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Abstract. We present an algorithm for constructing cryptographic hy-
perelliptic curves of genus 2 and p-rank 1, using the CM method. We
also present an algorithm for constructing such curves that, in addition,
have a prescribed small embedding degree. We describe the algorithms
in detail, and discuss other aspects of p-rank 1 curves too, including the
reduction of the class polynomials modulo p.

1 Introduction

An important class of problems in computational number theory is to find tech-
niques for constructing explicit algebraic curves with certain specified proper-
ties. Solutions to such problems have applications in cryptography and primality
proving. Elliptic curves with specified properties can be constructed using the
complex multiplication (CM) method, first outlined by Atkin and Morain [1].
The CM method has been extended to ordinary hyperelliptic curves of genus
2, by Spallek [19] and others. Using the CM method, we present here the first
construction of genus 2 curves with p-rank 1. In particular, we construct curves
whose Jacobian group order is of cryptographic size.

The layout of this paper is as follows. In Section 2 we give the background for
the paper. This section includes a review of endomorphism rings, and discusses
genus 2 curves, and those having p-rank 1, in particular. Section 2 also discusses
cryptographic applications. Section 3 presents our algorithms for constructing
p-rank 1 curves with the property that the Jacobian has prime order. That
section also gives an algorithm (based on the algorithm proposed by Freeman,
Stevenhagen and Streng in [5]) that constructs p-rank 1 curves with a prescribed
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embedding degree. Section 4 provides an overview of the CM method, which
occurs as the final step of our algorithms. In Section 5 we apply basic class field
theory to explain the behaviour of the class polynomials modulo p, which is
relevant to a particular speedup of the CM method. With precomputed class
polynomials, we computed examples using Magma in less than 10 seconds on an
Intel Core 2 Duo. The details are given in an appendix.

2 Background

In this section we present a summary of the background needed for this paper.
Throughout, p will denote a prime in Z and q will be a power of p. We use k to
denote the finite field Fq with q elements, and we fix an algebraic closure k of k.

Whenever we talk about curves, we mean smooth projective geometrically
irreducible curves over a field. Any curve C has an associated abelian variety,
called the Jacobian of C and denoted JC . The dimension of the Jacobian is the
genus of the curve. The abelian varieties in this paper will be Jacobians of genus
2 curves, but for the moment we state some known results for arbitrary abelian
varieties. Every principally polarized 2-dimensional abelian variety over a perfect
field is either the Jacobian of some genus 2 curve or becomes isomorphic to a
product of two elliptic curves with the product polarization over a field extension
of degree at most 2.

Given an abelian variety A defined over k, the p-rank of A is defined by

rp(A) = dimFp
A(k)[p],

where A(k)[p] is the subgroup of p-torsion points over the algebraic closure. We
have 0 ≤ rp(A) ≤ dim(A). The number rp(A) is invariant under isogenies over
k, and satisfies rp(A × A′) = rp(A) + rp(A′). An abelian variety defined over
k is called k-simple if it is not k-isogenous to a product of abelian varieties of
smaller dimensions. The term absolutely simple means k-simple.

An elliptic curve over k is called ordinary if its p-rank is 1, and is called
supersingular if its p-rank is 0. An abelian variety A of dimension g over k is
called ordinary if its p-rank is g and supersingular if it is k-isogenous to a power
of a supersingular elliptic curve.

A supersingular abelian variety has p-rank 0. If g ≤ 2, then the converse also
holds [16]. For genus g > 2, there are several intermediate types, but for g = 2,
the only intermediate type between supersingular and ordinary is the case where
the p-rank is equal to 1. This intermediate case is the topic of this paper.

2.1 Zeta functions, Weil q-numbers

The zeta function ZC(T ) of a smooth projective curve C over k = Fq is defined
by

ZC(T ) = exp

∑
m≥1

Nm
Tm

m

 ,



where Nm is the number of Fqm -rational points on C. The zeta function was
first defined by E. Artin and F. K. Schmidt, who proved that the zeta function
(of a curve) is a rational function in T of the form

P (T )
(1− T )(1− qT )

where P (T ) is a polynomial of degree 2g with rational coefficients, and g is
the genus of the curve. Schmidt also proved a functional equation for the zeta
function, from which it follows that if α is a root of P (T ), so is α/q. The Riemann
Hypothesis for curves over finite fields (proven by Weil) states that the roots of
the numerator have absolute value q−1/2.

For genus 2 curves, these facts imply that P (T ) has the form

P (T ) = 1 + a1T + a2T
2 + qa1T

3 + q2T 4

for some integers a1, a2. These integers are related to N1, N2 by N1 = q +1+a1,
N2 = q2 + 1− a2

1 + 2a2.
For any abelian variety A, the characteristic polynomial of the Frobenius

endomorphism (acting on the `-adic Tate module of A), will be denoted fA(t).
It is independent of ` and has coefficients in Z. If A = JC for a curve C, then
it was shown by Weil that fA(t) is the reciprocal polynomial of the numerator
P (T ) of the zeta function of C. For genus 2 curves, then,

fJC
(t) = t4 + a1t

3 + a2t
2 + qa1t + q2.

