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Abstract

We introduce HAIL (High-Availability and Integrity
Layer), a distributed cryptographic system that permits a
set of servers to prove to a client that a stored file is in-
tact and retrievable. HAIL strengthens, formally unifies,
and streamlines distinct approaches from the cryptographic
and distributed-systems communities. Proofs in HAIL are
efficiently computable by servers and highly compact—
typically tens or hundreds of bytes, irrespective of file size.
HAIL cryptographically verifies and reactively reallocates
file shares. It is robust against an active, mobile adver-
sary, i.e., one that may progressively corrupt the full set of
servers. We propose a strong, formal adversarial model for
HAIL, and rigorous analysis and parameter choices. We
show how HAIL improves on the security and efficiency of
existing tools, like Proofs of Retrievability (PORs) deployed
on individual servers. We also report on a prototype imple-
mentation.

1 Introduction

Cloud storage denotes a family of increasingly popular
on-line services for archiving, backup, and even primary
storage of files. Amazon S3 [1] is a well known exam-
ple. Cloud-storage providers offer users clean and simple
file-system interfaces, abstracting away the complexities of
direct hardware management. At the same time, though,
such services eliminate the direct oversight of component
reliability and security that enterprises and other users with
high service-level requirements have traditionally expected.

To restore security assurances eroded by cloud environ-
ments, researchers have proposed two basic approaches to
client verification of file availability and integrity. The cryp-
tographic community has proposed tools called proofs of
retrievability (PORs) [24] and proofs of data possession
(PDPs) [2]. A POR is a challenge-response protocol that
enables a prover (cloud-storage provider) to demonstrate to

a verifier (client) that a file F is retrievable, i.e., recover-
able without any loss or corruption. The benefit of a POR
over simple transmission of F is efficiency. The response
can be highly compact (tens of bytes), and the verifier can
complete the proof using a small fraction of F . Roughly
speaking, a PDP provides weaker assurances than a POR,
but potentially greater efficiency.

As a standalone tool for testing file retrievability against
a single server, though, a POR is of limited value.1 De-
tecting that a file is corrupted is not helpful if the file is irre-
trievable and thus the client has no recourse. Thus PORs are
mainly useful in environments where F is distributed across
multiple systems, such as independent storage services. In
such environments, F is stored in redundant form across
multiple servers. A verifier (user) can test the availability of
F on individual servers via a POR. If it detects corruption
within a given server, it can appeal to the other servers for
file recovery. To the best of our knowledge, the application
of PORs to distributed systems has remained unexplored in
the literature.

A POR uses file redundancy within a server for verifi-
cation. In a second, complementary approach, researchers
have proposed distributed protocols that rely on queries
across servers to check file availability [26, 35]. In a
distributed file system, a file F is typically spread across
servers with redundancy—often via an erasure code. Such
redundancy supports file recovery in the face of server er-
rors or failures. It can also enable a verifier (e.g., a client) to
check the integrity of F by retrieving fragments of F from
individual servers and cross-checking their consistency.

In this paper, we explore a unification of the two ap-
proaches to remote file-integrity assurance in a system that
we call HAIL (High-Availability and Integrity Layer).

HAIL manages file integrity and availability across a col-
lection of servers or independent storage services. It makes
use of PORs as building blocks by which storage resources
can be tested and reallocated when failures are detected.

1A standalone POR is useful for quality-of-service testing. The speed
of the verifier’s response gives an upper bound on expected delivery
throughput for F . We don’t treat QoS issues in this paper.
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HAIL does so in a way that transcends the basic single-
server design of PORs and instead exploits both within-
server redundancy and cross-server redundancy.

HAIL relies on a single trusted verifier—e.g., a client or
a service acting on behalf of a client—that interacts with
servers to verify the integrity of stored files. (We do not
consider a clientless model in which servers perform mu-
tual verification, as for distributed information dispersal al-
gorithms such as [16, 18, 8, 21].)

HAIL offers the following benefits:

• Strong file-intactness assurance: HAIL enables a set
of servers to prove to a client via a challenge-response
protocol that a stored file F is fully intact—more pre-
cisely, that the client can recover F with overwhelm-
ing probability. HAIL protects against even small, e.g.,
single-bit, changes to F .

• Low overhead: The per-server computation and band-
width required for HAIL is comparable to that of
previously proposed PORs. Apart from its use of
a natural file sharing across servers, HAIL improves
on PORs by eliminating check values and reducing
within-server file expansion.

• Strong adversarial model: HAIL protects against an
adversary that is active, i.e., can corrupt servers and al-
ter file blocks and mobile, i.e., can corrupt every server
over time.

• Direct client-server communication: HAIL involves
one-to-one communication between a client and
servers. Servers need not intercommunicate—or even
be aware of other servers’ existence. (In comparison,
some information dispersal algorithms involve server-
to-server protocols, e.g., [16, 18, 8, 21].) The client
stores just a secret key.

• Static / dynamic file protection: In this paper, we
show how HAIL protects static stored objects, such as
backup files and archives. But our tools and framework
can be modified with little added overhead to accom-
modate file updates, i.e., to provide integrity assurance
for dynamically changing objects. We briefly explain
this direction in the paper conclusion.

Our two broad conceptual contributions in HAIL are:

Security modeling We propose a strong, formal model
that involves a mobile adversary, much like the model that
motivates proactive cryptographic systems [23, 22]. A mo-
bile adversary is one capable of progressively attacking
storage providers—and in principle, ultimately corrupting
all providers at different times.

None of the existing approaches to client-based file-
integrity verification treats the case of a mobile adversary.

We argue that the omission of mobile adversaries in previ-
ous work is a serious oversight. In fact, we claim that a
mobile adversarial model is the only one in which dynamic,
client-based verification of file integrity makes sense. The
most common alternative model is one in which an ad-
versary (static or adaptive) corrupts a bounded number of
servers. As real-world security model for long-term file
storage, this approach is unduly optimistic: It assumes
that some servers are never corrupted. More importantly,
though, an adversarial model that assumes a fixed set of
honest servers for all time does not require dynamic in-
tegrity checking at all: A robust file encoding can guarantee
file recovery irrespective of whether or not file corruptions
are detected beforehand.

HAIL design strategy: Test-and-Redistribute (TAR)
HAIL is designed like a proactive cryptographic system to
withstand a mobile adversary. But HAIL aims to protect
integrity, rather than secrecy. It can therefore be reactive,
rather than proactive. We base HAIL on a new protocol-
design strategy that we call TAR (Test-And-Redistribute).
With TAR, the client uses PORs to detect file corruption and
trigger reallocation of resources when needed—and only
when needed. On detecting a fault in a given server via
challenge-response, the client communicates with the other
servers, recovers the corrupted shares from cross-server re-
dundancy built in the encoded file, and resets the faulty
server with a correct share.

Our TAR strategy reveals that for many practical applica-
tions, PORs and PDPs are overengineered. PORs and PDPs
assume a need to store explicit check values with the prover.
In a distributed setting like that for HAIL, it is possible
to obtain such check values from the collection of service
providers itself. On the other hand, distributed protocols
for checking file availability are largely underengineered:
Lacking robust testing and reallocation, they provide inade-
quate protection against mobile adversaries.

Three main coding constructions lie at the heart of
HAIL:

• Dispersal code: In HAIL, we use what we call
a dispersal code for robustly spreading file blocks
across servers. For the dispersal code in HAIL, we
propose a new cryptographic primitive that we call
an integrity-protected error-correcting code (IP-ECC).
Our IP-ECC construction draws together PRFs, ECCs,
and universal hash functions (UHFs) into a single
primitive. This primitive is an error-correcting code
that is, at the same time, a corruption-resilient MAC on
the underlying message. The additional storage over-
head is minimal—basically just one extra codeword
symbol.

In a nutshell, our IP-ECC is based on three proper-
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ties of (certain) universal hash function families h:
(1) h is linear, i.e., hκ(m) + hκ(m′) = hκ(m +
m′) for messages m and m′ and key κ; (2) For
a pseudorandom function family (PRF) g, the func-
tion hκ(m) + gκ′(m) is a cryptographic message-
authentication code (MAC) on m; and (3) hκ(m) may
be treated as a parity block in an error-correcting code
applied to m.

• Server code: File blocks within each server are addi-
tionally encoded with an error-correcting code that we
call a server code. This code protects against the low-
level corruption of file blocks that may occur when in-
tegrity checks fail. (For efficiency, our server code is
a computational or “adversarial” error-correcting code
as defined in Bowers et al. [6].)

• Aggregation code: HAIL uses what we call an aggre-
gation code to compress responses from servers when
challenged by the client. It acts across multiple code-
words of the dispersal code. One feature of the aggre-
gation code is that it combines / aggregates multiple
MACs in our IP-ECC into a single composite MAC.
This composite MAC verifies correctly only if it rep-
resents a combination of valid MACs on each of the
aggregated codewords.

Note that while the aggregation code is built on an
error-correcting code, it is computed as needed, and
thus imposes no storage or file-encoding overhead.

Organization We review related work in section 2. We
give an overview of the HAIL construction and its main
technical ingredients in Section 3. We present our adver-
sarial model in section 4 and describe technical building
blocks for HAIL in section 5. We detail the HAIL protocol
in section 6, and analyze its security and discuss parame-
ter choices in Section 7. Finally, we give implementation
results in section 8 and conclude in section 9.

2 Related Work

HAIL may be viewed loosely as a new, service-oriented
version of RAID (Redundant Arrays of Inexpensive Disks).
While RAID manages file redundancy dynamically across
hard-drives, HAIL manages such redundancy across cloud
storage providers. Recent multi-hour failures in S3 [17] il-
lustrate the need to protect against basic service failures in
cloud environments. In view of the rich targets for attack
that cloud storage providers will present, HAIL is designed
to withstand Byzantine adversaries. (RAID is mainly de-
signed for crash-recovery.)

Information dispersal Distributed information dispersal
algorithms (IDA) that tolerate Byzantine servers have been
proposed in both synchronous networks [16], as well as
asynchronous ones [18, 8, 21]. In these algorithms, file in-
tegrity is enforced within the pool of servers itself. Some
protocols protect against faulty clients that send inconsis-
tent shares to different servers [18, 8, 21]. In contrast,
HAIL places the task of file-integrity checking in the hands
of the client or some other trusted, external service and
avoids communication among servers. Unlike previous
work, which verifies integrity at the level of individual file
blocks, HAIL provides assurance at the granularity of a full
file. This difference motivates the use of PORs in HAIL,
rather than block-level integrity checks.

Universal Hash Functions Our IP-ECC primitive fuses
several threads of research that have emerged indepen-
dently. At the heart of this research are Universal Hash-
Functions (UHFs). (In the distributed systems literature,
common terms for variants of UHFs are algebraic signa-
tures [28, 35] or homomorphic fingerprinting [21].) UHFs
can be used to construct message-authentication codes
(MAC) [4, 20, 14] (see [31] for a performance evaluation
of various schemes). In particular, a natural combination of
UHFs with pseudorandom functions (PRFs) yields MACs;
these MACs can be aggregated over many data blocks and
thus support compact proofs over large file samples.

