
Secure Parameters for SWIFFT

- Extended Absract -

Johannes Buchmann and Richard Lindner

Technische Universität Darmstadt, Department of Computer Science
Hochschulstraße 10, 64289 Darmstadt, Germany

buchmann,rlindner@cdc.informatik.tu-darmstadt.de

Abstract. The SWIFFT compression functions, proposed by Lyuba-
shevsky et al. at FSE 2008, are very efficient instantiations of general-
ized compact knapsacks for a specific set of parameters. They have the
property that, asymptotically, finding collisions for a randomly chosen
compression function implies being able to solve computationally hard
ideal lattice problems in the worst-case.
We present three results. First, we propose a parameter generation algo-
rithm for SWIFFT where the main parameter n can be any integer in
the image of Euler’s totient function, and not necessarily a power of 2
as before. Second, we give some efficiency improvements that apply to
SWIFFT in general. Third, we give experimental evidence that finding
pseudo-collisions for SWIFFT is as hard as breaking a 68-bit symmetric
cipher according to the well-known heuristic by Lenstra and Verheul.
We also recommend conservative parameters corresponding to a 127-bit
symmetric cipher.

Keywords: post-quantum cryptography, hash functions, lattices.

1 Introduction

In 2007, the National Institute for Standards and Technology (NIST) announced
a comptetion to develop a new cryptographic hash algorithm. The winner of this
competition will be standardized as Secure Hash Algorithm 3 (SHA-3) and will
replace the current standards SHA-1 and SHA-2. One candidate that has been
submitted to this competition is SWIFFTX [2] which is constructed using the
SWIFFT compression function family [15]. This hash function is most interesting
because its collision resistance, the most important security property, has been
proven to rely on the worst case hardness of finding short vectors in a large
class of lattices. This kind of security reduction is unique among all the SHA-
3 candidates. In order for the submission to be successful, the inventors have
presented parameters for SWIFFT that guarantee 100-bit security and they
have argued that SWIFFTX ist sufficiently efficient.

In this paper we show that the proposed parameters for SWIFFT are in-
adequate for 100-bit security. We do this by presenting evidence based on the
method of Lenstra and Verheul [12] and our extensive experiments that lattice

2

attacks require significantly less than 2100 operations. To be more precise, we
argue that the effort to find so-called pseudo-collisions1 is comparable to break-
ing a 68-bit symmetric cipher. In lattice attacks against the SWIFFT collision
resistance, we consider finding such pseudo-collisions the most time-consuming
step.

We also present a new parameter set that we claim yields 100-bit security.
However, with these new parameters, SWIFFTX does not satisfy the SHA-3
efficiency requirements any more. We partially solve this problem. We propose
an efficient parameter generation algorithm that can be used for a much wider
class of SWIFFT compression functions, compared to in the method the original
SWIFFT proposal. There, only the case where the security parameter n is a
power of 2 was considered. We generalize this to all n = ϕ(k) where ϕ is the
Euler totient function. We are convinced that using those compression functions
a new version of SWIFFTX can be designed that satisfies the SHA-3 efficiency
requirements.

The paper is organized as follows. Section 2 deals with basics about lattices.
Section 3 explains the SWIFFT compression function. Section 4 presents the
parameter generation algorithm and Section 5 discusses the SWIFFT security.

2 Preliminaries

A lattice Λ is a discrete, additive subgroup of Rn. It can always be described as
Λ = {

∑d
i=1 xi bi |xi ∈ Z}, where b1, . . . ,bd ∈ Rn are linearly independent. The

matrix B = [b1, . . . ,bd] is a basis of Λ and we write Λ = Λ(B). The number of
vectors in the basis is the dimension of the lattice.

For each basis B there is a decomposition B = B∗ µ, where B∗ is orthogonal
and µ is upper triangular. The decomposition is uniquely defined by these rules

µj,i = 〈bi,b∗j 〉/‖b∗j‖2, bi = µ1,ib∗1 + · · ·+ µi−1,ib∗i−1 + b∗i , 1 ≤ j ≤ i ≤ n.

It can be computed efficiently with the Gram-Schmidt process and B∗ is the
Gram-Schmidt Orthogonalization (GSO) of B.