An algebraic integer π is called a Weil q-number if its image under every
complex embedding of Q(π) has absolute value

√
q. The minimal polynomial

over Q of a Weil q-number is thus a candidate for being fA for some A. We say
that a polynomial f is a Weil q-polynomial if f = fA for some abelian variety A
defined over Fq. Honda showed that every Weil q-number is a root of some Weil
q-polynomial, see [22]. Tate showed that two abelian varieties are Fq-isogenous
if and only if their associated Weil q-polynomials (characteristic polynomials of
Frobenius) are equal.

The following theorem summarizes the results of Rück [17] and Maisner and
Nart [13], which gives conditions on a1, a2 for a hyperelliptic genus 2 curve C to
have p-rank 1.

Theorem 1. Let q = pn for a prime p and positive integer n. Let f(t) = t4 +
a1t

3 + a2t
2 + qa1t + q2 ∈ Z[t] and let ∆ = a2

1 − 4a2 + 8q, δ = (a2 + 2q)2 − 4qa2
1.

Then, f(t) is the characteristic polynomial of a simple p-rank 1 Jacobian of a
projective smooth curve of genus 2 defined over Fq if and only if

i) |a1| < 4
√

q,
ii) 2|a1|

√
q − 2q < a2 < a2

1/4 + 2q,
iii) ∆ is not a square in Z,
iv) vp(a1) = 0,
v) vp(a2) ≥ n/2,



vi) δ is not a square in the p-adic integers.

Proof. The first three conditions are equivalent to f(t) being an irreducible Weil
q-polynomial, see [13, Lemma 2.1, Lemma 2.4] and [17, Lemma 3.1]. This implies
that A is simple. Conversely, note that for a simple abelian variety, by Theorem
2 below we have fA(t) = mA(t)e for some monic irreducible polynomial mA(t).
The number e must divide the p-rank of A [8, Prop. 3.2]. Thus for a simple
abelian variety with p-rank 1 the characteristic polynomial of Frobenius fA is
always irreducible. The last three conditions are then equivalent to having p-
rank 1, see [13, Theorem 2.9] ut

2.2 Endomorphisms

For any field l ⊃ k, let Endl(A) denote the ring of endomorphisms of A that are
defined over l. Let

End0
l (A) := Q⊗ Endl(A).

If A is k-isogenous to
∏

Ani
i , where the Ai are pairwise non-isogenous, then

End0
k
(A) ∼= ⊕Mni

(End0
k
(Ai)). Here is an important result on the endomorphism

ring End0
k(A).

Theorem 2 ([24]). Let A be a simple abelian variety over the field k with q
elements. Then there exists an integer e such that

1. fA(t) = m(t)e for some irreducible monic polynomial m(t) ∈ Z[t],
2. End0

k(A) is a division algebra with center K = Q(π),
3. [End0

k(A) : Q] = e2[K : Q], and 2 dimA = e[K : Q].

In Section 2.4 we detail the implications of this result for genus 2 curves.

2.3 Complex multiplication

A CM field is a totally imaginary quadratic extension of a totally real algebraic
number field of finite degree. In particular, a field K is a quartic CM field if K
is an imaginary quadratic extension of a totally real field K0 of degree 2 over Q.

Definition 3. Let C be a curve of genus 2 defined over k = Fq, and let K be a
quartic CM field. For any order O of K, we say that C has complex multiplica-
tion (CM) by O if Endk(JC) ∼= O. We say that C has CM by K if C has CM
by an order in K.

The moduli space of 2-dimensional principally polarized abelian varieties over
C is 3-dimensional. Its function field is generated by three invariants (j1, j2, j3)
called the (absolute) Igusa invariants of C [12]. We define three Igusa class
polynomials of an order O of a quartic CM field K by

HO,`(x) =
s∏

i=1

(x− j
(i)
` )



for ` = 1, 2, 3. Here s is the number of isomorphism classes of 2-dimensional
principally polarized abelian varieties over C with CM by O, and the product
is over the invariants j

(i)
` from the s classes. For the sake of simplicity of both

theory and computations, we will restrict our attention to O = OK .

2.4 Endomorphisms in genus 2

We summarise some facts for endomorphism algebras of 2-dimensional abelian
varieties with p-rank 1 here.

For elliptic curves E, we can read off the p-rank from the Q-rank of the al-
gebra End0

k
(E). Indeed, there are two cases: an ordinary curve, with p-rank 1,

where End0
k
(E) is a CM field of degree 2; and a supersingular curve, with p-rank

0, where End0
k
(E) is a quaternion algebra. Now let A be an absolutely simple

abelian surface defined over a finite field k. By Theorem 2 we have three possi-
bilities: [End0

k
(A) : Q] = 4, 8 or 16. In line with the genus 1 results, one might

intuitively guess that these correspond to the p-rank 2, 1, 0, cases respectively.
However, this is not correct, as we will explain below. We note that Mumford in
[15, Chapter IV, pg. 201] states the classification due to Albert of the four types
that End0

k
(A) can be, though there he does not give an association of these types

with the p-rank of the abelian variety.

Lemma 4. Let A be a simple abelian surface defined over a finite field k. If A
has p-rank 1 then A is absolutely simple and End0

k
(A) is a CM field of degree 4.

Proof. We note that Maisner-Nart [13, Corollary 2.17] show that a simple abelian
surface of p-rank 1 is absolutely simple. By going to an extension field of k, we
can therefore assume without loss of generality that all endomorphisms of A over
k are already defined over k.