PORs and PDPs Juels and Kaliski (JK) [24] propose a
POR protocol and give formal security definitions. The
main JK protocol supports only a limited number of chal-
lenges, whose responses are precomputed and appended to
the encoded file. Shacham and Waters (SW) [36] use an im-
plicit MAC construction that enables an unlimited number
of queries, at the expense of larger storage overhead. Their
MAC construction is based on the UHF + PRF paradigm,
but they construct a UHF based on a random linear func-
tion, rather than a more efficient, standard error-correcting
code.

In concurrent and independent work, Bowers et al. [6]
and Dodis et al. [13] give general frameworks for POR pro-
tocols that generalize both the JK and SW protocols. Both
papers propose the use of an error-correcting code in com-
puting server responses to client challenges with the goal of
ensuring file extraction through the challenge-response in-
terface. The focus of [13] is mostly theoretical in providing
extraction guarantees for adversaries replying correctly to
an arbitrary small fraction of challenges. In contrast, Bow-
ers et al. consider POR protocols of practical interest (in
which adversaries with high corruption rates are detected
quickly) and show different parameter tradeoffs when de-
signing POR protocols.

Ateniese et al. [2] propose a closely related construc-
tion called a proof of data possession (PDP). A PDP detects
a large fraction of file corruption, but does not guarantee
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file retrievability. Subsequent work shows how file updates
might be performed in the PDP model [3]. Curtmola et
al. [12] proposed an extension of PDPs to multiple servers.
Their proposal essentially involves computational cost re-
duction through PDP invocations across multiple replicas
of a single file, rather than a share-based approach.

Filho and Barreto [15] describe a PDP scheme based on
full-file processing. Shah et al. [37] consider a symmetric-
key variant, but their scheme only works for encrypted
files, and auditors must maintain long-term state. Naor and
Rothblum [30], extending the memory-checking schemes
of Blum et al. [5], describe a theoretical model that may be
viewed as a generalization of PORs.

Distributed protocols for dynamic file-integrity check-
ing Lillibridge et al. [26] propose a distributed scheme
in which blocks of a file F are dispersed across n servers
using an (n,m)-erasure code (i.e., any m out of the n frag-
ments are sufficient to recover the file). Servers spot-check
the integrity of one another’s fragments using message au-
thentication codes (MACs).

Schwartz and Miller (SM) [35] propose a scheme that
ensures file integrity through distribution across multiple
servers, using error-correcting codes and block-level file in-
tegrity checks. They employ keyed algebraic encoding and
stream-cipher encryption to detect file corruptions. Their
keyed encoding function is equivalent to a Reed-Solomon
code in which codewords are generated through keyed se-
lection of symbol positions. Their corruption-detection sys-
tem is in this view the message-authentication code (MAC)
construction proposed in [39]. We adopt some ideas of si-
multaneous MACing and error-correcting in our HAIL con-
structions, but we define the construction rigorously and
formally analyze its security properties.

Proactive cryptography Our adversarial model is in-
spired by the literature on proactive cryptography initiated
by [23], which has yielded protocols resilent to mobile
adversaries for secret sharing [23, 7] as well as signature
schemes [22].

Proactive recovery has been proposed for the BFT sys-
tem by Castro and Liskov [10]. Their system constructs a
replicated state machine that tolerates a third of faulty repli-
cas in a window of vulnerability, but any number of faults
over the lifetime of the system.

In previous proactive systems, key compromise is a
silent event; consequently, these systems must redistribute
shares automatically and provide protections that are proac-
tive. Corruption of a stored file, however, is not a silent
event. It results in a change in server state that a verifier can
detect. For this reason, HAIL can rely on remediation that
is reactive. It need not automatically refresh file shares at
each interval, but only on detecting a fault.

3 HAIL Overview

In this section, we present the key pieces of intuition be-
hind HAIL. We start with simple constructions and build up
to more complex ones.

In HAIL, a client distributes a file F with redundancy
across n servers and keeps some small (constant) state lo-
cally. The goal of HAIL is to ensure resilience against a
mobile adversary. This kind of powerful adversary can po-
tentially corrupt all servers across the full system lifetime.
There is one important restriction on a mobile adversary,
though: It can control only b out of the n servers within any
given time step. We refer to a time step in this context as an
epoch.

In each epoch, the client that owns F (or potentially
some other entity on the client’s behalf) performs a number
of checks to assess the integrity of F in the system. If cor-
ruptions are detected on some servers, then F can be recon-
stituted from redundancy in intact servers and known faulty
servers replaced. Such periodic integrity checks and reme-
diation are an essential part of guaranteeing data availabil-
ity against a mobile adversary: Without integrity checks,
the adversary can corrupt all servers in turn across dn/be
epochs and modify or purge F at will.

Let us consider a series of constructions, explaining the
shortcomings of each and showing how to improve it. In
this way, we introduce the full conceptual complexity of
HAIL incrementally.

Replication system. A first idea for HAIL is to replicate
F on each of the n servers. Cross-server redundancy can
be used to check integrity. To perform an integrity check,
the client simply chooses a random file-block position j and
retrieves the corresponding block Fj of F from each server.
Provided that all returned blocks are identical, the client
concludes that F is intact in that position. If it detects any
inconsistencies, then it reconstructs F (using majority de-
coding across servers) and removes / replaces faulty servers.
By sampling multiple file-block positions, the client can
boost its probability of detecting corruptions.

A limitation of this approach is that the client can only
feasibly inspect a small portion of F . Another is that while
the client checks consistency across servers, it does not di-
rectly check integrity, i.e., that the retrieved block for posi-
tion j is the one originally stored with F . Consequently, this
simple approach is vulnerable to a creeping-corruption at-
tack. The adversary picks a random position i and changes
the original block value Fi to a corrupted value F̂i in all b
servers corrupted during a given epoch. After dn/be epochs,
the adversary will have changed Fi to F̂i on all servers. At
this point, blocks in position i will pass a consistency check
by the client—even though they are corrupted.

The adversary “wins” simply by corrupting at least half
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Figure 1. Encoding of file F : on the left, original file represented as a matrix; on the right, encoded
file with parity blocks added for both the server and dispersal codes.

of the blocks in any position i. At that point, majority de-
coding will fail. The adversary can do this in T = dn/(2b)e
epochs.

Because the client can feasibly check only a small frac-
tion of the file, the probability that it will detect temporary
inconsistencies introduced by the adversary’s corruptions is
low. Thus, the adversary can escape detection and render F
unretrievable with high probability in T epochs.

Replication system with POR. To achieve better resi-
lence against a creeping-corruption attack, we might em-
ploy a POR system (e.g., [24, 36, 6]) on each of the n
servers. In a single-server POR system, F is encoded un-
der an error-correcting code (or erasure code) that we refer
to in HAIL as the server code. The server code renders
each copy of F robust against a fraction εc of corrupted
file blocks, protecting against the single-block corruptions
of our previous approach. (Here εc is the error rate of the
server code.)

There are then two options to check the integrity of F .
One is to use the single-server POR approach of embedding
integrity checks within each server’s copy of F . This ap-
proach, however, imposes high storage overhead: It does
not take advantage of cross-server redundancy.

An alternative approach is to perform integrity checks by
comparing block values in a given position j using cross-
server redundancy as in our previous construction. With
this approach, the system is still vulnerable to a creeping-
corruption attack, but much less than in the previous con-
struction. Suppose that the POR can detect inconsistencies
across the servers in any εd fraction of blocks of F with

high probability, i.e., the adversary can escape detection by
modifying at most εd blocks in corrupted servers.

Assuming that the client performs majority decoding to
replace faulty servers whenever it detects corruption, this
approach will ensure the integrity of F with high probability
for T = dn/(2b)e × (εc/εd) epochs—improving over the
previous approach by a factor of εc/εd.

Dispersal code with POR. We can improve the storage
overhead of the previous approach with a more intelligent
approach to creating file redundancy across servers. Rather
than replicating F across servers, we can instead distribute
it using an error-correcting (or erasure) code. We refer to
this code in HAIL as the dispersal code. In HAIL, each file
block is individually distributed across the n servers under
the dispersal code.

Let (n, `) be the parameters of the dispersal code. We
assume for convenience that this code is systematic, i.e.,
that it preserves ` message blocks in their original form.
Then ` is the number of primary servers, those servers that
store fragments of the original file F . The remaining n −
` are secondary servers, or redundant servers, i.e., servers
that maintain additional redundancy/parity blocks and help
recover from failure.

A graphical representation of dispersal encoding is given
in Figure 1. Before transforming the file F into a dis-
tributed, encoded representation, we partition it into ` dis-
tinct segments F (1), . . . , F (`) and distribute these segments
across the primary servers S, . . . , S`. This distributed clear-
text representation of the file remains untouched by our sub-
sequent encoding steps. We then encode each segment F (j)
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under the server code with error rate εc. The effect of the
server code is to extend the “columns” of the encoded ma-
trix by adding parity blocks. Next, we apply the dispersal
code to create the parity blocks that reside on the secondary
servers. It extends the “rows” of the encoded matrix across
the full set of n servers S1, . . . , Sn.

With this scheme, it is possible to use cross-server re-
dundancy to check the integrity of F . The client / verifier
simply checks that the blocks in a given position, i.e., “row,”
constitute a valid codeword in the dispersal code.

By means of the dispersal code, we reduce the over-
all storage cost of our previous construction from n|F | to
(n/`)|F |.

Use of a dispersal code does reduce the number of
epochs T over which it is possible to ensure the integrity
of F with high probability. This is because the adversary
can now corrupt a given “row” / codeword merely by cor-
rupting at least (d − 1)/2 blocks, where d is the minimum
distance of the dispersal code. (For an (n, `)-Reed-Solomon
dispersal code, for instance, d = n − ` + 1.) In our next
construction, however, we show how to reduce vulnerabil-
ity to creeping-corruption attacks considerably using cryp-
tographic integrity checks. This improvement greatly ex-
tends the integrity lifetime T of the file F .

Remark. The three simple constructions we have shown
thus far have the attractive property of being publicly veri-
fiable. It may be that F is encrypted and that server code
is cryptographically keyed (for reasons we explain below).
Thus only the client that stored F can retrieve it. But it is
still possible for any entity to perform an integrity check
on F . Integrity checks only involve verification of block
consistency across servers, and therefore don’t require any
secret keys. In our next construction, we sacrifice public
verifiability in favor of a much longer lifetime T of integrity
assurance for F .

