
Secure Parameters for SWIFFT

- Preliminary Draft -

Johannes Buchmann and Richard Lindner

Technische Universität Darmstadt, Department of Computer Science
Hochschulstraße 10, 64289 Darmstadt, Germany

buchmann,rlindner@cdc.informatik.tu-darmstadt.de

Abstract. The SWIFFT compression functions, proposed by Lyuba-
shevsky et al. at FSE 2008, are very efficient instantiations of generalized
compact knapsacks. They have the unique property, that asymptotically
finding collisions for a random compression function implies being able
to solve the worst case of computationally hard lattice problems.
We present two results. First, we show that the scheme works equally
efficient, when the main security parameter n is the predecessor of a
prime instead of a power of two. Then, we present parameter generation
algorithms for both cases. Second, we give experimental evidence that
finding pseudo-collisions for SWIFFT, is as hard as breaking a 87-bit
symmetric cipher according to Lenstra’s predictions. We then suggest
conservative parameters, corresponding to 100-bit security.

Keywords: post-quantum cryptography, hash functions, lattices.

1 Introduction

On November 2nd 2007 the National Institute of Standards and Technology
(NIST) announced a competition to develop a new cryptographic hash algorithm.
The algorithm winning this competition will be called “SHA-3” and replace the
standard hash functions in use today, namely SHA-1 and SHA-2. One of the
main requirements for candidates in this competition is collision resistance. One
such candidate is the SWIFFTX hash function [1], whose collision resistance
relies on the collision resistance of the SWIFFT compression function family [7].

In this work we analyze the latter. Collisions in SWIFFT compression func-
tions correspond naturally to vectors with `∞-norm bounded by 1 in certain lat-
tices. We focus on attacks using lattice basis reduction algorithms. Since these
algorithms are highly optimized to find small vectors in the Euclidean norm,
it seems reasonable to analyze the computational problem of finding pseudo-
collisions, i.e. vectors in the smallest ball which contains all vectors correspond-
ing to collisions. We give experimental evidence that according to a well-known
heuristic by Lenstra and Verheul [5] this problem as comparable to breaking a
87-bit symmetric cipher.

We also present a parameter generation algorithm for efficient SWIFFT com-
pression function families, that works not only when the main parameter n is a

2

power of 2, like in the original proposal, but also when n is the predecessor of
a prime. Among the resulting parameters, we suggest one, for which according
to our experiments finding pseudo-collisions is at least as hard as breaking a
100-bit symmetric cipher.

2 SWIFFT compression functions

The SWIFFT compression function family was proposed by Lyubashevsky et
al. at FSE 2008 [7]. They showed that its efficiency is comparable to SHA-2,
while its collision-resistance is based on worst-case standard lattice problems
asymptotically.

For a set of integer parameters (n,m, p), in their case (64, 16, 257), they use
the polynomial f(x) = xn + 1, the ring Rp,n = Zp[x]/(f(x)), and the subset
Dn = {0, 1}[x]/(f(x)) to define the family

Hn,m,p =

{
hâ : x̂ ∈ Dm

n 7−→
m∑
i=1

aixi (mod p)
∣∣∣∣ â ∈ Rmp,n

}
.

The product aixi can be efficiently computed for all i, if an element ω of order
2n, exists in Zp. This is guaranteed when 2n divides p− 1. For security reasons
p is chosen to be prime, and n a power of two, making xn + 1 irreducible over Z.

Lyubashevsky and Micciancio showed in [6] that asymptotically these com-
pression functions are collision-resistant, as long as standard lattice problem in
lattices corresponding to ideals of Z[x]/(f(x)) are hard in the worst-case.

2.1 More parameters

Let n be the predecessor of a prime, then the polynomial f(x) = xn+xn−1+· · ·+1
is irreducible over the integers. Using the same structures as above, i.e. ring
Rp,n = Zp[x]/(f(x)), and subset Dn = {0, 1}[x]/(f(x)) with the new f , we can
construct the same compression function family as above and the asymptotic
security argument still holds.