By Theorem 2, the characteristic polynomial of Frobenius is fA(t) = m(t)e

for some irreducible monic polynomial m(t) ∈ Z[t]. Also, End0
k
(A) is a field if and

only if e = 1. In this e = 1 case, the field End0
k
(A) = K is a totally imaginary

quadratic extension of K0, a totally real quadratic algebraic number field. In
other words, K is a quartic CM field. To complete the proof, it only remains
to show that e = 1. But for simple abelian surfaces of p-rank 1, fA(t) must be
irreducible by the remarks after Theorem 1, so indeed e = 1. ut

Note that if A is not simple, and has p-rank 1, then A is isogenous to the
product of an ordinary elliptic curve and a supersingular elliptic curve. Both of
these are well understood.

Example 5. When q = 2, k = F2, the curve y2 + y = x3 + 1/x has p-rank 1 (see
[14] for example, or use Theorem 1). It is easy to calculate that N1 = N2 = 4,
and the formulas in section 2.1 give a1 = 1, a2 = 0. Then the characteristic
polynomial of Frobenius is fA(t) = t4 + t3 + 2t + 4, which is irreducible over Q
and so JC is simple. Thus End0

k
(JC) is a CM field for this curve.



2.5 The reflex field, and splitting of primes

Given a CM field K and a CM-type Φ of K, i.e. a set of embeddings of K into
its normal closure such that Φ and Φ are disjoint and their union is the complete
set of embeddings of K. The reflex field K∗ of K with respect to Φ is the field
generated by elements

∑
φ∈Φ φ(x) for x ∈ K. We call the CM type primitive if

there is no subfield K ′ ⊂ K such that the set of restrictions of elements of Φ to
K ′ is a CM type of K ′. If Φ is primitive and K is Galois over Q, then K = K∗.
In this paper we will consider non-Galois extensions, and K∗ will be different
from K, although both fields will be degree 4 extensions of Q. The Galois closure
L of K (and K∗) is a degree 2 extension of K, with Galois group D4 over Q.

Given a CM field K, an abelian variety A defined over C which has CM by
K, and a prime p, the splitting behavior of primes above p in K determines the
p-rank of the reduction A over Fp modulo a prime above p. Whenever A has
dimension 1 (an elliptic curve), a criterion of Deuring states that A is supersin-
gular if p is either ramified or inert in K and A is ordinary if p splits completely
in K. However, whenever A has dimension 2, then there are more possibilities
that occur.

For dimension 2, Goren distinguishes the cases in [9] assuming p is unramified
in K and Gaudry, Houtmann, Kohel, Ritzenthaler and Weng in [6] extend this
result to the ramified case. They show that whenever K is cyclic, then the
reduction of A is either ordinary or supersingular, but whenever K is non-Galois,
then it is possible for A to be in the “intermediate” case, and have p-rank 1. If
K is Galois non-cyclic, then A will not be absolutely simple. As simple p-rank 1
varieties are absolutely simple, we will restrict to the case that K is non-Galois.
The result of [9] and [6] is as follows.

Lemma 6. Let K be a quartic CM field and C a curve of genus 2 over a number
field L ⊇ K with endomorphism ring OK . Let p be a prime number and p a prime
of OL, lying over p. The reduction of C modulo p is a genus 2 curve with p-rank
1 if and only if (p) factors in OK as (p) = P1P2P3 or (p) = P1P2P

2
3 . If that is

the case, then the reduction (C mod p) is absolutely simple.

Given any triple of invariants (j1, j2, j3), the main theorem of complex mul-
tiplication implies that the field K∗(j1, j2, j3) is an unramified abelian extension
of the reflex field K∗, and is therefore contained in the Hilbert class field H∗ of
K∗. On the other hand, Q(j1, j2, j3) contains K∗

0 by [18].

2.6 Cryptography

Elliptic and hyperelliptic curves with certain special properties are used in el-
liptic curve cryptography and hyperelliptic curve cryptography. One common
requirement is that the Jacobian should be a group of prime (or nearly prime)
order. The CM method provides a means of finding such curves quickly.

An alternative method for constructing curves with a certain number of
points is to randomly choose a curve and count the number of points. The speed
of this method clearly depends on the speed of the point-counting algorithm.
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Fig. 1. Relations between CM field K, reflex field K∗ and Hilbert class field H∗.

At present, point-counting algorithms are fast enough to compete with the CM
method for elliptic curves, but not for hyperelliptic curves.

An important example for an application of the CM method in cryptography
is the construction of pairing-friendly curves. An algebraic curve C over a finite
field Fq is called pairing-friendly if the number #JC(Fq) of Fq-rational points
on its Jacobian JC is divisible by a large prime r and the embedding degree of
JC(Fq) with respect to r is small. The number κ is called the embedding degree
of JC with respect to r, if κ is the smallest integer such that r | qκ−1. In general,
for random curves the embedding degree grows linearly with r and thus tends
to be very large.

Pairing-friendliness means that the Jacobian group order must fulfill a very
special condition that will never be satisfied by chance. For constructing such
curves one thus seeks Weil numbers that fulfill this condition and afterwards
constructs a corresponding curve by using the CM method. To measure the
quality of a pairing-friendly curve one introduces the ρ-value

ρ(JC) =
g log(q)
log(r)

.