Embedding MACs into dispersal code. We now show
how to address the problem of creeping-corruption attacks.
Our solution is to authenticate matrix rows with a message-
authentication code (MAC), computed with a secret key
known by the client. A simple approach is to attach a MAC
to each file block on each server. We achieve a solution with
lower storage overhead, however.

Our key insight (inspired by ideas of Schwartz and Miller
[35]) is to embed MACs in the parity blocks of the disper-
sal code. As we show, both MACs and parity blocks can
be based on a universal hash function. Consequently, it
is possible to create a block that is simultaneously both a
MAC and a parity block. One of our main contributions is
a construction based on this idea that we call an integrity-
protected error-correcting code (IP-ECC). By inserting
MACs into each row of the encoded matrix, we are able to

effectively verify the responses received from servers. This
mechanism protects against creeping-corruption attacks be-
cause it does not just check that rows are self-consistent as
in the simpler approaches described above. Instead, with
MACs, it is possible to ensure that rows do not differ from
their original values in F .

Aggregating responses. While the client could check in-
dividual blocks in the encoded file, a more efficient ap-
proach is to check multiple blocks of the file simultane-
ously. Another contribution of our paper is to provide a
mechanism to aggregate MACs across multiple blocks. The
client can specify multiple positions in the file, and verify
their correctness via a single, composite response from each
server. (For extra bandwidth savings, the client can specify
positions implicitly using a pseudorandom seed.)

We propose to use a linear code in HAIL called the
aggregation code for combining servers’ responses in a
challenge-response protocol. The aggregate response is a
linear combination of rows of the encoded file matrix, and
is a codeword (or sufficiently close to a codeword) in the
dispersal code. However, we need to ensure that by aggre-
gating MAC values on individual blocks, we obtain a valid
MAC. We define the notion of composite MAC that, intu-
itively, guarantees that a MAC on a vector of block can not
be obtained unless all the MACs of individual vector com-
ponents are known.

Note that the aggregation code in HAIL carries zero stor-
age overhead: It is computed on the fly.

We describe the full HAIL system in detail in Section
6, after defining the adversarial model in Section 4 and the
cryptographic building blocks in Section 5.

4 Adversarial Model

We model HAIL as a set of n servers, S1, S2, . . . , Sn,
and a trusted, external entity T . We assume authenticated,
private channels between T and each server. In practice T
may be a client or an external auditor. We assume known
upper bounds on message delivery times in the network.

We consider an adversary A that is mobile, i.e., can cor-
rupt a different set of b servers in each epoch, and is Byzan-
tine, i.e., can behave arbitrarily. Obviously, meaningful file
availability is not possible against a fully Byzantine adver-
sary that controls all servers. Consequently, we assume that
our adversary controls at most b servers in any given epoch.
The adversary can of course move to a different set of cor-
rupted servers in each epoch.

We regard each server Si as containing a distinct code
base and storage system. The code base determines how
the server replies to challenges; the storage system contains
a (potentially corrupted) file segment.
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At the beginning of each epoch, A may choose a fresh
set of b servers and arbitrarily corrupt both their code bases
and storage systems. At the end of an epoch, however, we
assume that the code base of every server is restored to a
correct state. From a theoretical perspective, this restoration
models the limitation of the adversary to b servers. From
a practical perspective, code-base restoration might reflect
a malware-detection pass, software re-installation, invoca-
tion of a fresh virtual machine image, etc. Even when the
code base of a server is restored, however, the adversary’s
corruptions to the server’s storage system, i.e., storage file
segment, remain.

Repair of servers’ storage systems only happens when a
client reactively invokes the redistribute function—an ex-
pensive and generally rare event. Thus, while the adversary
controls only b servers, it is possible for more than b servers
to contain corrupted data in a given epoch. The aim of the
client in HAIL is to detect and repair corruptions before they
render a file F unavailable.

A time step or epoch in HAIL thus consists of three
phases:

1. A corruption phase: The adversary A chooses a set of
up to b servers to corrupt (where b is a security param-
eter).

2. A challenge phase: The trusted entity T challenges
some or all of the servers.

3. A remediation phase: If T detects any corruptions in
the challenge phase, it may modify / restore servers’
file shares.

Let F denote the file distributed by T . We let F (i)
t denote

the file share held by server Si at the beginning of epoch t,
i.e., prior to the corruption phase, and let F̂

(i)
t denote the

file share held by Si after the corruption phase.

4.1 HAIL: Formal preliminaries

In our formal adversarial model, we let a system HAIL
consist of the following functions:
• keygen(1λ) → κ: The function keygen generates a key
κ = (sk, pk) of size security parameter λ. (For symmetric-
key systems, pk may be null.)
• encode(κ, F, `, n, b) → {F (i)

0 }n
i=1: The function encode

encodes F as a set of file segments, where F
(i)
0 is the seg-

ment designated for server i. The encoding is designed to
provide `-out-of-n redundancy across servers and to pro-
vide resilience against an adversary that can corrupt at most
b servers in any time step.
• decode(κ, t, {F̂ (i)

t }n
i=1) → F : The function decode re-

covers the original file F at time t from a set of file segments
stored at different servers.

• challenge(κ) → {Ci}n
i=1: The function challenge gener-

ates a challenge value Ci for each server i.
• respond(i, Ci, F̂

(i)
t ) → Ri: The function respond gener-

ates response Ri from the file fragment F̂
(i)
t stored at server

i at time t to challenge Ci.
• verify(κ, j, {Ci, Ri}n

i=1) → {0, 1}. The function verify
checks whether the response of server j is valid, using
the responses of all servers R1, . . . , Rn to challenge set
C1, . . . , Cn. It outputs a ‘1’ bit if verification succeeds, and
‘0’ otherwise. We assume for simplicity that verify is sound,
i.e., returns 1 for any correct response.

• redistribute(κ, t, {F̂ (i)
t }n

i=1) → {F (i)
t+1}n

i=1∪ ⊥: The
function redistribute is an interactive protocol that replaces
the fragment F̂

(i)
t stored at server i with F

(i)
t+1. It imple-

ments a recreation and distribution of corrupted file seg-
ments, and outputs ⊥ if the file can not be reconstructed.
We leave the definition of redistribute as general as possi-
ble. The function may involve the client reconstructing seg-
ments from all servers, decoding F , and reinvoking encode.

4.2 Security model: Formalization

The adversary A is assumed to be stateful and have ac-
cess to oracles encode and verify; we assume that A re-
spects the bound b on the number of permitted corrup-
tions in a given epoch. Denote by π the system parameters
(`, n, b, T, εq, nq).
A participates in the two-phase experiment in Figure 2.

In the test phase, A outputs a file F , which is encoded
and distributed to servers. The second phase is a challenge
phase that runs for T time intervals. In each time interval,
A is allowed to corrupt the code base and storage system
of at most b out of the n servers. Each server is challenged
nq times in each interval, and A responds to the challenges
sent to the corrupted servers. If more than a fraction εq of a
server’s responses are incorrect, the redistribute algorithm
is invoked.

After the experiment runs for T time intervals, a decod-
ing of the file is attempted and the experiment outputs 1 if
the file can not be correctly recovered. We define the HAIL-
advantage of A as: AdvHAIL

A (π) = Pr[ExpHAIL
A (π) = 1].

We denote by AdvHAIL(π, q1, q2, t) the maximum advantage
of all adversaries making q1 queries to encode, q2 queries
to verify, and running in time at most t.

Remark. In the POR security definition, by analogy
with zero-knowledge proofs, the same interface used for
challenge-response interactions between the client and
server is also available for file extraction. In the POR
model, the (single) server is permanently controlled by the
adversary. In contrast, in HAIL only at most b out of the n
servers can be corrupted in one time epoch. We could con-
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Experiment ExpHAIL
A (π):

κ = (sk, pk) ← keygen(1λ)
F ← A(“test”, pk, π) /* output file F */
{F (i)

0 }n
i=1 ← encode(κ, F, `, n, b) /* compute file shares */

for t = 0 to T do
At ← A(“corrupt servers”) /* set of corrupted servers */
for i = 1 to n do

Vi ← 0 /* number of correct replies for Si */
for a = 1 to nq do /* generate nq challenges */

C = (C1, . . . , Cn) ← challenge(κ)
for j = 1 to n do /* challenge all servers */

if j ∈ At then /*A responds for
Rj ← A(“respond”, Cj , F̂

(j)
t ) corrupted servers */

else Rj ← respond(j, Cj , F̂
(j)
t )

for j = 1 to n do /* verify all responses */
if verify(κ, j, {Ci, Ri}n

i=1) = 1 then
Vj ← Vj + 1 /* Sj replied correctly */

Scorr ← Φ /* servers with small fraction of incorrect replies */
for j = 1 to n do /* compute fraction of correct replies */

if Vj

nc
≥ 1− εq then

Scorr ← Scorr ∪ {j} /* Sj ’s incorrect replies below εq */
if Scorr = {1, 2, . . . , n} then
{F (i)

t+1}n
i=1 ← {F̂ (i)

t }n
i=1 /* shares remain the same */

else {F (i)
t+1}n

i=1 ← redistribute(κ, t, {F̂ (i)
t }n

i=1)

if decode(κ, T, {F̂ (i)
T }n

i=1) = F output 0 /* F can be recovered */
else output 1 /* F is corrupted */

Figure 2. HAIL security experiment.

struct a stronger security model for HAIL in which the file
could be extracted through the challenge-response protocol
if decoding fails. However, the stronger model might only
benefit extraction of file fragments for those b servers cor-
rupted by an adversary in an epoch (the other n− b servers
have a correct code base). We do not investigate this model
further in the paper due to its complexity.

5 Building Blocks

5.1 UHFs and Reed-Solomon codes

Let I denote a field with operations (+,×). For exam-
ple, in our prototype implementation, we work with GF [2α]
for α = 256.

A UHF [9] is an algebraic function h : K × I` → I that
compresses a message or file element m ∈ I` into a com-
pact digest or “hash” based on a key κ ∈ K. We denote the
output of h as hκ(m). A UHF has the property that given
two inputs x 6= y, with overwhelming probability over keys
κ, it is the case that hκ(x) 6= hκ(y). In other words, a
UHF is collision-resistant when the message pair (x, y) is
selected independently of the key κ. A related notion is that
of almost exclusive-or universal (AXU) hash functions that
have the property that given three input messages, the prob-
ability that the XOR of the hashes of the first two inputs
matches the third input is small. Formally:

Definition 1 h is an ε-universal hash function family if for
any x 6= y ∈ I`: Prκ←K[hκ(x) = hκ(y)] ≤ ε.

h is an ε-AXU family if for any x 6= y ∈ I`, and for any
z ∈ I: Prκ←K[hκ(x)⊕ hκ(y) = z] ≤ ε.