Furthermore, if we chose a prime p, such that n+1 divides p−1, then similarly
to the case above an element ω of order n + 1 exists in Zp and the speedups
described by the SWIFFT inventors in [7] can be used to efficiently compute the
products aixi for all i.

Using this construction we have much more variety in the choice of parame-
ters. See for example Table 1 for a comparison of parameters where n is between
64 and 128.

2.2 SWIFFT Lattice

Let â ∈ Rp,n. Consider the function hâ and extended the domain to Rn =
Z[x]/(f(x)). The coefficient vectors of the periods of this function form the set

Λ⊥p (â) =

{
(x1, . . . , xnm) ∈ Znm

∣∣∣∣ hâ

(
n−1∑
i=0

xi+1x
i, . . . ,

n−1∑
i=0

xm(i+1)x
i

)
= 0

}
.

3

This is a lattice of dimension nm, since the extended hâ is linear. A basis for
this lattice can be found efficiently using a method described by Buchmann et
al. [2]. Collisions in the original (unextended) function hâ correspond exactly to
vectors in this lattice with `∞-norm bounded by 1. Therefore we refer to these
lattices as SWIFFT lattices. A pseudo-collision is a vector in this lattice with
Euclidean norm less than

√
nm. In this way every collision is a pseudo-collision,

but not vice versa.

3 Parameter generation

We now describe an algorithm for generating parameter sets (n,m, p) for the
SWIFFT compression function families in Section 2. If the first parameter n is
a predecessor of a prime, we will use the polynomial f(x) = xn +xn−1 + · · ·+ 1,
and if n is a power of two, we will use the polynomial f(x) = xn + 1. If both is
the case, we choose the parameters where the bitlength of the output is shorter,
i.e. the one with smaller p. In either case f is irreducible over the integers.

3.1 Algorithm

All parameter sets can be generated with Algorithm 1.

Input: Integer n, s.t. n+ 1 ∈ P
Output: Parameters (n,m, p)

k ← 0
while true do

k ← k + 1
p← k · (n+ 1) + 1
if isPrime(p) then break

end
m← d1.99 · log2(p)e

Input: Integer n, s.t. n = 2k

Output: Parameters (n,m, p)

k ← 0
while true do

k ← k + 1
p← k · 2 · n+ 1
if isPrime(p) then break

end
m← d1.99 · log2(p)e

Algorithm 1: Parameter generation for n+ 1 ∈ P and n = 2k.

For each set of parameters, we may additionally compute the output bitlength
out = dn log2(p)e, the compression rate cr = m log2(p), the Hermite factor δ
required for finding pseudo-collisions, and the minimal dimension d where we
can expect to find pseudo-collisions. These values are listed in Table 1.

The two latter values δ and d are computed in the following fashion. Consider
the function len(d) = pn/dδd. According to an analysis by Gama and Nguyen
[4]1 this is the Euclidean size of the smallest vector we are likely to find when
reducing a sublattice with dimension d of any SWIFFT lattice Λ⊥p (â). Micciancio
and Regev observed in [8] that this function takes its minimal value

len(dmin) = δ2
√
n log(p)/ log δ for dmin =

√
n log(p)/ log(δ).

1 Their experiments were performed on random lattices following a different distribu-
tion, but experimentally the results apply to SWIFFT lattices as well.

4

n m p out cr δ d

64 16 257 513 1.999 1.0085 205
66 17 269 533 2.106 1.0084 211
70 19 569 641 2.076 1.0073 247
72 17 293 591 2.074 1.0078 231
78 17 317 649 2.046 1.0072 250
82 15 167 606 2.032 1.0076 236
88 15 179 659 2.004 1.0071 255
96 18 389 826 2.092 1.0061 308

100 19 607 925 2.055 1.0056 340
102 19 619 946 2.049 1.0055 347
106 19 643 989 2.037 1.0053 361
108 21 1091 1090 2.081 1.0050 392
112 16 227 877 2.044 1.0058 325
126 18 509 1133 2.002 1.0048 407
128 20 769 1228 2.086 1.0045 434

Table 1. Parameters for 64 ≤ n ≤ 128.