This ratio shows how far the size of the group we can actually use for crypto-
graphic applications differs from the size of JC(Fq). Optimally the ρ-value is 1,
meaning that we have a prime order group of Fq-rational points. This optimal
value currently is only achieved for elliptic curves, for an overview see [4].



3 Algorithms

We present three algorithms here. Algorithm 1 constructs curves of genus 2
and p-rank 1 with a Jacobian of prime order. Algorithm 2 is an alternative
to Algorithm 1. Algorithm 3 constructs curves of p-rank 1 with a prescribed
embedding degree.

Before we begin, we would like to point out that the final step in all our
algorithms is always the same, to invoke the CM method and construct a curve
from a given CM field Q(π). We present the details of the CM method later
in Section 4. There are different ways to implement the CM method, but the
specific implementation is not relevant for our paper so we leave this unspecified.
Here is our first algorithm.

Algorithm 1 Input: A non-Galois CM field K of degree 4 and a positive in-
teger n
Output: A prime p of n bits and a curve of genus 2 over Fp2 that has p-rank 1
and a Jacobian with a prime number of rational points.

1. Take a random prime p of n bits.
2. If pOK factors as p1p2p3, where p3 has degree 2, continue. Otherwise, go to

step 1.
3. If p1 is principal and generated by α, let π = αα−1p. Otherwise, go to step

1.
4. If N(uπ − 1) is prime for some root of unity u ∈ K, then replace π by uπ.

Otherwise, go to step 1.
5. Compute the curve corresponding to π using the CM method and return this

curve.

Here is our second algorithm, which has the same input and output.

Algorithm 2 Input: A non-Galois CM field K of degree 4 and a positive in-
teger n
Output: A prime p of n bits and a curve of genus 2 over Fp2 that has p-rank 1
and a Jacobian with a prime number of rational points.

1. Take a random element α of OK \ OK0 of which the norm has n bits.
2. If p = N(α) is prime in Z, continue. Otherwise, go to step 1.
3. If the prime β = pα−1α−1 of OK0 remains prime in OK , then let π = α2β

and p = N(α). Otherwise, go to step 1.
4. If N(uπ − 1) is prime for some root of unity u ∈ K, then replace π by uπ.

Otherwise, go to step 1.
5. Compute the curve corresponding to π using the CM method and return this

curve.

Theorem 7. For both Algorithms 1 and 2, the following holds. If the algorithm
terminates, then the output is correct. The heuristic expected runtime of the
algorithm is polynomial in n for fixed K.



Proof. In both algorithms, we have ππ = p2, so π is a Weil p2-number. Let
β = pα−1α−1. Then p factors in K as a product of three primes ααβ, so the
output has p-rank 1 by Lemma 6. By the CM method of Section 4, the curve
has a Jacobian of prime order N(uπ − 1).

For the runtime of Algorithm 1, note that, by the prime number theorem
and fast primality checking, it takes time polynomial in n to find a prime p of n
bits. By Chebotarev’s density theorem, a prime factors into principal primes as
p = p1p2p3 with a positive probability, depending only on the class group of K,
which is fixed. We view the number N(π − 1) as random and it has about 2n
bits, so by the prime number theorem, it is prime with probability 1/(2n log(2)).
In particular, we expect the number of iterations to be quadratic in n.

In Algorithm 2, we view N(α) as a random number of n bits. By the prime
number theorem, we expect it to be prime with probability 1/(n log(2)). We ex-
pect the prime β of OK0 to be inert in K/K0 with positive probability depending
only on K. Again, we view N(π − 1) as random and use the prime number the-
orem to get an expected number of iterations which is quadratic in n. ut

We have implemented Algorithm 1 in Magma [2]. We give some examples of
cryptographic relevant bitsizes in Appendix A. Using precomputed class poly-
nomials the curves can be found very quickly. All our examples were computed
in less than 10 seconds on an Intel Core 2 Duo.

The following algorithm constructs p-rank 1 curves with prescribed embed-
ding degree. It is modeled after the method by Freeman, Stevenhagen and Streng
[5].

Algorithm 3 Input: A non-Galois CM field K of degree 4, a positive integer
κ and a prime number r ≡ 1 (mod 2κ) which splits completely in K.
Output: A prime p and a curve of genus 2 over Fp2 that has p-rank 1 and
embedding degree κ with respect to r.

1. Let r be a prime of K dividing r and let s = rr−1r−1.
2. Take a random element x of F∗r and a primitive 2κ-th root of unity ζ.
3. Take α ∈ OK \ OK0 such that α mod r = x, α mod r = xζ and α mod s =

x−1.
4. If p = N(α) is prime in Z and different from r, continue. Otherwise, go to

step 2.
5. If the prime β = N(α)α−1α−1 of OK0 remains prime in OK , let π = α2β

and p = N(α). Otherwise, go to step 2.
6. Compute the curve corresponding to π using the CM method and return this

curve.

Theorem 8. If the algorithm terminates, then the output has p-rank 1 and em-
bedding degree κ with respect to a subgroup of order r. The heuristic expected
runtime of the algorithm is polynomial in r for fixed K.