Many common UHFs are also linear, meaning that for
any message pair (m1,m2), it is the case that hκ(m1) +
hκ(m2) = hκ(m1 + m2). In fact, it is possible to construct
a UHF based on a linear error-correcting code (ECC). An
(n, `, d) ECC encodes messages of length ` into codewords
of size n such that the minimum distance between any two
codewords is d. An (n, `, d) code can correct up to d − 1
errors and bd−1

2 c erasures.
For example, as we assume for convenience in our work

here, a UHF may be based on a (n, `, d = n − ` + 1)-
Reed-Solomon code over I . Let ~m = (m1,m2, . . . , m`),
where mi ∈ I . ~m may be viewed in terms of a polynomial
representation of the form p~m(x) = m`x

`−1+m`−1x
`−2+

. . . + m1. A Reed-Solomon code, then, may be defined in
terms of a fixed vector ~a = (a1, . . . , an). The codeword of
a message ~m is the evaluation of polynomial p~m at points
(a1, . . . , an): (p~m(a1), p~m(a2), . . . , p~m(an)).

A UHF of interest, then, is simply hκ(m) = p~m(κ) with
key space K = I . It is well known that this construction,
which we refer to as RS-UHF (but is typically referred as the
polynomial evaluation UHF), is indeed a good UHF [38]:

Fact 1 RS-UHF is a `−1
2α -universal hash family (and, as

such, a `−1
2α -AXU family).

5.2 MACs obtained from UHFs

A UHF, however, is not a cryptographically secure prim-
itive. That is, it is not generally collision-resistant against
an adversary that can choose messages after selection of κ.
Given a digest y = hκ(m), an adversary may be able to
construct a new message m′ such that hκ(m′) = y. Thus a
UHF is not in general a secure message-authentication code
(MAC). A MAC is formally defined as follows:

Definition 2 A Message Authentication Code (MAC)
MA = (MGen, MTag, MVer) is given by three algorithms:
κ ← MGen(1λ) generates a secret key given a security pa-
rameter; τ ← MTagκ(m) computes a MAC on a message
m with key κ; and MVerκ(m, τ) outputs 1 if τ is a valid
MAC on m, and 0 otherwise. Consider an adversary A
with access to the MTag and MVer oracles, whose goal is
to output a valid MAC on a message not queried to MTag.
We define:

Advuf-mac
MA (A) = Pr[κ ← MGen(1λ); (m, τ) ←

AMTagκ(·),MVerκ(·,·) : MVerκ(m, τ) = 1 ∧
m not queried to MTagκ(·)].
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We denote by Advuf-mac
MA (q1, q2, t) the maximum advan-

tage of all adversaries making q1 queries to MTag, q2

queries to MVer and running in time at most t.

It is well known that a MAC may be constructed as the
straightforward composition of a UHF with a pseudoran-
dom function (PRF) [39, 25, 34, 38]. A PRF is a keyed
family of functions g : KPRF×D → R that maps messages
from domain D to range R such that, intuitively, a random
function from the PRF family is indistinguishable from a
true random function from D to R.

More formally, consider an adversary algorithm A that
participates in two experiments: one in which she has ac-
cess to a function chosen randomly from family g and the
second in which she has access to a random function from
D to R. The goal of the adversary is to distinguish the two
worlds: she outputs 1 if she believes the oracle is a function
from the PRF family, and 0 otherwise.

We define the prf-advantage of A for family g as
Advprf

g (A) = |Pr[κ ← KPRF : Agκ(·) = 1] − Pr[f ←
FD→R : Af(·) = 1]|, where FD→R is the set of all func-
tions from D to R. We denote by Advprf

g (q, t) the maximum
prf-advantage of an adversary making q queries to its oracle
and running in time t.

Given a UHF family h : KUHF × I` → I and a
PRF family g : KPRF × L → I , we construct the MAC
UMAC = (UGen,UTag, UVer) such as: UGen(1λ) gener-
ates key (κ, κ′) uniformly at random from KUHF × KPRF;
UTag : KUHF × KPRF × I` → L × I is defined as
UTagκ,κ′(m) = (r, hκ(m) + gκ′(r)); UVer : KUHF ×
KPRF × I` ×L× I is defined as UVerκ,κ′(m, (c1, c2)) = 1
if and only if hκ(m)+gκ′(c1) = c2. The tagging algorithm
of UMAC outputs, in addition to the composition of UHF
and PRF, a unique counter r ∈ L that is incremented by the
algorithm at each invocation. Thus, the MAC algorithm is
stateful and its properties are as follows [38].

Fact 2 Assume that h is an εUHF-AXU family of hash func-
tions and g is a PRF family. Then UMAC is a stateful MAC
with advantage: Advuf-mac

UMAC (q1, q2, t) ≤ Advprf
g (q1 +q2, t)+

εUHFq2.

Remark. For the composition of a UHF and PRF to be a
MAC, it is important that the nonces used as input into the
PRF be unique. One possible implementation that we have
adopted in our definition above, described by Shoup [38],
is to make the MAC algorithm stateful and use a counter
incremented at each operation as the nonce into the PRF. In
our HAIL implementation, we choose to use as the nonce
input to the PRF a hash of the file name and the block offset
in the file, instead of a strictly monotonic counter.

5.3 Aggregating MACs

In our HAIL protocol, we need to aggregate or compose
MACs on individual file blocks into a MAC on a vector of
blocks. We show in this section how we can generically
compose tags computed with the same MAC algorithm.
The definition of composite MAC here applies to any MAC
that outputs tags in a field, not just the UMAC construction.

Let MTag : K × J → N be the tagging algorithm
of a MAC MA = (MGen, MTag,MVer) defined on mes-
sages from field J that outputs tags in a field N . Let
~M = (m1, . . . ,mv) ∈ Jv be a vector of messages and

let ~A = (α1, . . . , αv) ∈ Jv be a vector of scalar val-
ues with αi 6= 0. We define τ =

∑v
i=1 αiMTagκ(mi)

as the composite MAC of ~M for coefficients α1, . . . , αv .
If τ is a valid composite MAC of {mi}v

i=1 for coeffi-
cients {αi}v

i=1, the composite MAC verification algorithm
CMVerκ({mi, αi}v

i=1, τ) outputs 1.
Consider an adversary that has access to MTag and

CMVer oracles. Intuitively, a composite MAC has the prop-
erty that the adversary can generate a vector of messages
and a composite MAC with small probability if it does not
query the MTag oracle for all component messages of the
vector.

We give a formal definition of composite MACs below,
the first in the literature to the best of our knowledge.

Definition 3 Let MA = (MGen,MTag, MVer) be a MAC
algorithm and CMVer the composite MAC verification al-
gorithm defined above. Consider an adversary A with ac-
cess to MTag and CMVer oracles whose goal is to output a
set of messages m1, . . . , mv , a set of coefficients α1, . . . , αv

and a composite MAC τ . We define:
Advc-mac

MA (A) = Pr[κ ← MGen(1λ); ({mi, αi}v
i=1, τ) ←

AMTagκ(·),CMVerκ(·,·) : CMVerκ({mi, αi}v
i=1, τ) = 1∧∃i ∈

[1, v] for which mi was not queried to MTagκ(·)].
We denote by Advc-mac

MA (q1, q2, t) the maximum success
probability of all adversaries making q1 queries to MTag,
q2 queries to CMVer and running in time t.

Lemma 1 Given a MAC MA on field J , MA extended to
Jv as above is a composite MAC with advantage:
Advc-mac

MA (q1, q2, t) ≤ vAdvuf-mac
MA (q1 + vq2 + v− 1, 0, (v +

1)t).

Proof: Assume that there exists an adversary A for the
composite MAC that makes q1 queries to the tagging oracle,
q2 queries to the composite MAC verification oracle and
runs in time t.

We build an adversary A′ that targets the MAC MA. A′
runs A. For any query that A makes to the tagging ora-
cle, A′ returns the output of its own tagging oracle. For
any query ({mi, αi}v

i=1, τ) that A makes to the compos-
ite MAC verification oracle, A′ queries its tagging oracle v
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times, once for each mi, i = [1, v], and outputs 1 if and only
if the linear relation τ =

∑v
i=1 αiMTagκ(mi) is verified.

Assume that A outputs a set of messages (m∗
1, . . . , m

∗
v),

a set of coefficients (α∗1, . . . , α
∗
v), and a valid compos-

ite MAC τ∗, such that there exists i ∈ [1, v] for
which mi was not queried to MTagκ(·). Then, A′
guesses i (with probability 1

v ), queries the tagging or-
acle for m∗

1,m
∗
i−1,m

∗
i+1, . . . ,m

∗
v and then outputs m∗

i

and its MAC computed as MTagκ(m∗
i ) = (α∗i )

−1(τ∗ −∑
j 6=i α∗jMTagκ(m∗

j )).
A′ makes q1 + vq2 + (v− 1) queries to the MAC oracle

and no queries to the verification oracle. Its running time
is less than v + 1 times the running time of A. The lemma
follows.

Sometimes we do not have access to all messages
{mi}v

i=1 to check a composite MAC. We define a linear
composite MAC algorithm to be such that a composite MAC
can be verified from a linear combination of messages:
~m =

∑v
i=1 αimi.

Definition 4 A composite MAC algorithm is lin-
ear if there exists an algorithm CMVer-Lin such
that CMVerκ({mi, αi}v

i=1, τ) = 1 if and only if
CMVer-Linκ(

∑v
i=1 αimi, τ) = 1.

Lemma 2 If the nonce values ri input to the PRF in the
UMAC construction are known, the composite MAC defined
from UMAC is linear.

Proof: Assume that nonces ri input to the PRF in the
UMAC construction are known. Then we can simply view
the UTag algorithm in the UMAC construction as out-
putting: UTagκ,κ′(~m) = RS-UHFκ(~m) + gκ′(ri).

Let ~m1, . . . , ~mv be messages in I`, α1, . . . , αv scalar
values in I , and ~m =

∑v
i=1 αi ~mi ∈ I`. We denote mij

the j-th block in ~mi.
For a tag τ , we define algorithm CMVer-Linκ,κ′(~m, τ) =

1 if and only if RS-UHFκ(~m) +
∑v

i=1 αigκ′(ri) = τ .
We can infer that for the UMAC construction:

CMVerκ,κ′({mi, αi}v
i=1, τ) = 1 ⇔

v∑

i=1

αiUTagκ,κ′( ~mi) = τ ⇔
v∑

i=1

αi[RS-UHFκ( ~mi) + gκ′(ri)] = τ ⇔

v∑

i=1

αi[
∑̀

j=1

mijκ
j−1] +

v∑

i=1

αigκ′(ri) = τ ⇔

∑̀

j=1

(
v∑

i=1

αimij)κj−1 +
v∑

i=1

αigκ′(ri) = τ ⇔

RS-UHFκ(
v∑

i=1

αi ~mi) +
v∑

i=1

αigκ′(ri) = τ ⇔

CMVer-Linκ,κ′(~m, τ) = 1

5.4 An integrity-protected error-
correcting code (IP-ECC)

Typically, a MAC is appended to a message. Our goal in
this section is to define a cryptographic primitive that acts
both as a MAC and an error-correcting code. Moreover,
we leverage the redundancy added by the error-correcting
code for constructing the MAC. Such a primitive proves to
be important in our distributed HAIL protocol. It allows
efficient checking of server response in our POR protocol.

