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Abstract. When using pairing-friendly ordinary elliptic curves to com-
pute the Tate and related pairings, the computation consists of two main
components, the Miller loop and the so-called final exponentiation. As a
result of good progress being made to reduce the Miller loop component
of the algorithm (particularly with the discovery of “truncated loop”
pairings like the R-ate pairing [15]), the final exponentiation has become
a more significant component of the overall calculation. Here we exploit
the structure of pairing friendly elliptic curves to reduce to a minimum
the computation required for the final exponentiation.
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1 Introduction

The most significant parameter of a pairing-friendly elliptic curve is its embed-
ding degree. Using fields of characteristic ¢ = p™ (where p is prime) then there
must exist a large group of points on the curve of prime order r, such that k
is the smallest integer for which r|¢¥ — 1. This integer k is then the embedding
degree with respect to r, and it must be in the range 2-50 to be considered useful
[10]. In fact this condition can be simplified to k being the smallest integer such
that r|®k(q) [2], where ®(.) is the k-th cyclotomic polynomial. Here we will
restrict our attention to the case of even embedding degrees, which are more
useful and practical, as they support the important“denominator elimination”
optimization [2].

The Tate pairing e(P, @) (and its derivatives) takes as parameters two lin-
early independent points P and @, at least one of which must be of order r, on
E(Fg), and the pairing e(P, Q) evaluates as an element of order 7 over the ex-
tension field Fgx. In many cases the points P and @ can be over smaller extension
fields, and at least one of them can be on Fy [4], [5].

Pairing based cryptography on elliptic curves depends on the existence of
pairing friendly curves. Two basic choices are available, the supersingular curves
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over fields of any characteristic, and ordinary pairing-friendly elliptic curves over
Fp. In the former case we are strictly limited in terms of the available embedding
degree; a maximum of k = 6 is possible, but only on curves of characteristic 3.

Note that the embedding degree relates the two types of “hard problem”
which supports the security of pairing based cryptography. We need both the
“ECC” levels of security as determined by the group size r, and the “RSA”
levels of security necessary to defend against index calculus attacks on the dis-
crete logarithm problem over the extension field F ». For optimal efficiency at
the minimal 160-bit ECC and 1024-bit RSA level, we would want &k to be about
1024/160, which is approximately 6. However this level of security is already
being questioned. At higher levels of security, a larger value of k would be desir-
able. Indeed at the standard AES-128 bit level of security it has been suggested
that pairing friendly curves with an embedding degree of k = 12 would be ideal
(8], [12].

Fortunately ordinary pairing friendly elliptic curves are also possible, and
here, unlike the supersingular case, we have an unlimited choice of k. Therefore
it seems that the long term viability of pairing-friendly cryptosystems is largely
dependent on the efficient use of these curves.

2 Ordinary Pairing friendly elliptic curves

One of the first suggested method for the construction of non-supersingular
pairing friendly elliptic curves E(F,) was by Cocks and Pinch [6]. Their method
easily generates curves of any embedding degree k, but with one major disad-
vantage — the ratio p = lg(p)/lg(r) is approximately 2. This p value is a useful
figure-of-merit for pairing friendly curves, and we would prefer it to be closer
to 1, as this results in faster implementations. It is normal to choose one of the
parameters to the pairing to be a point on the base field E(F,), and we would
therefore like p to be as small as possible. However with a Cocks-Pinch curve p
will have twice as many bits as necessary to support a pairing-friendly group of
order 7.

If we exclude the Cocks-Pinch curves we are left with numerous “families” of
pairing friendly curves which have been discovered, each of which has a p value
usually much closer to one than to two. Many such familes of ordinary pairing
friendly elliptic curves have been suggested — see the Freeman, Scott and Teske
taxonomy for details [10]. These families have one striking feature in common —
the prime modulus p and the group r are described as rather simple polynomials
with relatively small integer coeflicients. It is our aim to exploit this simple
form in a systematic way to speed up the final exponentiation for all families of
non-supersingular pairing-friendly elliptic curves.