Proof. The number π is defined in step 4 by π = α2β, where p factors into
primes of OK as ααβ, just as in Algorithm 2. In particular, the facts that the



output has p-rank 1 and a Jacobian of prime order N(π− 1) is proven as in the
proof of Theorem 7

We find π mod r = (α mod r)2(φ(αα) mod r), where φ is the non-trivial au-
tomorphism of K0. Inside Fr, the right hand side is equal to (α mod r)2(α mod
s)2 = 1, so r|N(π − 1). On the other hand,

p2 mod r = (α mod r)2(α mod r)2(φ(αα) mod r)2

= (α mod r)2(α mod r)2(αα mod s)2.

As s = s, we have (α mod s) = (α mod s) = (α mod s), so p2 mod r = (α mod
r)2(α mod r)2(α mod s)4 = ζ2 is a primitive κ-th root of unity. By [5, Proposition
2.1], the facts that p2 mod r is a primitive κ-th root of unity and that r|N(π−1)
imply that JC has embedding degree κ with respect to r.

This finishes the proof of the correctness of the output. To prove the runtime,
as r splits completely, α is a lift of some element modulo r. We treat its norm
p = N(α) as a random integer around r4, which by the prime number theorem
is prime with probability 1/(4 log r). Again, we expect the prime β = pα−1α−1

of K0 to be inert in K/K0 with constant positive probability. ut

Algorithm 3 produces curves with prescribed embedding degree κ with re-
spect to a prime number r that is chosen in advance. Our algorithm is an adap-
tation of the method proposed by Freeman, Stevenhagen and Streng in [5]. They
give a heuristic analysis of their method. It is shown in [5, Thm. 3.4] that one
expects the prime q to yield a ρ-value of about 8 for genus 2, which means that
log(q) = 4 log(r). The same reasoning holds for our algorithm. The prime p
computed as the norm of the element α in step 4 is therefore expected to give
log(p) = 4 log(r). Since our p-rank 1 curve will be defined over Fp2 , its ρ-value
will be ρ = 2 log(p2)/ log(r) ≈ 16.

For cryptographic applications one requires that the prime r has at least 160
bits, since r is the order of the subgroup used in protocols. Then p already has
640 bits. This makes field and curve arithmetic very slow, compared to elliptic
curve implementations of the same security level, where it is possible to have p
of the same size as r. Thus the curves produced by algorithm 3 currently have
no relevance for practical applications in cryptography. Still, our examples show,
that in principle pairing-based cryptography is possible for p-rank 1.

4 The CM method

Roughly speaking, the basic principle of the complex multiplication (CM) method
of constructing curves over finite fields with desired properties is to construct a
complete list of all candidate abelian varieties in characteristic 0 whose reduction
modulo Q could be the Jacobian of the curve we seek (where Q is a prime over
q). Then each entry on the list of candidates is checked.

The Lubin-Serre-Tate lifting theorem states that any ordinary abelian variety
over Fq is the reduction modulo Q of some characteristic 0 abelian variety, so
we know that if the curve we seek exists it will be found by this method.



It seems to be standard to include the computation of Igusa class polynomials
as part of the CM method, although this is the most costly step. We propose
separating this step from the CM method. Reasons for doing this include

1. Computation of class polynomials has other applications in computational
number theory.

2. In practice the class polynomials are pre-computed and stored, and a lookup
table is used.

3. The method used after obtaining the class polynomials does not depend on
the way the class polynomials are computed.

So we shall not present any particular method of computing the class polynomi-
als. There are a few methods in the literature. The complex analytic approach,
first described by Spallek [19] and van Wamelen [23] computes the CM abelian
varieties as lattices in C2 and evaluates Igusa invariants in them via Siegel modu-
lar forms. Recently, a complete runtime analysis of the complex analytic method
was given by Streng [21]. Eisenträger and Lauter [3] present an algorithm for
constructing genus 2 curves over finite fields that differs from the classical ap-
proach in that their method computes the class polynomials using a Chinese
Remainder Theorem method rather than complex analytic techniques. Gaudry,
et al [6], [7] modify the classical CM method by using a 2-adic lifting method to
construct the class polynomials.

In more detail the genus 2 CM method is as follows.

1. Fix a quartic CM field K = Q(π).
2. Somehow get the Igusa class polynomials H1(x), H2(x), H3(x) for K.
3. Choose a “suitable” (we will address this below) prime p and reduce Hi(x)

modulo p to get Igusa invariants in Fq.
4. Then an algorithm such as that of Mestre can be used to generate a curve

over Fp with the given invariants such that JC = A.
5. Select correct twist.

Remark 9. The “suitable” prime needs to be one whose splitting behavior in
K is as one desires. For example, if one wants an ordinary curve, then one
could require that p splits completely in K. This case has been studied before
in [3],[6],[7], for example. We shall be looking for curves of p-rank 1, and we will
require that (p) splits as P1P2P3 or P1P2P

2
3 as we explained in Section 2.5.

By a twist of a curve C/k in step 5, we mean a curve C ′/k such that C and
C ′ become isomorphic over k. The number of such curves is small and depends
only on the number of k-automorphisms of C.

In step 3, we need to pick one root j1 ∈ Fq of h mod p for every irreducible
factor h of H1(x), and for each, take all roots j2, j3 ∈ Fq of H2 mod p and H3 mod
p. If s is the degree of the class polynomials and n the number of irreducible
factors of H1(x), then among the s2n triples (j1, j2, j3) ∈ Fq obtained, there
are n that correspond to the reductions of CM curves. All the twists of those n
curves are exactly all possible reductions of curves with CM by OK . The correct



triples and twists, if they exist, can be selected by probabilistic checking of the
order of the Jacobian of C, which is NK/Q(π − 1) for the correct curve C.