Definition 5 For n ≥ `, we define an (n, `, d)-integrity-
protected error-correcting code (denoted IP-ECC) as a tu-
ple of algorithms IC = (KGenECC,MTagECC,MVerECC)
such that:

- KGenECC(1λ) selects a random key κ from key space
K;

- MTagECC : K × I` → In takes as input a secret key
κ and a message m in I`, and outputs an integrity-
protected codeword c in space In that acts as an en-
coding of m, and contains an integrity tag for m.

- MVerECC : K × In → ({I`∪ ⊥}, {0, 1}) takes as in-
put a secret key κ and an integrity-protected codeword
c in In and outputs a message m ∈ I` (or ⊥ upon de-
coding failure), as well as a one-bit with value 1 if c
contains a valid integrity tag on m, and 0 otherwise.

Consider an adversary A with access to the
MTagECCκ(·) and MVerECCκ(·) oracles, whose goal is
to output a codeword c such that MVerECCκ(c) = (m, 1)
and m was not queried to MTagECCκ(·). We define:

Advuf-ecc
IC (A) = Pr[κ ← KGenECC(1λ); c ←

AMTagECCκ(·),MVerECCκ(·) : MVerECCκ(c) = (m, 1) ∧
m not queried to MTagECCκ(·)].

We denote by Advuf-ecc
IC (q1, q2, t) the maximum advan-

tage of all adversaries making q1 queries to MTagECC, q2

queries to MVerECC and running in time at most t.

We give now a construction of an IP-ECC code based
on a (n, `, n − ` + 1) Reed-Solomon code, called ECCd.
Intuitively, to tag a message, we encode it under the R-S
code, and then apply a PRF to the last s code symbols (for
1 ≤ s ≤ n a parameter in the system), effectively obtaining
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a MAC on each of those s code symbols using the UMAC
construction. A codeword is considered valid if at least one
of its last s symbols are valid MACs under UMAC on its
decoding m.

More specifically, the IP-ECC (n, `, d) code construc-
tion is defined as (using notation from Sections 5.1 and 5.2):

- KGenECC(1λ) selects keys ~κ =
{{κi}n

i=1, {κ′i}n
i=n−s+1} at random from space

K = In × (KPRF)s. The security parameter λ
specifies the size of I , as well as the length of the keys
in KPRF. The keys {κi}n

i=1 define a Reed-Solomon
code as described in Section 5.1 (they define the points
at which polynomials are evaluated when constructing
a codeword). The keys {κ′i}n

i=n−s+1 are used as PRF
keys in the UMAC construction.

- MTagECCκ(m1, . . . , m`) outputs (c1, . . . , cn), where
ci = RS-UHFκi(~m), i = [1, n − s] and ci =
UTagκi,κ′i

(m1, . . . ,m`) = (ri,RS-UHFκi
(~m) +

gκ′i(ri)), i = [n− s+1, n]. We define d to be the min-
imum (Hamming) distance between two codewords
output by MTagECC.

- MVerECCκ(c1, . . . , cn) first strips off the PRF from
cn−s+1, . . . , cn as: c′i = ci−gκ′i(ri), i = [n−s+1, n],
and then decodes (c1, . . . , cn−s, c

′
n−s+1, . . . , c

′
n) us-

ing the decoding algorithm of Reed-Solomon codes to
obtain message ~m = (m1, . . . , m`). If the decoding
algorithm of the R-S code defined by points {κi}n

i=1

fails, then the MVerECC algorithm outputs (⊥, 0) (we
assume that the decoding algorithm of R-S codes fails
if the number of corruptions in a codeword is beyond
bd−1

2 c). If one of the last s symbols of (c1, . . . , cn) is
a valid MAC on ~m under UMAC, the MVerECC algo-
rithm outputs (~m, 1); otherwise it outputs (~m, 0).

Error resilience of ECCd. The MVerECC algorithm in
the above construction needs at least one correct MAC
block in order to decode and verify the message correctly.
This implies that, even if the minimum distance of the un-
derlying code is d = n − ` + 1, the construction is re-
silient to at most E − 1 erasures, and bE−1

2 c errors, for
E = min(d, s).

Lemma 3 If RS-UHF is constructed from a (n, `, n− ` +
1)-Reed-Solomon code and g is a PRF family, then the
IP-ECC code ECCd defined above has the following ad-
vantage:

Advuf-ecc
ECCd

(q1, q2, t) ≤ 2
[
Advuf-mac

UMAC (q1, q2, t)
]
.

Proof:
LetA be a successful adversary algorithm for code ECCd

that makes q1 queries to the tagging oracle MTagECC, q2

queries to the verification oracle MVerECC and runs in time
t. It outputs a codeword (c1, . . . , cn) that decodes to mes-
sage ~m = (m1, . . . ,m`) such that at least one of the last s
symbols in the codeword is a valid MAC on ~m computed
with algorithm UMAC defined in Section 5.2.

We build an adversary A′ for the UMAC construction.
A′ is given access to a tagging oracle UTagκ,κ′(·) and a
verification oracle UVerκ,κ′(·, ·) and needs to output a new
message and tag pair.
A′ chooses a position j ∈ [n− s + 1, n] at random, and

generates keys {κi}n
i=1 and {κ′i}n

i=n−s+1 for i 6= j. A′ runs
A.

When A makes a query to tagging ~m = (m1, . . . , m`),
A′ computes ci ← RS-UHFκi

(~m) for i = [1, n − s], and
ci = UTagκi,κ′i

(~m) for i = [n − s + 1, n], i 6= j. A′ calls
the UTag oracle to compute cj = UTagκ,κ′(~m). A′ then
responds to A with ~c ← (c1, . . . , cn).

When A makes a query ~c = (c1, . . . , cn) to the verifica-
tion oracle, A′ tries to decode (c1, . . . , cj−1, cj+1, . . . , cn)
into message ~m. If decoding fails (there are more than
bE−1

2 c errors in the codeword), then A′ responds to A with
(⊥, 0). Otherwise, let ~m be the decoded message. A′ makes
a query to the verification oracle a ← UVerκ,κ′(~m, cj) and
returns (~m, a) to A.

Assume thatA outputs an encoding ~c = (c1, . . . , cn) un-
der ECCd that can be decoded to ~m, such that ~m was not an
input to the tagging oracle and at least one of the last s sym-
bols in ~c is a valid MAC for ~m. Then A′ outputs (~m, cj).
Since the codeword ~c can be decoded, at least a majority of
its parity blocks are correct. Then, with probability at least
1/2, cj is a correct MAC on ~m. It follows that A′ succeeds
in outputting a correct message and MAC pair (~m, cj) with
probability at least half the success probability of A.

Aggregating MACs for IP-ECC codes. The techniques
we developed in Section 5.3 for aggregating MACs, i.e.,
for composite MAC verification, apply in a natural way
to IP-ECC codes. Consider the linear combination of
IP-ECC codewords ~c1, . . . ,~cv as a composite codeword
~c =

∑v
i=1 αi~ci. Implicit in ~c are composite MACs, i.e., lin-

ear combinations of MACs from the individual, contribut-
ing codewords. So we can apply MVerECC directly to ~c,
thereby verifying the correctness of ~c1, . . . ,~cv .

Systematic IP-ECC codes. In a systematic code, the
codeword for a message contains the message in clear fol-
lowed by parity blocks. The Reed-Solomon codes ob-
tained through polynomial evaluation are, in general, not
systematic. However, it is possible to offer a different
view of Reed-Solomon encoding that is, in fact, system-
atic. The codebook for an R-S code specified by vec-
tor ~a = (a1, . . . , an) consists of all polynomials of de-
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gree ` − 1 evaluated on each of the points of ~a: CRS =
{(f(a1), . . . , f(an))|deg(f) ≤ ` − 1}. A systematic code
is one in which a message is mapped to a codeword whose
first ` symbols match the message (given a message ~m =
(m1, . . . ,m`), a polynomial f of degree ` − 1 for which
f(ai) = mi, i = [1, `] can be determined by solving a lin-
ear system).

The IP-ECC construction can be adapted for systematic
Reed-Solomon codes as follows: we encode a message un-
der a systematic code, and then apply the PRF only to the
parity blocks. Our results in Lemma 3 still hold for this sys-
tematic encoding for s = n− `. We employ this systematic
code that can recover from n− `− 1 erasures and bn−`−1

2 c
errors in our HAIL protocols.

5.5 Adversarial codes

Adversarial ECCs [6, 24] are codes resistant to a large
fraction of adversarial corruptions. While a standard ECC
is designed to provide information-theoretic properties, an
adversarial ECC uses cryptography to achieve otherwise in-
efficient (or impossible) levels of resilience against a com-
putationally bounded adversary. Lipton [27] first proposed
a model of computationally bounded channels for error-
correcting codes. Subsequent papers (e.g., [19, 29]) have
proposed specific constructions and analyzed their error re-
silience asymptotically with respect to the code rate. Ostro-
vsky et al. [32] construct locally decodable codes against
computationally bounded noisy channels. In our work,
we use cryptography to construct more practical error-
correcting codes within classical error-correcting bounds.

An (n, `, d)-error-correcting code corrects up to bd−1
2 c

errors, and thus it supports a fraction of d−1
2n adversarial

corruption. But it is challenging to construct efficiently
computable codes with large message sizes and strong er-
ror tolerance against an adversary. A standard technique for
building ECCs with large message sizes is striping, an ap-
proach that encodes consecutive message chunks and then
interleaves them to achieve heightened protection against,
e.g., burst errors. But striping doesn’t offer heightened pro-
tection against adversarial corruption: An adversary that
knows the stripe structure can work around it. And while
several classes of very efficient XOR erasure codes (e.g.,
Tornado, LT, Fountain and Raptor codes) tolerate a large
fraction of randomly distributed errors, their behavior to ad-
versarial corruptions is not understood.

BJO [6] define adversarial codes formally and give the
first systematic construction based on cryptographically
protected, striped Reed-Solomon codes. In their construc-
tion, the file is permuted first with a secret key and then
divided into stripes. Parity blocks are computed for each
stripe and appended to the unmodified file. To hide stripe
boundaries, parity blocks are encrypted and permuted with

another secret key. The encoding of the file consists of the
original file followed by the permuted and encrypted parity
blocks, and is systematic. The same construction (without
rigorous formalization, though) has been proposed indepen-
dently by Curtmola et al. [11]. We employ this construction
for the server code in the HAIL protocol.