A pseudo-collision is a vector in Λ⊥p (â) with Euclidean norm
√
nm. In order to

find such a vector, we need a δ, s.t. len(dmin) =
√
nm. We say this is the Hermite

factor required for finding pseudo-collisions, and the corresponding dmin is the
minimal dimension, where we can expect to find a pseudo-collision. Note that
these minimal dimensions, which we will work in are about 5 times smaller than
the corresponding dimensions of the SWIFFT lattices.

3.2 Recommended parameters

We will give arguments in Section 4.2 that parameters with d ≥ 220 correspond
to SWIFFT instances, where finding pseudo-collisions is at least as hard as
breaking a 100-bit symmetric cipher. Such a parameter set is given in the 4th row
of Table 1, i.e. (n,m, p) = (72, 17, 293). Concerning all attacks these parameters
are more secure than the standard ones, and we recommend to use them when
pseudo-collisions should be hard to find.

4 Security Analysis

In their original proposal of SWIFFT, Lyubashevsky et al. provide a first analysis
of all standard attacks. However, attacks using lattice basis reduction algorithms
like LLL/BKZ/RSR often behave much better in practice then their theoretical
analysis suggests. We believe this is the case concerning SWIFFT lattices (cf.
Section 2.2).

We will focus on this particular attack and give experimental evidence that
the computational problem of finding pseudo-collisions corresponds to breaking

5

a 87-bit symmetric cipher according to the predictions given by Lenstra and
Verheul in [5].

In this section we will only consider the standard SWIFFT parameters

(n,m, p) = (64, 16, 257).

All SWIFFT lattices have dimension nm = 1024, but a sublattice of dimension
d = 205 is sufficient to find pseudo-collisions (cf. Table 1).

4.1 Existence of (pseudo-)collisions in d-dimensional sublattices

A d-dimensional ball of radius r has volume

rd|Bd| = rdπd/2/Γ (d/2 + 1).

This is an excellent estimate for the number of vectors in Zd with Euclidean
norm less than r.

Let h be a random SWIFFT compression function. The range of this function
has size pn. We change the input of h to all vectors with d nonzero entries and
Euclidean norm less than

√
nm/2. The size of this input space is the volume

of a d-dimensional ball of radius
√
nm/2. Now any collision in h corresponds

to a pseudo-collision by the triangle inequality. These collisions exist by the
pigeonhole principle for all d ≥ 251. In fact, assuming that h maps the inputs
randomly onto the range, by the birthday paradox we know that collisions will
occur, when the input space is bigger than pn/2, so d ≥ 94 suffices.

The situation for collisions is similar. Here, we shrink the input to all vectors
with d nonzero, positive enteries and `∞-norm less than 1. The size of this input
space is 2d. Again, collisions exist by the pigeonhole principle for all d ≥ 513,
but assuming a random behavior of h, choosing d ≥ 257 suffices.

The second lower bound for both cases is true if we assume h maps inputs
randomly onto the range, but we know h is linear if we extend the input space
to Zd in each case, so this assumption might seem unrealistic. However, we
have found experimentally that these second lower bounds work well in practice,
i.e. (pseudo-)collisions in the corresponding sublattices can indeed be found.

4.2 Experiments

For our experiments we did not choose the lowest possible sublattice dimension
described in the last subsection, but rather the dimension where lattice basis
reduction algorithms like LLL/BKZ behave optimal in practice (see Section 3.1).

For our experiments, we fixed n = 64, m = 16 to their standard values and
chose the third parameter p variable. This results in a steady decrease in the
Hermite factor and increase in the dimension required to find pseudo-collisions
(see Table 2). We found that for smaller values of p, corresponding to smaller
values of d, pseudo-collisions were found too fast to make sensible measurements.