One refinement put forth in [7] is that we replace H2(x) and H3(x) by two
other polynomials in such a way that we directly only have the correct n triples
(j1, j2, j3) instead of the ns2 mentioned above. This refinement works only if
H1(x) has no roots of multiplicity greater than 1 in characteristic 0, and the j1 we
are looking for has multiplicity 1 as a root modulo p. They define G2(x), G3(x)
by Lagrange interpolation and Ĥ2(x), Ĥ3(x) by a modification thereof. More
precisely, Gk(x) and Ĥk(x) are defined by saying that they have degree at most
n− 1 and that for all zeroes j1 of H1(x) and for ` ∈ {2, 3},

j` = G`(j1) =
Ĥ`(j1)
H ′

1(j1)
.

We mention G because it is much more straightforward and Ĥ because its height
is smaller ([7]). So we first find a root of H1(x) modulo a prime p of mixed
reduction, and this will be the potential j1 Igusa invariant. Then the invariants
j2, j3 that go with this j1 are computed from these formulas. This refinement
means we do not have to try all n triples, just one, which is a big speedup when
the class number is large. Notice also that such a representation proves that
Q(j1, j2, j3) = Q(j1) if H1(x) has only simple roots.

We will prove in Section 5 that these Gi or Ĥi do not work in the case
(p) = P1P2P

2
3 , and we will show how to adapt the formulas in that case. The

formulas do work in the case (p) = P1P2P3. The problem in the case where
(p) = P1P2P

2
3 is that H1(x) has only roots of higher multiplicity modulo p, so

that Gi(j1) and
bHi(j1)
H′

1(j1)
have a zero in the denominator.

5 Multiplicity of roots of class polynomials modulo p

In this section we shall explain why the refinement of the CM method from
[7] with polynomials G2(x), G3(x), does not work directly for curves of p-rank
1 when (p) = P1P2P

2
3 . We will explain how to get around the problem by

modifying G2(x), G3(x).
As stated in the previous section, the CM method for ordinary curves with its

refinement of the Gi(x) polynomials appears to require that the Hi(x) have no
repeated roots (or at least some roots of multiplicity 1) modulo p. Computer ex-
periments indicated that, for the primes of mixed reduction with (p) = P1P2P

2
3 ,

the reduction of H1(x) mod p always had all roots of multiplicity > 1. This turns
out to be always true, and we will provide a proof below. This means that the
modified CM method for ordinary curves will not work directly.

Note that the degree of H1(x) is twice the class number of the CM field K,
as stated in [7, Theorem 1].

We will study the splitting behavior of relevant primes in the reflex field K∗.
This turns out to be the key, along with the fact that Q(j1) is an unramified
abelian extension of K∗

0 .



We will use the following theorem.

Theorem 10 (Kummer-Dedekind). Let f ∈ Z[x] be a monic irreducible
polynomial. Let α be a root of f , and let K = Q(α). Let p be a prime in Z
and write

f =
m∏

i=1

gei
i (mod p), gi ∈ Z[x],

where the gi mod p are distinct irreducible polynomials in Fp[x]. The prime ideals
of A = Z[x]/(f) that divide (p) are exactly the ideals Pi = (p, gi) for i = 1, . . . ,m.
If Pi is not invertible as a fractional Z[x]-ideal, then ei > 1 and p divides the
index of A in the maximal order of K. If Pi is invertible, then its ramification
index over Z is ei and the residue class field degree dimFpA/Pi equals deg(gi mod
p).

Proof. This is part of Theorem 8.2 of [20]. ut

5.1 Case (p) = P1P2P 2
3

We will use L to denote the Galois closure of K. Let G denote the Galois group
of L/Q, which is isomorphic to the dihedral group of order 8.

Lemma 11. Let K be a quartic CM field and K∗ its reflex field. Let p be a prime
that splits in K as (p) = P1P2P

2
3 , for some prime ideals Pi. Then (p) = S2 in

K∗
0 (the real quadratic subfield of K∗) and S splits in K∗/K∗

0 .

Proof. Let P be a prime of L lying over P1. As P splits in K0/Q, its decompo-
sition group DP contains Gal(L/K), but as P does not split completely in L,
we find that DP is equal to Gal(L/K). As there is ramification and the inertia
group IP is contained in DP , it must also be equal to Gal(L/K). As K∗ is one of
the non-conjugate non-normal degree 4 fields in L, this implies that P ramifies
in K∗

0/Q and splits in K∗/K∗
0 . ut

Next we prove a lemma relating the invariants and p. Assume that H1(x) has
only roots of multiplicity 1. Recall that Q(j1, j2, j3) = Q(j1) as we explained in
Section 3.

Lemma 12. Let K be a quartic CM field and K∗ its reflex field. Let p be a prime
that splits in K as (p) = P1P2P

2
3 , for some prime ideals Pi. Let E = Q(j1). Then

any prime of E lying over p has ramification index 2.