BJO define an adversarial ECC as follows. An (n, `, d)-
adversarial error-correcting code AECC consists of a pub-
lic key space KPK , private key space KSK , an alphabet
Σ, and a triple of functions: (1) a probabilistic function
KGenECC(1λ) → (pk, sk) ∈ KPK × KSK ; (2) a func-
tion Encode : KPK ×KSK ×Σ` → Σn; and (3) a function
Decode : KPK ×KSK × Σn → {Σ`∪ ⊥}.

While Encode and Decode may be deterministic or prob-
abilistic, we assume for our purposes that they are determin-
istic. A secret-key ECC is one in whichKPK = φ. We shall
consider only secret-key ECCs here.

Consider an adversary A with access to the Encode and
Decode oracles, whose goal is to output a pair of codewords
at small Hamming distance that decode to different mes-
sages. We define the advantage of A as:

Definition 6 Let AdvA,AECC(ρ, δ) = Pr[κ ←
KGenECC(1λ); (c, c′) ← ADecodeκ(·),Encodeκ(·) :
Decodeκ(c) 6= Decodeκ(c′) ∧ Decodeκ(c′) 6=⊥] − δ,
where A outputs (c, c′) ∈ (Σn, Σn) such that: (1) c is the
output of an oracle call Encodeκ(·) (c is a valid codeword)
and (2) |c− c′| ≤ ρn.

The definition can be easily extended to erasure codes.
It is easy to show that an (n, `, d)-ECC that is an (ρ, δ)-
adversarial ECC with ρ ≤ d−1

2n , is also a (2ρ, δ)-adversarial
erasure code.

6 HAIL: Protocol Specification

Using the technical building blocks defined in the previ-
ous section, in this section we give full details on the HAIL
protocol.

6.1 Key Generation

Let ` be the number of primary servers, and n the total
number of servers. The client generates the following sets
of keys:

• Dispersal-code keys: These are n − ` pairs of keys
{κj , κ

′
j}j=[`+1,n], where κj and κ′j are secret keys for

the UHF and for the PRF in the UMAC construction,
respectively;

• Server-code keys: These are generated via the algo-
rithm KGenECC, described above; and
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• Challenge / aggregation keys: These are keys used to
generate challenges—and applied, of course, to seed
inputs to the aggregation code for responses. These
keys can be generated from a master secret key that
the client stores locally.

6.2 Encoding Files

The encoding of files in our protocols has been depicted
graphically in Figure 1. We aim at obtaining a distributed,
systematic encoding Fd of a file F . First, we partition
F into ` distinct segments F (1), . . . , F (`) and distribute
these segments across the primary servers S1, . . . , S` re-
spectively. This distributed cleartext representation of the
file remains untouched by our subsequent encoding steps.

We then encode each segment F (j) under the server code
(implemented with the adversarial erasure code construc-
tion of BJO [6] described in Section 5.5) to protect against
small corruption at each server. The effect of the server code
is to extend the “columns” of Fd by adding parity blocks.
Next, we apply the dispersal code to create the parity blocks
that reside on the secondary servers S`+1, . . . , Sn. It ex-
tends the “rows” of Fd across the full set of n servers. (The
dispersal code and server code commute, so we can swap
these two encoding steps, if desired.) To embed the disper-
sal code in a full-blown IP-ECC, we also add PRF values
on the parity blocks for each row, i.e., on the blocks con-
tained in secondary servers S`+1, . . . , Sn. Viewed another
way, we “encrypt” columns `+1 through n, thereby turning
them into cryptographic MAC values.

Finally, we compute a MAC over the full file F , and store
this MAC value on the server. This full-file MAC allows the
client to confirm when it has successfully downloaded the
file F .

The steps of encode are detailed below:
1. [File partitioning] Partition the file into ` segments and

store segment F (j) on server j, for j = [1, `]. Denote by
mF = |F |/` the number of symbols in each segment. We
have thus obtained a (mF , `) matrix {Fij}i=[1,mF ],j=[1,`]

containing the original file blocks.
2. [Server code application] Encode each file seg-

ment F (j) under the server systematic server code as de-
fined in Section 5.5 (viewed as an erasure code), and ob-
tain a segment of m blocks at each server (where blocks
mF + 1, . . . , m are parity blocks for the server code).

3. [Dispersal code application] Apply the systematic dis-
persal code ECCd as defined in Section 5.4 to the rows of
the encoded matrix obtained in step 2. We determine thus
the segments F (`+1), . . . , F (n).

If we denote by Fd = {F d
ij}i=[1,m],j=[1,n] the encoded

representation of F at the end of this step, then F d
ij = Fij

(i.e., block i in F (j)), for i = [1,mF ], j = [1, `]. F d
ij for i =

[mF +1,m], j = [1, `] are the parity blocks under the server

code. The columns ` + 1, . . . , n are obtained through the
application of the ECCd construction to columns 1, . . . , ` as
follows: F d

ij = RS-UHFκj
(Fi1 . . . Fi`) + gκ′j (τij), for i =

[1,m], j = [`+1, n]. τij is a position index that depends on
the file handle, as well as the block index i and the server
position j, e.g., hash of the file name concatenated with i
and j.

4. [Whole-file MAC computation] Lastly, a crypto-
graphic MAC of the file (and its handle) is computed and
stored with the file.

The initial share at time 0 for each server Sj is F
(j)
0 =

{F d
ij}i=[1,m].

6.3 Decoding Files

For decoding the encoded matrix, we proceed into two
steps. First, we decode each row of the matrix and check
the MACs embedded into the parity blocks of the dispersal
code. If a row can not be correctly decoded or if none of
the MACs in the parity blocks of a row verifies, then we
mark all blocks in that row as erasures. In the second step,
we apply the server code to each column and try to recover
from the erasures in the first step. If the number of erasures
exceeds the correction capability of the server code, then
decoding fails.

Since the exact positions of erasures are known from the
first level of decoding, the adversarial server code can be an
erasure code. The dispersal code can be either an erasure
code or an error-correcting code. However, each choice im-
poses a different requirement on the maximum number b of
corrupted servers in an epoch. We present decoding algo-
rithms for both cases.

The details of the algorithm to recover the original file
from the encoded matrix Fd are as follows:

1. Decode rows from the dispersal code. As discussed
above, we consider two cases:

• If the dispersal code is an error-correcting code,
then up to bn−`−1

2 c errors can be corrected in
each row. This choice imposes the requirement
that the number of servers corrupted in each
epoch be bounded by b ≤ bn−`−1

2 c. (Otherwise,
the adversary could corrupt all rows in an epoch,
obliterating F ).

• If the dispersal code is an erasure code, then a
mechanism for determining the positions of er-
rors in a row is needed. We can find erroneous
blocks using the embedded MACs on the parity
blocks, as long as at least one of the MACs in
the parity blocks is valid. This approach requires
brute force: We consider in turn each MAC block
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to be valid, try all sets of ` blocks in the code-
word (among the n − 1 remaining blocks), un-
til we find a decoding for which the MAC block
is valid. The brute force approach can recover
from n − ` − 1 erasures (and thus we impose
b ≤ n− `− 1).

Using an erasure code instead of an error-correcting
code for ECCd requires fewer secondary servers. The
required brute-force decoding, though, is asymptoti-
cally inefficient, since (n − `)

(
n−1

`

)
combinations of

blocks have to be examined. We recommend use of
an erasure code for ECCd for small values of n (e.g.,
n < 10), and a full-blown error-correcting code for
larger values of n. In the remainder of the paper, we
assume that the dispersal code is an error-correcting
code.

2. Decode columns from the server code. The blocks
in the rows that can not be reconstructed from the dis-
persal code are marked as erasures in the matrix. The
server code is then applied to each column to recover
those erasures. If one of the columns stored at the pri-
mary servers can not be recovered, then decoding fails.

6.4 The Challenge-Response Protocol

In the HAIL challenge-response protocol, the client ver-
ifies the correctness of a random subset of rows D =
i1, . . . , iv in the encoded matrix. The client’s challenge con-
sists of a seed κc from which each server derives set D, as
well as a value u ∈ I .

Each server Sj returns a linear combination of the blocks
in the row positions of D, denoted by Rj . To aggregate
server responses, we use an aggregation code ECCa with
message size v, implemented also with a Reed-Solomon
code. Rj is computed as the uth symbol in ECCa across the
selected rows. The responses of all servers (R1, . . . , Rn)
then represent a linear combination of rows i1, . . . , iv with
coefficients αi = ui−1, i = [1, v].

Intuitively here, because all servers operate over the
same subset of rows D, the sequence R = (R1, . . . , Rn)
is itself a codeword in the dispersal code—with aggregate
PRF pads “layered” onto the responses R`+1, . . . , Rn of the
parity servers. Thanks to our IP-ECC dispersal code and
our techniques of aggregating several MACs into a com-
posite MAC (described in Section 5.3), the client can check
the validity of the combined response R, by decoding to a
message ~m and checking that at least one of the (composite)
responses Rj of the secondary servers is a valid (compos-
ite) MAC on ~m. Having done so, the client can then check
the validity of each individual response Rj : Rj is a valid
response for a primary server if it matches the j-th symbol

in ~m; for a secondary server, Rj is a valid response if it is a
valid MAC on ~m.

The challenge-response protocol is described below:

1. The client sends a challenge κc to all servers.
2. Upon receiving challenge κc, server Sj derives set

D = {i1, . . . , iv}, as well as a value u ∈ I . The response
of server Sj is Rj = RS-UHFu(F d

i1j , . . . , F
d
ivj).

3. The client calls the linear composite MVerECC al-
gorithm of the dispersal code (as described in Section
5.4) on (R1, . . . , Rn). If the algorithm outputs (~m, 0)
or (⊥, 0), then verification of the response fails and
verify(κ, j, {κc, Ri}n

i=1) returns 0 for all j.
4. Otherwise, let (~m, 1) be the output of the composite

MVerECC algorithm. Algorithm verify(κ, j, {κc, Ri}n
i=1)

returns 1 if:
- mj = Rj , for j ∈ [1, `]; or
- Rj is a valid composite MAC on ~m under UMAC with

keys (κj , κ
′
j) and coefficients {αi}v

i=1, for j ∈ [` + 1, n].

6.5 Redistribution of Shares

HAIL runs for a number of epochs T . In each epoch the
client issues nq challenges to all servers and verifies their
responses. The client monitors all servers in each epoch,
and if the fraction of corrupted challenges in at least one
server exceeds a threshold εq , the redistribute algorithm is
called.

In the redistribute algorithm, the client downloads the
file shares of all servers, and applies the decoding algorithm
described above. Once the client decodes the original file,
she can reconstruct the shares of the corrupted servers as in
the original encoding algorithm. The new shares are redis-
tributed to the corrupted servers at the beginning of the next
time interval t + 1 (after the corruption has been removed
through a reboot or alternative mechanism). Shares for the
servers that have correct shares remain unchanged for time
t + 1.

We leave the design of more efficient redistribute algo-
rithms for future work.