Conforming with notations in previous works, we will write vectors and ma-
trices in boldface. Special tuples of vectors will be denoted with a hat (see for
example Section 3). The residue class ring Z/〈p〉 is Zp.

3 SWIFFT compression functions

The SWIFFT compression function family was proposed by Lyubashevsky et
al. at FSE 2008 [15]. They showed that for one set of parameters, its efficiency
is comparable to SHA-2, while its collision resistance is asymptotically based on
worst-case computational problems in ideal lattices.

1 For the definition see Section 3.2.

3

Specifically, for a set of integer parameters (n,m, p), in their case (64, 16, 257),
they use the polynomial f(x) = xn+1, the ring Rp,n = Zp[x]/〈f〉, and the subset
Dn = {0, 1}[x]/〈f〉 to define the family

Hn,m,p =

{
hba : Dm

n 3 x̂ 7−→
m∑
i=1

aixi (mod p)
∣∣∣∣ (a1, . . . ,am) = â ∈ Rmp,n

}
.

These functions can be computed efficiently. Let ω0, . . . , ωn−1 be the roots
of f in Zp in any order, and V be the Vandermonde matrix generated by them

V =

1 ω0 . . . ωn−1
0

...
...

...
1 ωn−1 . . . ω

n−1
n−1

 .

Applying the Fast Fourier Transform over Zp to SWIFFT we get

z ≡
m−1∑
i=0

aixi mod f ≡ V−1

(
m−1∑
i=0

Vai �Vxi

)
(mod p), (1)

where � is the pointwise multiplication in Znp . Since V is invertible, we may
use z′ = Vz as hash, instead of z. Since the compression function key â is fix,
we may precompute a′i = Vai for all i. So evaluating the compression function
amounts to computing all n components of z′ with

z′j =
m−1∑
i=0

a′i,j x
′
i,j mod p, x′i,j =

n−1∑
l=0

ωlj xi,l mod p.

Due to the form of f we can set ωj ← ω2j+1 for any element ω of order 2n in Zp.
We insert the parameters and split up the indices j = j0 + 8j1 and l = l0 + 8l1.

x′i,j0+8j1 =
7∑

l0=0

7∑
l1=0

ω(l0+8l1)(2(j0+8j1)+1) xi,l0+8l1 mod p

=
7∑

l0=0

ω16l0j1 · ωl0(2j0+1)︸ ︷︷ ︸
ml0,j0

·
7∑

l1=0

ω8l1(2j0+1) xi,l0+8l1︸ ︷︷ ︸
tl0,j0

modp (2)

The quantities tl0,j0 for all 28 possible xi,l0+8l1 and ml0,j0 can be precomputed.
The SWIFFT authors recommend using ω = 42, because then ω16 ≡ 4 mod p,
so some multiplications in the last expression can be realized with bit-shifts. A
single x′i, i.e. the last expression for all j, can then be evaluated with a total
of 64 multiplications, 8 · 24 additions/substractions using an FFT network. The
total number of operations (ignoring index-calculations and modular reduction)

4

for the standard SWIFFT parameters is

16 · 64︸ ︷︷ ︸
computing x′

i,j

+ 16 · 64︸ ︷︷ ︸
all a′

i,j · x
′
i,j

= 2048 multiplications

16 · 8 · 24︸ ︷︷ ︸
computing x′

i,j

+ 16 · 64− 1︸ ︷︷ ︸
summing a′

i,j · x
′
i,j

= 4095 additions/substractions

Lyubashevsky and Micciancio showed in [13] that asymptotically these com-
pression functions are collision resistant, as long as standard lattice problems
in lattices corresponding to ideals of Z[x]/〈f〉 are hard in the worst-case. The
arguments given later by Peikert and Rosen in [17] can also be adapted to prove
collision resistance of SWIFFT with a tighter connection to the same worst-case
problem.

3.1 More parameters

Let k > 0 be some integer, p be prime and n = ϕ(k), where ϕ is Euler’s totient
function. Furthermore, let f be the kth cyclotomic polynomial, which is monic,
irreducible over the integers, and has degree equal to n. Using the same structures
as above, i.e. the ring Rp,n = Zp[x]/〈f〉, and subset Dn = {0, 1}[x]/〈f〉 with this
new f , we can construct the same compression function family as above and
the asymptotic security argument given in [17,13] still holds. In order to apply
FFT as before, we need to ensure that elements of order k exist in Zp. This is
guaranteed whenever k | (p− 1).