Proof. By Figure 1, we know that K∗(j1) is unramified over K∗ and hence by
Lemma 11 over K∗

0 . In particular, the subfield E is also unramified over K∗
0 . By

Lemma 11, (p) = S2 in K∗
0 . ut

We call a prime p ∈ Z ok for a monic irreducible polynomial F ∈ Q[x] if
there exists a positive rational number a such that ordp a = 0, G = F (ax) is in
Z[x], and the index of Z[x]/(G) in its normal closure is coprime to p. We call a
prime p ∈ Z ok for an arbitrary polynomial F ∈ Q[x] if p is ok for every monic
irreducible factor of F and ordp b = 0 for the leading coefficient b of F .



Corollary 13. Let K be a quartic CM field and K∗ its reflex field. If a prime
p splits in K as (p) = P1P2P

2
3 , for some prime ideals Pi, and p is ok for H1,

then H1 mod p is a square.

Proof. Let F be an irreducible factor of H1(x) in Z[x]; we prove that G (as in the
definition of ‘ok’) is a square modulo p. By Theorem 10, it suffices to prove that
(p) factorizes into prime ideals with even powers in E = Q(j1), where w.l.o.g. j1
is a root of F (x). This follows from Lemma 12. ut

Corollary 14. Let K be a quartic CM field and K∗ its reflex field. If a prime
p splits in K as (p) = P1P2P

2
3 , for some prime ideals Pi, then all roots of

H1(x) mod p in Fp have multiplicity greater than 1.

Proof. As the CM curves have good reduction, there exist positive integers d and
a such that dH1(ax) is monic in Z[x] and ordp d = ordp a = 0. Let F be a monic
irreducible factor of dH1(ax) in Z[x]; we prove that F mod p has only roots of
multiplicity at least 2. By Theorem 10, it suffices to prove that (p) factorizes
into ramified prime ideals in E = Q(j1), where w.l.o.g. j1 is a root of F (x). This
follows from Lemma 12. ut

Remark 15. The above is not specific for the invariant j1, it will hold for any
rational function in j1, j2, j3.

We now proceed to obtain even more information about the factorization of
H1(x) modulo p.

Lemma 16. If K as above contains a Weil p-number (recall p is prime), then
any prime R of K∗

0 lying over p splits completely in E∗ = EK∗.

Proof. The main theorem of complex multiplication states that E∗ is an unram-
ified abelian extension of K∗. Class field theory tells us that the decomposition
group of a prime lying over R in E∗/K∗ is the subgroup of the class group gen-
erated by the class of R. In particular, it suffices to prove that R is in H0, where
H0 is the subgroup corresponding to the extension E∗/K∗. This will imply that
the decomposition group is trivial.

If K contains a Weil p-number π, then (π) = P a
1 P b

2P c
3 and as P1 = P2,

P3 = P3 and ππ = p, we find a+ b = 1, c = 1, so without loss of generality, P1P3

and P2P3 are principal and generated by π and π.
By [7], H0 consists of those ideals of K∗ whose type norm for the reflex type

is principal. The type norm of R is either P1P3 or P2P3, hence R is in H0. ut

Corollary 17. Let K be a quartic CM field. Let the characteristic polynomial
of Frobenius used to generate K be f(t) = t4 +a1t

3 +a2t
2 +a1pt+p2 for integers

a1, a2 and a prime p that splits in OK as (p) = P1P2P
2
3 for some prime ideals

Pi in K. If p is ok for H1, then H1(x) mod p has the form
∏h

i=1(x−αi)2 where
the αi are distinct elements of Fp.



Proof. We know that p ramifies as S2 in K∗
0/Q and then S splits in K∗/K∗

0 by
Lemma 11. By Lemma 16, the resulting two primes lying over S split completely
in E∗/K∗. In particular, any prime of E lying over p has residue field degree 1.
By Theorem 10, this implies that every irreducible factor of H1(x) splits into
linear factors when reduced mod p, and H1(x) has the form stated. ut

Adapting Gi or Ĥi to the case where p ramifies in K∗
0 is not that hard. First

of all, we can factor H1 in K∗
0 [x] and get an irreducible factor f ∈ K∗

0 [x]. As
there is no more ramification of p in E/K∗

0 , this polynomial modulo the unique
prime S of K∗

0 over p has no roots of higher multiplicity (assuming of course
that p does not divide the index of Z[j1] in the ring of integers of its field of
fractions).

If one works with Gi, then simply replacing Gi by its remainder Ri ∈ K∗
0 [x]

upon division by f solves the problem. Indeed, Ri is the Lagrange interpolation
when only zeroes j1 of f are considered, because for them we have ji = Gi(j1) =
Ri(j1) in characteristic 0.

If one works with Ĥi, then a similar argument shows that it suffices to replace
H1 by a K∗

0 [x]-irreducible factor f and Ĥi by the unique polynomial Si of degree
at most deg(f)− 1 which is equivalent modulo f to

Ĥi

H1/f
.

5.2 Case (p) = P1P2P3

Unlike the previous section, this case presents no obstruction, and the CM
method used in for ordinary curves can be applied directly. We proceed to prove
this. Continue the notation from the previous section.

Lemma 18. Let K be a quartic CM field and K∗ its reflex field. Let p be a
prime that splits in K as (p) = P1P2P3, for some prime ideals Pi. Then (p) is
inert in K∗

0 and splits in K∗/K∗
0 .

Proof. Completely the same as the proof of Lemma 12, except that this time
the inertia group is trivial and primes are inert where they ramified in the other
case. See also the proof of Theorem 3.5 (3) in [6]. ut

Corollary 19. Let K be a quartic CM field and K∗ its reflex field. If a prime p
splits in K as (p) = P1P2P3, for some prime ideals Pi, and p is ok for H1, then
all roots of H1(x) mod p are distinct.