7 Security Analysis and Parameter Choices

We define the HAIL system to be available if the exper-
iment from Figure 2 outputs 0; otherwise we say that the
HAIL system is unavailable. HAIL becomes unavailable if
the file can not be recovered either when a redistribute is
called or at the end of the experiment. In this section, we
give bounds for HAIL availability and show how to choose
parameters in HAIL for given availability targets.

There are several factors that contribute to HAIL avail-
ability. First is the redundancy embedded in each server
through the server code; it enables recovery from a certain
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fraction of corruption at each server. Second is the fre-
quency with which the client challenges each server in an
epoch; this determines the probability of detecting a cor-
ruption level uncorrectable by the server code of an individ-
ual server. Third, the redundancy embedded in the disper-
sal code enables file recovery even if a certain threshold of
servers is corrupted.

Adversarial server erasure code. Let (ns, `s, ds = ns−
`s + 1) be the parameters of the (Reed-Solomon) code used
to encode stripes in the adversarial server code construction
given originally in BJO [6]. As proved by BJO, the server
code is an adversarial erasure code with the following ad-
vantage:

Fact 3 If the block corruption level at a server is εc ≤ ds−1
2ns

and the size of a file segment stored at each server is m, then
the server erasure code has advantage AdvAECC(εc, γ), for
γ = dm

ns
eeds−1−2εcns

(
ds−1
2εcns

)1−ds .

Challenge frequency. In HAIL, nq challenges are issued
by the client in an epoch. A redistribute operation is trig-
gered if at least one of the servers replies incorrectly to more
than a εq-fraction of challenges.

Recall that at least n− b servers have a correct code base
in a time interval, but might have corruptions in their stor-
age system. We refer to these corruptions as residual—they
were “left behind” by A. We are interested in detecting
servers whose residual corruptions exceed the correction
level tolerated by the server code (denoted εc).

Given a εc fraction of residual corrupted blocks from a
server’s fragment, we can compute a lower bound on the
fraction of challenges that contain at least one incorrect
block, denoted εq,c. Based on εq,c, we can then determine
a threshold εq at which the client considers the server frag-
ment corrupted and calls the redistribute algorithm. After
we choose the detection threshold εq , we estimate the prob-
ability pn that we fail to detect corruption of at least a εc-
fraction of blocks.

Fact 4 If a server’s fragment contains a fraction εc of cor-
rupted blocks and the server code base is correct, then
the fraction of challenges containing a corrupted block is

εq,c = 1 − ((1−εc)m
v )

(m
v ) (with m the size of server’s fragment,

and v the number of blocks aggregated in a challenge).

The proof is simple. If a fraction εc of blocks are cor-
rupted on a server, then there are εcm red (corrupted) blocks
and (1− εc)m black (uncorrupted) blocks. Then, out of the
space of

(
m
v

)
challenges, there are

(
m
v

) − (
(1−εc)m

v

)
chal-

lenges containing a red block.

Proposition 1 Let µ be the uf-ecc advantage of an adver-
sary for the (composite) dispersal code ECCd corrupting up
to b servers in an epoch (as given by Lemmas 1 and 3). If
we set εq = εq,c

2 and issue nq challenges in an epoch, the
probability with which the client does not detect a corrup-
tion of εc fraction of blocks at a server with a correct code

base is pn ≤ e
−nq(εq,c−2µ)2

8(εq,c−µ) .

Proof: Let us define a random variable Xi = 1, i = [1, nq]
for each server’s reply with value 1 if the reply is incor-
rect and 0 otherwise. Let X =

∑nq

i=1 Xi be the number
of incorrect replies in an epoch. Assuming that more than
a εc-fraction of blocks are corrupted on a server, then from
Fact 4, Pr[Xi = 1] ≥ εq,c − µ and E(X) ≥ (εq,c − µ)nq .
If we define variables Zi with Pr[Zi = 1] = (εq,c−µ), and
Z =

∑nq

i=1 Zi, then Zi ≤ Xi. We could bound the proba-
bility of not detecting corruption at threshold εc in a server
with a correct code base using Chernoff bounds:
pn = Pr[X < εqnq] < Pr[Z < εqnq] = Pr[Z < (1 −
α)(εq,c − µ)nq] < e−

(εq,c−µ)nqα2

2 , for α = εq,c−2µ
2(εq,c−µ) .

Based on the above proposition, we can choose the
frequency of challenge-response interactions in an epoch
based on the desired probability of detection (1 − pn), the
redundancy embedded in the server code and the number of
aggregated blocks in a challenge. The left graph in Figure 3
shows that the number of challenges nq increases when the
server code shrinks, and also when the detection probability
increases (this graph assumes that 20 blocks are aggregated
in a challenge). The right graph in Figure 3 shows that the
client needs to issue less challenges in an epoch if more
blocks are aggregated in a challenge (this graph is done for
a server code with redundancy 0.05).

Role of dispersal code. The file is distributed in HAIL to
` primary and n− ` secondary servers. We assume that the
dispersal code is an (n, `, d = n − ` + 1) IP-ECC code as
described in Section 5.4. The dispersal code can correct up
to bn−`−1

2 c adversarial server corruptions in an epoch. We
now look to compute an upper bound on the probability that
HAIL becomes unavailable in a given time interval t.

The adversary controls up to b servers in epoch t and
corrupted up to b servers in epoch t − 1. Therefore, we
can only guarantee that at least n − 2b servers successfully
completed at least one challenge-response round with the
client in epoch t− 1 with a correct code base, and still have
a correct code base.

For those n−2b servers, there are still two cases in which
a server’s fragment is too heavily corrupted to be recovered
even using server code: (1) The corruption level is below
εc, but the server code can not correct εc—a low probability
side-effect of using an “adversarial code” or (2) The corrup-
tion level is≥ εc, but the HAIL challenge-response protocol
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Figure 4. Probability that HAIL is unavailable for 8 primary servers (left) and 20 total servers (right)
for b = 3 faults per epoch and different detection probabilities.

didn’t successfully detect the corruption. We can bound the
probability of Case (1) by γ of Fact 3. The probability of
Case (2) is bounded above by pn, as computed in Proposi-
tion 1.

These two bounds apply to a single server. In order to
compute the availabilty of the whole HAIL system, we must
treat the system as a stochastic process. Our goal, then,
is to obtain an upper bound on the probability that enough
fragments become unrecoverable that F is unavailable. We
do so in the following proposition.

Proposition 2 The probability U that HAIL becomes un-
available in a time epoch is upper bounded by:

•
[

eβ

(1+β)1+β

](n−2b)(γ+pn)
, for β = n−2b−`−1

(n−2b)(γ+pn) − 1, if

b < n−`−1
2 and γ + pn < n−2b−`−1

n−2b .

• 1− [1− (γ + pn)]`+1, if b = n−`−1
2 .

Proof: Assume that the HAIL system becomes unavailable
at time t. Let t0 be the last time interval before t at which
a redistribute was triggered. Then, at the beginning of time
interval t0 + 1 all n servers have correct file shares.

The adversary corrupts at most b servers in epoch t, and
at most b servers in epoch t−1 (that might still have residual
block corruptions). The other servers (denoted Sc) might
have been corrupted at a time interval between t0 + 1 and
t − 2, but they have passed a challenge-response protocol
having a correct code base in at least one time interval after
they have been corrupted (since redistribute has not been
triggered between time t0 + 1 and t − 1). The size of Sc is
at least n− 2b.

Let us bound HAIL unavailability using this fact. As-
sume, wlog, that servers 1, 2, . . . , n − 2b are in Sc. Let Yi

be a random variable for server i with value 1 if server Si’s
fragment can not be recovered, and 0 otherwise. Yi = 1
if either the corruption level is below εc and the adversary

16



has an advantage for the adversarial server code, or if the
corruption level is at least εc, and it is not detected.

Then Pr[Yi = 1] ≤ γ + pn, and let Y =
∑n−2b

i=1 Yi with
E(Y ) ≤ (n− 2b)(γ + pn). Let us consider two cases:

• If b < n−`−1
2 , then HAIL is unavailable if at least n−

2b − ` of the servers have Yi = 1. We could bound
HAIL unavailability using Chernoff bounds:

Pr[HAIL unavailable] = Pr[Y > n − 2b − ` −
1] = Pr[Y > (1 + β)(n − 2b)(γ + pn)] <[

eβ

(1+β)1+β

](n−2b)(γ+pn).

• If b = n−`−1
2 , then |Sc| = n − 2b = ` + 1 and HAIL

is unavailable if the fragment from at least one of the
servers in Sc can not be recovered. The probability of
this event is 1− [1− (γ + pn)]`+1.

Corollary 1 The probability that HAIL becomes unavail-
able over an interval of t epochs is upper bounded by tU ,
with U given by Proposition 2.

Figure 4 shows HAIL’s availability (per epoch) for 3
faults tolerated in an epoch, different configurations for the
dispersal code and different detection probabilities. In the
left graph from Figure 4, the number of primary servers is
fixed to 8 and the number of total servers varies from 15
to 24. In the right graph of Figure 4, the total number of
servers is constant at 20 and the number of primary servers
is between 6 and 13.

Assume that an epoch is a week, and file availability is
computed for 2 years (about 100 epochs). Then a 10−6 un-
availability target for 3 years translates to 10−8 unavailabil-
ity per epoch. This level of availability can be obtained,
for instance, from a (17,8) dispersal code at detection level
0.99999 or (20,9) code at detection level 0.999. Once the
detection level is determined, parameters such as server
code redundancy and frequency of challenge-response pro-
tocol in an epoch can be determined from Figure 3.

Weaker adversarial model. Our experiment in Figure
2 defines a very strong adversarial model: As A is fully
Byzantine, it can corrupt both the code base and the storage
systems of servers. As servers and storage can be separate
systems, it is interesting to consider a model in which the
adversary only corrupts storage systems. Such a “storage-
limited” adversarial model, of course, yields better security
bounds: n− b servers are needed to decode the file instead
of n−2b (under the technical condition that n− b ≥ `+1).
Table 1 illustrates several code parameters and the availabil-
ity they offer for the weaker, “storage-limited” adversarial
model.

b n ` Unavailability Detection
1 3 1 2 · 10−6 0.999999
1 4 2 3 · 10−6 0.999999
1 5 3 4 · 10−6 0.999999
1 6 2 4 · 10−9 0.99999
2 5 2 3 · 10−6 0.999999
2 6 3 4 · 10−6 0.999999
2 7 4 5 · 10−6 0.999999
2 8 3 6 · 10−9 0.99999
3 6 2 3 · 10−6 0.999999
3 7 3 3 · 10−6 0.999999
3 8 4 5 · 10−6 0.999999
3 9 3 6 · 10−9 0.99999

Table 1. Several code parameters and their
availability per epoch for a weaker model.