Optimizations similar to the ones available for SWIFFT in this more general
setting are still an area of investigation. We give some preliminary general results
here and some specific results for the parameters we recommend in Section 4.1.

We found that using additions in a logarithmic table instead of multiplica-
tions in Zp is comparable in speed to the normal multiplication and special bit
shifting reduction modulo 257 used in SWIFFT.

Another optimization works for all SWIFFT parameters, including the ones
in use now. Consider the following Lemma.

Lemma 1. Let hba ∈ Hn,m,p, assuming there exists an i, s.t. ai is invertible in
R then for â′ = a−1

i â, any collision of hba is one for hba′ and vice versa.

Proof. Let x̂, ŷ be an hba collision, then hba′(x̂) = a−1
i hba(x̂) = a−1

i hba(ŷ) = hba′(ŷ).
ut

The probability of the event we assume here, is 1−(1−|R∗|/|R|)m given the way
we choose â, where R∗ is the group of invertible elements in R. This probability
well exceeds 99% for the SWIFFT parameters in use. All entries in â′ can be
precomputed in practice and having one of them equal 1 saves some multiplica-
tions during evaluation depending on the implementation. Recall Equation (1),
if we would computed z instead of z′ the speed-up is 1/m. For m = 16 this is
≈ 6%. This may be further increased with the sliding window method used for

5

NTRU [3]. However, at the moment it is more efficient to compute z′. In this
case we save n multiplications, which is about 1% of all operations for standard
parameters.

We believe that optimizations are easiest to find in the cases where k is
prime or a power of two. Focusing on these two special cases, we can already see
much more variety in the choice of parameters. See Table 1 for comparison of
parameters where n is between 64 and 128.

3.2 SWIFFT lattice

Let â ∈ Rp,n. Consider the function hba ∈ Hn,m,p and extended the domain to
Rn = Z[x]/〈f〉. The coefficient vectors of the periods of this function form the
set

Λ⊥p (â) =

{
(x1, . . . , xnm) ∈ Znm

∣∣∣∣ hba
(
n−1∑
i=0

xi+1x
i, . . . ,

n−1∑
i=0

xm(i+1)x
i

)
= 0

}
.

This is a lattice of dimension nm, since the extended hba is Rn-linear. A basis for
this lattice can be found efficiently using a method described by Buchmann et
al. [4]. Collisions in the original (unextended) function hba correspond exactly to
vectors in this lattice with `∞-norm bounded by 1. Therefore we refer to these
lattices as SWIFFT lattices.

A pseudo-collision is a vector in this lattice with Euclidean norm less than√
nm, i.e. all vectors in the smallest ball containing all collisions. So every colli-

sion is a pseudo-collision, but not vice versa.

4 Parameter generation

We now describe an algorithm for generating parameter sets (n,m, p) for the
SWIFFT compression function families in Section 3. For the polynomial f we will
use the kth cyclotomic polynomial, such that n = ϕ(k). If multiple polynomials
are possible, we choose the one, where the resulting bitlength of the output is
shorter, i.e. the one with smaller p. For example, if the first parameter n is a
predecessor of a prime, we will use the polynomial f(x) = xn + xn−1 + · · ·+ 1,
and if n is a power of two, we will use the polynomial f(x) = xn + 1.

Input: Integer n, s.t. n = ϕ(k), k > 0
Output: Parameters (n,m, p)

l← 1
p← k + 1
while not isPrime(p) do

l← l + 1
p← l · k + 1

end
m← d1.99 · log2(p)e

Algorithm 1: Parameter generation for n = ϕ(k), k > 0.