Proof. By Figure 1, we know that K∗(j1) is unramified over K∗, and hence by
Lemma 18 over Q. In particular, the subfield Q(j1) is also unramified over Q.

Let F (x) be an irreducible factor of H1(x) in Z[x]; we prove that F (x) is
separable mod p. By Theorem 10, it suffices to prove that (p) does not ramify in
E = Q(j1), where w.l.o.g. j1 is a root of F (x). This follows from Lemma 12. ut



Lemma 20. If K as above contains a Weil p2-number (recall p is prime) cor-
responding to a p-rank 1 abelian surface, then the unique prime R of K0 lying
over p splits completely in E∗ = EK∗.

Proof. We follow the proof of Lemma 16. This time, K contains a Weil p2-number
π, so (π) = P a

1 P b
2P c

3 . As P1 = P2, P3 = P3 and ππ = p, we find a + b = 2, c = 1.
If a = b = 1, then Endk(Aπ) has order 2 in the Brauer group of Q(π) and we
don’t have p-rank 1, so without loss of generality, P 2

1 P3 and P 2
2 P3 are principal

and generated by π and π. The type norm of R is either P 2
1 P3 or P 2

2 P3, hence
R is in H0. ut

Corollary 21. Let K be a quartic CM field. Let the characteristic polynomial
of Frobenius used to generate K be f(t) = t4 +a1t

3 +a2t
2 +a1pt+p2 for integers

a1, a2 and a prime p that splits in OK as (p) = P1P2P3 for some prime ideals
Pi in K. If p is ok for H1, then H1(x) mod p has the form

∏h
i=1 gi where the gi

are distinct irreducible polynomials of degree 2 over Fp.

Proof. We know that p is inert in K∗
0/Q . By Lemma 20, it then splits completely

in Q(j1). By Theorem 10, this implies that every irreducible factor of H1(x) splits
into distinct irreducible quadratic factors when reduced mod p, and H1(x) has
the form stated. ut

Remark 22. The same argument works in the ordinary case since p is unramified
everywhere, and shows that H1(x) has distinct roots modulo p.

6 Conclusion

In this paper we have presented algorithms to construct genus 2 curves of p-rank
1, using the complex multiplication (CM) method. We have demonstrated that
it is possible to efficiently construct curves such that their Jacobian has a prime
number of rational points over the ground field. These curves might be useful for
cryptographic purposes, and we have given examples for certain bitsizes of the
Jacobian group order, suitable for different security levels. Further, our method
can be used to construct p-rank 1 curves with a prescribed small embedding
degree. We have discussed the CM method and the modulo p reduction of class
polynomials in the case of p-rank 1. Our algorithms show, that for genus 2,
constructing p-rank 1 curves is as easy as constructing ordinary curves.
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A Examples

We provide examples of p-rank 1 curves C defined over a quadratic field Fp2

whose Jacobian JC(Fp2) has prime order. The CM field for all examples is K =
Q(α), where α is a root of X4 + 34X + 217 ∈ Q[X]. We give the prime p,
the coefficients a1 and a2 of the characteristic polynomial of Frobenius and the
coefficients ci ∈ Fp2 of the curve equation

C : y2 = c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0.

The group order of the Jacobian can be computed as

#JC(Fp2) = p4 + 1 + a1(p2 + 1) + a2.

The field Fq = Fp2 is given as Fp(σ), where σ has the minimal polynomial
fσ = X2 + 27X + 128 ∈ Fp[X]. Section headings describe the size of the group
JC(Fp2) in bits. The three example bit sizes are suitable for the 80-, 96- and
128-bit security levels.

A.1 160 Bits

p = 924575392409
a1 = −3396725192754
a2 = 4585861472127472591045899
c6 = 743799951755 · σ + 324411853696
c5 = 883721851762 · σ + 326341693855
c4 = 52647632309 · σ + 594134629477
c3 = 237357033335 · σ + 399172288834
c2 = 260092427705 · σ + 863345808041
c1 = 383181044930 · σ + 205909996395
c0 = 77193628324 · σ + 227797496783



A.2 192 Bits

p = 236691298903769
a1 = 9692493559086
a2 = 53053369677708708650361238059
c6 = 97034787970005 · σ + 108070185883897
c5 = 177590039969265 · σ + 71180325836815
c4 = 136325719779266 · σ + 128119595448837
c3 = 113311153672510 · σ + 118353899161689
c2 = 61497433468379 · σ + 9079089070164
c1 = 61748720271204 · σ + 92041395614564
c0 = 114758796702185 · σ + 45168163359627

A.3 256 Bits

p = 15511800964685067143
a1 = −2183138494024250742
a2 = −390171452893965844512858417075864299559
c6 = 12621432058784055423 · σ + 4951229583301315115
c5 = 10615462210692139258 · σ + 2491309670771144544
c4 = 302040341019595016 · σ + 3121515878473940580
c3 = 1310375005142538356 · σ + 5402372758879029239
c2 = 6984026189189411646 · σ + 9715874427790652648
c1 = 2687728988296128478 · σ + 12158404312714991145
c0 = 2543583512728983447 · σ + 8504741143337818180