8 Implementation

We implemented file-encoding functions for HAIL with
different parameters for the dispersal code. We performed
our experiments using Java on an Intel Core 2 processor
running at 2.16 GHz. The JVM was given 1GB of memory
and all cryptographic operations use the Java implementa-
tion of RSA BSAFE.

For the dispersal code implementation, we used the
Jerasure [33] optimized library written in C. The server
code in our implementation is constructed using an off-the-
shelf Reed-Solomon (223,255,32) encoder over GF [28],
extended via striping to operate on 32-byte symbols, i.e.,
GF [2256]. To obtain a server code with 4% redundancy,
we truncate the last 23 symbols of a codeword, effectively
implementing a (223,232,9) server code.

The file is encoded in a single pass to minimize the cost
of disk accesses. Since we use Reed-Solomon codes for im-
plementing both the dispersal and server code, computation
of parity blocks involves associative operations in a Galois
field. For an incremental encoding of the file (i.e., in a sin-
gle pass), we store the parity blocks into main memory, and
update them when we process a file chunk in memory. How-
ever, we pay some performance cost for incremental en-
coding, since existing Reed-Solomon implementations are
highly optimized if the whole message is available at en-
coding time.

Figure 5 shows the encoding cost in HAIL for a 1GB file
divided into several components: server code application,
dispersal code encoding, and application of PRF to the par-
ity blocks. Reflecting parameter choices from Figure 4, on
the left graph in Figure 5, we present the encoding cost as
the number of primary servers remains constant at 8 and the
total number of servers varies from 15 to 23. On the right
graph in Figure 5 we keep the total number of servers con-
stant at 20 and vary the number of primary servers between
6 and 12.
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Figure 5. Encoding time for HAIL: on the left, constant number of primary servers (8); on the right,
constant total number of servers (20).

As noticed from these graphs, the server code cost is only
depending on the file size, and is independent on the num-
ber of servers. The cost of the dispersal code increases lin-
early with the number of secondary servers in the protocol.
The high performance cost of PRF application to the parity
blocks is mainly due to the Java BSAFE implementation.

The results are shown for our unoptimized Java encod-
ing. We are currently working on a C version of HAIL en-
coding, which we expect to substantially improve encoding
performance.

9 Conclusion

We have proposed HAIL, a high-availability and in-
tegrity layer that extends the basic principles of RAID into
the adversarial setting of the Cloud. HAIL is a remote-file
integrity checking protocol that offers efficiency, security,
and modeling improvements over straightforward multi-
server application of POR protocols and over previously
proposed, distributed file-availability proposals. Through
a careful interleaving of different types of error-correcting
layers, and inspired by proactive cryptographic models,
HAIL ensures file availability against a strong, mobile ad-
versary.

There are a number of interesting HAIL variants to ex-
plore in follow-up work. The protocols we have described
above for HAIL only provide assurance for static files. Due
to lack of space, we have omitted a variant that efficiently
accommodates file updates, i.e., small changes to blocks of
F . (Efficient file updates are not possible in single-server
PORs.) We briefly sketch the idea here. The dispersal code
described above stripes blocks according to a fixed struc-
ture, namely “horizontally” across servers. Consequently,
an adversary that observes modification of a file block on
one server can, when moving to other servers, easily lo-

cate and attack blocks belonging to the same dispersal code-
word. Such an adversary can corrupt a file block in a surgi-
cally precise, making such corruption hard to detect.

It is possible, however, to randomize the position of dis-
persal codeword symbols individually on servers. If blocks
are then proactively shuffled on each server after every
epoch, an adversary can not feasibly infer the position of
dispersal codeword elements across servers. It therefore can
not corrupt a dispersal codeword without a high level of col-
lateral damage, i.e., a globally detectible level of corruption.
By restricting randomization and shuffling to parity blocks,
we can render the proactivization step more efficient.

We believe that the HAIL techniques we have introduced
in this paper help pave the way for other this and other valu-
able approaches to distributed file system availability.

Acknowledgements

We thank James Hendricks, Burt Kaliski and Ron Rivest
for carefully reading the paper and providing useful com-
ments.

References

[1] Amazon.com. Amazon simple storage ser-
vice (Amazon S3), 2008. Referenced 2008 at
aws.amazon.com/s3.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring,
L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In ACM CCS, pages
598–609, 2007.

[3] G. Ateniese, R. Di Pietro, L. V. Mancini, and
G. Tsudik. Scalable and efficient provable data pos-
session, 2008. IACR ePrint manuscript 2008/114.

18



[4] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and
P. Rogaway. Umac: Fast and secure message authen-
tication. In CRYPTO ‘99, pages 216–233. Springer,
1999. LNCS vol. 1666.

[5] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and
M. Naor. Checking the correctness of memories. Al-
gorithmica, 12(2/3):225–244, 1994.

[6] K. Bowers, A. Juels, and A Oprea. Proofs of retriev-
ability: Theory and implementation, 2008. Available
from eprint.

[7] C. Cachin, K. Kursawe, A. Lysyanskaya, and
R. Strobl. Asynchronous verifiable secret sharing and
proactive cryptosystems. In ACM CCS, pages 88–97,
2002.

[8] C. Cachin and S. Tessaro. Asynchronous verifiable
information dispersal. In 24th Symposium on Reli-
able Distributed Systems (SRDS 2005), pages 191–
202, 2005.

[9] L. Carter and M. Wegman. Universal hash functions.
Journal of Computer and System Sciences, 18(3):143–
154, 1979.

[10] M. Castro and B. Liskov. Proactive recovery in
a byzantine-fault-tolerant system. In 4th Sympo-
sium on Operating System Design and Implementation
(OSDI), pages 277–283, 2000.

[11] R. Curtmola, O. Khan, and R. Burns. Robust remote
data checking. In 4th ACM International Workshop on
Storage Security and Survivability (StorageSS), 2008.

[12] R. Curtmola, O. Khan, R. Burns, and G. Ateniese.
MR-PDP: Multiple-replica provable data possession.
In International Conference on Distributed Comput-
ing Systems (ICDCS), pages 411–420, 2008.

[13] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retriev-
ability via hardness amplification. In TCC, 2009.

[14] M. Etzel, S. Patel, and Z. Ramzan. Sqaure hash: Fast
message authentication via optimized universal hash
functions. In CRYPTO ‘99, pages 234–251. Springer,
1999. LNCS vol. 1666.

[15] D.L.G. Filho and P.S.L.M. Barreto. Demonstrat-
ing data possession and uncheatable data transfer,
2006. IACR eArchive 2006/150. Referenced 2008 at
http://eprint.iacr.org/2006/150.pdf.

[16] J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin. Secure
distributed storage and retrieval. Theoretical Com-
puter Science, 243(1-2):363–389, 2000.

[17] N. Gohring. Amazon’s S3 down for sev-
eral hours, 2008. Available from http:
//www.pcworld.com/businesscenter/
article/142549/amazons_s3_down_for_
several_hours.html.

[18] G. R. Goodson, J. J. Wylie, G. R. Ganger, and
M. K. Reiter. Efficient byzantine-tolerant erasure-
coded storage. In 34th International Conference on
Dependable Systems and Networks (DSN 2004), pages
135–144, 2004.

[19] P. Gopalan, R.J. Lipton, and Y.Z. Ding. Error cor-
rection against computationally bounded adversaries,
April 2004. Manuscript.

[20] S. Halevi and H. Krawczyk. Mmh: Software mes-
sage authentication in the gbit/second rates. In Fast
Software Encryption, pages 172–189. Springer, 1997.
LNCS vol. 1267.

[21] J. Hendricks, G. R. Ganger, and M. K. Reiter. Ver-
ifying distributed erasure-coded data. In 26th ACM
Symposium on Principles of Distributed Computing
(PODC), 2007.

[22] A. Herzberg, M. Jakobsson, H. Krawczyk, and
M. Yung. Proactive public key and signature systems.
In ACM Computer and Communication Security Con-
ference (CCS), 1997.

[23] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung.
Proactive secret sharing, or: How to cope with per-
petual leakage. In CRYPTO 1995, pages 339–352.
Springer, 1995. LNCS vol. 963.

[24] A. Juels and B. Kaliski. PORs: Proofs of retrievability
for large files. In ACM CCS, pages 584–597, 2007.

[25] H. Krawczyk. LFSR-based hashing and authentica-
tion. In CRYPTO 1994, pages 129–139. Springer,
1994. LNCS vol. 839.

[26] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows,
and M. Isard. A cooperative Internet backup scheme.
In USENIX Annual Technical Conference, General
Track 2003, pages 29–41, 2003.

[27] R. J. Lipton. A new approach to information theory.
In 11th Annual Symposium on Theoretical Aspects of
Computer Science, pages 699–708, 2004.

[28] W. Litwin and T. J. E. Schwarz. Algebraic signatures
for scalable distributed data structures. In 20th In-
ternational Conference on Data Engineering (ICDE),
2004.

19



[29] S. Micali, C. Peikert, M. Sudan, and D. Wilson. Opti-
mal error correction against computationally bounded
noise. In TCC, pages 1–16. Springer, 2005. LNCS
vol. 3378.

[30] M. Naor and G. N. Rothblum. The complexity of
online memory checking. In FOCS, pages 573–584,
2005.

[31] W. Nevelsteen and B. Preneel. Software performance
of universal hash functions. In Advances in Cryptol-
ogy – Eurocrypt ‘97, pages 24–41. Springer, 1997.

[32] R. Ostrovsky, O. Pandey, and A. Sahai. Private locally
decodable codes. In 34th International Colloquium
on Automata, Languages and Programming (ICALP
2007), pages 387–398. Springer, 2007. LNCS vol.
4596.

[33] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. W.
O’Hearn. A performance evaluation and examination
of open-source erasure coding libraries for storage. In
USENIX FAST, 2009.

[34] P. Rogaway. Bucket hashing and its application to fast
message authentication. In CRYPTO 1995, pages 29–
42. Springer, 1995. LNCS vol. 963.

[35] T. J. E. Schwarz and E. L. Miller. Store, forget, and
check: Using algebraic signatures to check remotely
administered storage. In International Conference on
Distributed Computing Systems (ICDCS), 2006.

[36] H. Shacham and B. Waters. Compact proofs of retriev-
ability. In Asiacrypt, 2008. To appear. Preprint IACR
ePrint manuscript 2008/073.

[37] M. A. Shah, M. Baker, J. C. Mogul, and R. Swami-
nathan. Auditing to keep online storage services hon-
est source. In USENIX HotOS, page Article Number
11, 2007.

[38] V. Shoup. On fast and provably secure message au-
thentication based on universal hashing. In CRYPTO
‘96, pages 313–328. Springer, 1996. LNCS vol. 1109.

[39] M. Wegman and L. Carter. New hash functions and
their use in authentication and set equality. Journal
of Computer and System Sciencies, 22(3):265–279,
1981.

20


