIL is a
remote-file integrity checking protocol that unifies previ-
ous single-server POR protocols with distributed proposals
that operate across a set of servers. Through a careful inter-
leaving of different types of error-correcting layers, it pro-
tects against a strong, mobile adversary inspired by proac-

tive cryptographic models.
We envision several extensions to HAIL that we plan to

address in future work. The first is a model in which servers
may be added to or removed from the system across time.
An interesting question in such a model is if we can con-
struct efficient protocols for redistribution of shares that do
not involve full file reconstruction and redistribution. We
also plan to consider adversaries that are not fully Byzan-
tine (erase-only adversaries, economically rational adver-
saries, etc.), and find efficient HAIL strategies for such ad-
versaries. Finally, we plan to investigate the potential bene-
fits of HAIL protocols that permit inter-server communica-
tion.
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