For each of these 9 parameter sets, we created 10 random SWIFFT lattices
using the PRNG which is part of the “Number Theory Library” 5.4.2 (NTL)

6

n m p δ d

64 16 29 1.0140 125
64 16 33 1.0135 130
64 16 37 1.0131 134
64 16 41 1.0127 138
64 16 45 1.0124 141
64 16 49 1.0121 144
64 16 53 1.0119 147
64 16 57 1.0117 150
64 16 61 1.0115 152

Table 2. Parameters used for our experiments.

by Shoup [10]. We then proceeded to break all instances with the NTL floating-
point variant of BKZ (bkzfp), by increasing the BKZ parameter β until a pseudo-
collision was found and recording the total time taken in each case. We also broke
all instances with a floating-point variant of Schnorr’s RSR algorithm [9] (rsrfp)
implemented by Ludwig [3]2 using the parameters δ = 0.9, u = 22 and again
increasing β until a pseudo-collision was found.

For each parameter set we computed the average runtime of both algorithms
and plotted the log2 of this value relative to the dimension d. We also plotted
a conservative extrapolation for the average runtime of rsrfp using the steepest
observed slope fixed to the last known data point (see Figure 1, left).

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 120 130 140 150 160 170 180 190 200

lo
g_

2(
tim

e)
 [s

]

d

fit for rsrfp
runhash-rsrfp

runhash-bkzfp

 10

 20

 30

 40

 50

 60

 70

 80

 90

 120 130 140 150 160 170 180 190 200

k

d

fit for rsrfp
runhash-rsrfp

runhash-bkzfp

Fig. 1. Average runtime and corresponding symmetric bit-security of our experiments.

All our experiments where run on a single 2.3 Ghz AMD Opteron proces-
sor. According to the predictions of Lenstra and Verheul [5] the computational
hardness of a problem solved after t seconds on such a machine is comparable

2 Available soon.

7

to breaking a k-bit symmetric cipher, where

k = log2(t) + log2(2300)− log2(60 · 60 · 24 · 365.25)− log2(5 · 105) + 56.

We have plotted these k corresponding to the average runtime of each algorithm
relative to the dimension d for each parameter set. Again, we also included the
same conservative extrapolation (see Figure 1, right).

The rightmost side of both graphs correspond to p = 257, i.e. a real SWIFFT
lattice. The extrapolated symmetric bit security for finding pseudo-collisions on
these lattices is k = 87.03. Any parameter set, where d ≥ 220 would correspond
to a cipher with symmetric bit-security at least 100 according to our extrapola-
tion. Parameters realizing this paradigm are given in Section 3.2.

References

1. Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio, Chris Peik-
ert, and Alon Rosen. SWIFFTX: A proposal for the SHA-3 standard. http:

//www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdf, 2008.
2. Johannes Buchmann, Richard Lindner, and Markus Rückert. Explicit hard in-

stances of the shortest vector problem. In Johannes Buchmann and Jintai Ding,
editors, PQCrypto, volume 5299 of Lecture Notes in Computer Science, pages 79–
94. Springer, 2008.

3. Johannes Buchmann and Christoph Ludwig. Practical lattice basis sampling re-
duction. In Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors, ANTS,
volume 4076 of Lecture Notes in Computer Science, pages 222–237. Springer, 2006.

4. Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P.
Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science,
pages 31–51. Springer, 2008.

5. Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. J. Cryp-
tology, 14(4):255–293, 2001.

6. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks
are collision resistant. In International Colloquium on Automata, Languages and
Programming (ICALP) 2006, Lecture Notes in Computer Science, pages 144–155.
Springer-Verlag, 2006.

7. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. Swifft: A
modest proposal for fft hashing. In Fast Software Encryption (FSE) 2008, Lecture
Notes in Computer Science, pages 54–72. Springer-Verlag, 2008.

8. Daniele Micciancio and Oded Regev. Post Quantum Cryptography, chapter Lattice-
based Cryptography. Springer-Verlag, 2009.

9. Claus-Peter Schnorr. Lattice reduction by random sampling and birthday methods.
In Helmut Alt and Michel Habib, editors, STACS, volume 2607 of Lecture Notes
in Computer Science, pages 145–156. Springer, 2003.

10. Victor Shoup. Number theory library (NTL) for C++. http://www.shoup.net/

ntl/.