3 The final exponentiation

After the Miller loop the Tate pairing (and its derivatives) must all carry out
an extra step to ensure a unique result of the pairing. To this end the output of



the Miller loop m must be raised to be power of (p* — 1)/r to create a result of
order r. Note that this exponent is determined by fixed system parameters, and
therefore methods of exponentiation optimised for fixed exponents are applicable
here.

However this final exponent can be broken down into three components. Let
d =k/2. Then

" —1)/r= (" = 1).[(p" + 1)/ @x(p)]-[®x(p) /7]

For example if kK = 12 the final exponent becomes

(P =1)/r=@°-1).0* + 1).[(p"* — p* + 1) /7]

The first two parts of the exponentiation are “easy” as raising to the power of
p is an almost free application of the Frobenius operator, as p is the characteristic
of the extension field. However the first part of the exponentiation is not only
cheap (although it does require an extension field division), it also simplifies the
rest of the final exponentiation. After raising to the power of p? — 1 the field
element becomes “unitary” [20]. This has important implications, as squaring of
unitary elements is significantly cheaper than squaring of non-unitary elements,
and any future inversions can be implemented by simple conjugation [21], [20],
[12].

This brings us to the “hard part” of the final exponentiation, raising to the
power of @ (p)/r. The usual continuation is to express this exponent to the base
pas A_1.p" "L+ ...+ A1.p + Ao, where n = ¢(k), and ¢(.) is the Euler Totient
function. If the value to be exponentiated is m, then we need to calculate

mAn=1P" T AP o

which is the same as

n—1

(m? )’\"_1 ..... (mp)/\1 .m0

The m?" can be calculated using the Frobenius, and the hard part of the final
exponentiation can be calculated using a fast multi-exponentiation algorithm
[13], [11], [16].

However this method does not exploit the polynomial description of p and
r. It is our intention to do so, and hence obtain a faster hard-part of the final
exponentiation. Each family is different in detail, so we will proceed on a case-
by-case basis.

4 The MNT curves

The MNT pairing friendly elliptic curves were reported by Miyaji et al. [17]. For
the k = 6 case the prime p and the group order r parameter are expressed as



plz) =2 +1
rz) =2 -z +1

In this case the hard part of the final exponentiation is to the power of
(p?—p+1)/r. Substituting from the above this becomes (z*+22+1)/(x2—z+1) =
x? + z + 1. Expressing this to the base p, it becomes simply p + x. So the hard
part of the final exponentiation is m?.m* — an application of the Frobenius and a
simple exponentiation to the power of x. The advantage of deriving the hard part
of the exponentiation in terms of the family parameter z is clearly illustrated.

5 The BN curves

The BN family of pairing friendly curves [5] has an embedding degree of 12, and
is parameterised as follows

p(x) = 362 4 362> + 2422 + 62 + 1
r(x) = 362 + 362° + 1822 + 62 + 1

In this case the hard part of the final exponentiation is to the power of
(p* — p? + 1)/r. After some work this can be expressed to the base p as

A3.p® + A2.p® + A1p+ Ao

where

Now we take a new approach. BN curves are very plentiful, and it already
helps the Miller loop if we choose z to have a low Hamming weight. In fact
Nogami et al. [18] have suggested the nice choice of x = —40800000000000014¢
for acurve approprlate for the AES-128 level of security. Next we compute m*
me = (m®)*, and m* = (m® ) These are simple exponentiations, and the low
Hamming Welght of x ensures that each requires a minimum of multlphcatlons
when using a sun2ple square-and-multi ly algorithm. We next calculate mP, mp’ ,
mP’, (m®)P, (m* )P, (m"g) and (m® )p using the Frobenius.

Now group the elements of the exponentiation together, and the expression
becomes



[P m?” " L[L/m)2. [ (m® P11/ ((m®)P)) 2. (1) (m®(m® P) [ /m |, [1/ (m® . (m®

The individual components between the square brackets are then calculated
with just 4 multiplications (recalling that division costs the same as a multipli-
cation, as inversion is just a conjugation), and we end up with a calculation of
the form

Yo-y1°-y2% 32 ya "B ys?0 e C

Note that the exponents here are simply the coefficients that arise in the \;
equations above. Now how best to evaluate this expression?

In fact there is a well known algorithm to evaluate expressions of this form,
which minimizes the number of required multiplications. See Olivos [19], and
also [1], section 9.2 for a nice worked example. The starting point is to find an
addition chain which includes within it the elements of the addition sequence
formed from the set of integers which occur as exponents. In this case it is not
hard to see that an optimal addition chain is given by

{1,2,3,6,12,18,30, 36}

Note that 3 is the only member of the addition chain which is not a member
of the addition sequence. This is certainly serendipitous, as it means less work
to do the evaluation. Observe here that an addition-subtraction chain is also
a possibility (as divisions are as cheap as multiplications as a consequence of
the unitary property). But we don’t require one here. Application of the Olivos
algorithm results in the following vectorial addition chain

3
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(1 00 00 0 0
O 1.0 00 0 0
0O 01 00 0 0
O 00100 0
O 00 01 0 0
0O 0 0 00 1 0
0O 0 0 00 0 1)
2 0 0 00 0 0
2 01 00 0 0
2 1 1 00 0 0
O 1.0 10 0 0
2 2 1 10 0 0
2 1 101 0 0
(4 42 20 0 0
6 5 3 21 0 0)
(1210 6 4 2 0 0)
(1210 6 4 2 1 0)
(1210 6 4 2 0 1)
(24 20 12 8 4 2 0)
(36 30 18 12 6 2 1)

which in turn allows us to evaluate the expression as follows, using just two
temporary variables.

to = (ys)*
to = 10-Y4
to =105
1 =y3.Ys
t1 =1t1.%9
to = t0-Y2
ty = (t1)®
t1 =1t1.%0
ty = (t1)?
to =t1.91
t1 =1t1.90
to = (to)?
to = to.t1

The final result is in tg. This part of the calculation requires only 9 multi-
plications and 4 squarings. We find this approach to the hard part of the final
exponentiation for the BN curves to be about 5% faster than the rather ad hoc
method proposed by Devegili et al. [8]. Moreover our more general method is
applicable to all families of pairing friendly curves.



6 Freeman Curves

In [9] a construction is suggested for pairing friendly elliptic curves of embedding
degree 10.

p(z) = 252" + 252 4 252% + 102 + 3
r(z) = 25z + 2523 + 1522 4+ 5z + 1

These curves are much rarer than the BN curves, and unfortunately it is not
feasible to choose x to have a particularly small Hamming weight. Nevertheless
proceeding as above we find

I
—_ =

In this case the coefficients form a perfect addition chain

{1,2,3,5,10, 15,25}

The optimal vectorial addition chain in this case requires 10 multiplications
and 2 squarings.

7 KSS Curves

Recently Kachisa et al. [14] described a new method for generating pairing-
friendly elliptic curves.
7.1 The k = 8 family of curves

Here are the parameters for the family of & = 8 KSS curves.

p(z) = (2% + 22° — 32 + 82 — 152 — 822 + 125)/180
r(r) = x* —82% + 25
t(z) = (22 — 11z + 15) /15

For this curve p = 3/2. Like the BN curve x can be chosen to have a low
Hamming weight. Proceeding as above we find



A3(x) = (1522 + 30z + 75)/6

Ao(z) = (22° + 42 — 23 + 2622 — 55z — 144) /6
(z) = (=5z* — 102> — 52* — 80x + 100)/6
(z) = (

x5 + 22 + 723 + 2822 + 102 4 108) /6

T

>

ol

A minor difficulty arises due to the common denominator of 6 which occurs
here. We suggest a simple solution — evaluate instead the sixth power of the
pairing. This does not effect the important properties of the pairing and now
we can simply ignore the denominator. We find by brute-force computer search
that we can construct the following optimal addition chain which contains all
the exponents in the above equations.

{1,2,4,5,7,10, 15,25, 26, 28, 30, 36, 50, 55, 75, 80, 100, 108, 144}

Proceeding as for the BN case we find that the vectorial addition chain
derived from this addition chain requires just 27 multiplications and 6 squarings
to complete the calculation of the hard part of the final exponentiation.

7.2 The k = 18 family of curves

Here are the parameters for the family of k£ = 18 KSS curves.

p(x) = (2® + 52" + 725 + 372° + 188x* + 2592 + 3432 + 1763z + 2401) /21
r(x) = 2% + 372 + 343
t(z) = (z* 4+ 162 +7)/7

In this case p = 4/3 but nonetheless this curve might make a good choice for
a pairing at the AES-192 bit level of security. Again like the BN curves, x can
in practise be chosen with a low Hamming weight. Proceeding again as above
we find

As(z) = (4922 + 2452 + 343) /3

Ay(7) = (72° + 352° + 492* + 1122 + 58122 + 784x2)/3

As(z) = (=bz” — 252°% — 352° — 872 — 4502 — 60922 + 54)/3
Ao(z) = (—492° — 2452% — 3432° — 93122 — 4802z — 6517)/3
A (x) = (1428 + 702" + 982" 4 2732 + 14072% + 1911z) /3
No(z) = (=327 — 152° — 212 — 622" — 3192° — 4342 4 3)/3

As before we evaluate the cube of the pairing to remove the awkward
denominator of 3. In this case the coefficients again “nearly” form a natural
addition chain. Our best attempt to find an addition chain containing all of the



exponents in the above, is

{1.2,3,4,5,7,8,14,15,16,21,25,28,35,42,49,54,62,70,87,98,112,147,245,273,294,
319,343,392,434,450,581,609,784,931,1162,1407,1862,1911,3724,4655,4802,6517}.

Proceeding as for the BN case we find that the vectorial chain derived from
this addition chain requires just 56 multiplications and 14 squarings to complete
the calculation of the hard part of the final exponentiation. In fact we did even-
tually find (by partial computer search) an addition chain one element shorter
than the above, but as it required 61 multiplications and only 7 squarings, we
prefer to use the solution above.

8 Discussion

Here we make a few general observations. First it seems that the proposed
method results in surprisingly compact addition chains. We note also that the
coefficients in the A; tend to be “smooth” numbers, having only relatively small
factors. This may facilitate the construction of addition chains. Other intrigu-
ing patterns emerge — observe for example that for the KSS k£ = 18 curves the
three most significant coefficients of the \; are all in the same ratio 1:5:7. Coeffi-
cients also appear to follow the same kind of distribution as numbers in a typical
addition chain.

We have also used the proposed method for other families of pairing-friendly
curves, and have observed that for example for the k = 8, p = 5/4 curve proposed
by Brezing and Weng [7], and the k = 12, p = 3/2 curve found by Barreto et al.
[3], the resulting addition chain is often as easy as

{1,2,3}

Since squarings are significantly faster than multiplications it may, as we
have seen, be sometimes preferable to select a slightly longer addition chain
which trades additions for doublings. Addition-subtraction chains may also be
an attractive alternative in other cases.

9 Conclusions

We have suggested a general method for the implementation of the hard part of
the final exponentiation in the calculation of the Tate pairing and its derivatives,
which is faster, is generally applicable, and which requires less memory than
previously described methods. The most promising Tate pairing derivative is the
R-ate pairing [15]. An intriguing possibility is that, given only the polynomial
equations defining a pairing-friendly family of elliptic curves, it should now be
possible, and indeed appropriate, to write a computer program which would
automatically generate the optimal R-ate pairing code.
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