6

For each set of parameters, we may additionally compute the output bitlength
out = n(blog2(p)c+1), the compression rate cr = m/ log2(p), the Hermite factor
δ required for finding pseudo-collisions, and the minimal dimension d where we
can expect to find pseudo-collisions. These values are listed in Table 1.

k n m p out cr δ d

128 64 16 257 513 1.999 1.0084 206
67 66 17 269 529 2.106 1.0084 211
71 70 19 569 631 2.076 1.0073 248
73 72 17 293 577 2.074 1.0077 231
79 78 17 317 625 2.046 1.0072 251
83 82 15 167 575 2.032 1.0075 237
89 88 15 179 617 2.004 1.0071 255
97 96 18 389 769 2.092 1.0061 308

101 100 19 607 901 2.055 1.0056 340
103 102 19 619 919 2.049 1.0055 348
107 106 19 643 955 2.037 1.0053 361
109 108 21 1091 1081 2.081 1.0049 392
113 112 16 227 785 2.044 1.0058 325
127 126 18 509 1009 2.002 1.0047 408
256 128 16 257 1025 1.999 1.0051 373

Table 1. Parameters for 64 ≤ n ≤ 128, k prime or a power of two.

The two latter values δ and d are computed in the following fashion. Consider
the function len(d) = pn/dδd. According to an analysis by Gama and Nguyen
[7]2 this is the Euclidean size of the smallest vector we are likely to find when
reducing a sublattice with dimension d of any SWIFFT lattice Λ⊥p (â). Micciancio
and Regev observed in [16] that this function takes its minimal value

len(dmin) = δ2
√
n log(p)/ log(δ) for dmin =

√
n log(p)/ log(δ).

A pseudo-collision is a vector in Λ⊥p (â) with Euclidean norm
√
nm. In order

to find such a vector, we need a δ, s.t. len(dmin) =
√
nm. We say this is the

Hermite factor required for finding pseudo-collisions, and the corresponding dmin
is the minimal dimension, where we can expect to find a pseudo-collision. Note
that these minimal dimensions, which we will work in are about 5 times smaller
than the corresponding dimensions of the SWIFFT lattices. To give an intuition,
Gama and Nguyen state that the best lattice reduction algorithms known today
can achieve a Hermite factor of roughly δ = 1.01 in high dimension within
acceptable time.

2 Their experiments were performed on random lattices following a different distribu-
tion, but experimentally their results apply here as well.

7

4.1 Recommended parameters

We will give arguments in Section 5.2 that parameters with d ≥ 260 correspond
to SWIFFT instances, where finding pseudo-collisions is at least as hard as
breaking a 100-bit symmetric cipher. The smallest such parameters in Table 1
are (n,m, p) = (96, 18, 389). Finding pseudo-collisions for these parameters is
as hard as breaking a 127-bit symmetric cipher. Concerning all other known
attacks, these parameters are more secure than (64, 16, 257).

Note that some of the efficiency improvements we outlined in Section 4 for the
original SWIFFT function work here as well. Recall Equation 2, since k = 97 is
prime we can set ωj ← ωj+1 for any element ω of order k in Zp. We recommend
to split up the indices l = l0 + 8l1, where 0 ≤ l0 ≤ 7, 0 ≤ l1 ≤ 11, j similar
and use ω = 275, and since multiplying with ω8 = 16 can then be realized with
bit-shifts. Corresponding to Equation 2 we get

x′i,j0+8j1 =
7∑

l0=0

ω8l0j1 · ωl0(j0+1)︸ ︷︷ ︸
ml0,j0

·
11∑
l1=0

ωl1(8j0+64j1+8) xi,l0+8l1︸ ︷︷ ︸
tl0,j0,j1

modp.

Note that the precomputed t part depends on j1 now, and needs to be available
for 212 possible xi,l. So this part will need 12 · 24 = 192 times the space it did
before. Although we have no implementation yet, we are confident that efficiency
of evaluation here is comparative to the original SWIFFT function.

5 Security Analysis

The collision resistance of SWIFFT has the desirable property of being reducible
to a worst-case computational problem. In particular, this means an algorithm
which breaks random instances of SWIFFT compression functions with main
parameter n can also be used to find short nonzero vectors in all ideals of the
ring Z[x]/〈xn + 1〉. Finding such vectors is assumed to be infeasible for large
n. However, for the current parameter, n = 64, exhaustive search algorithms
find these short vectors in less than one hour. In the lattice challenge [4] open
for all enthusiasts similar problems have been solved3 up to n = 108. Gama
and Nguyen even state that finding the shortest vector in n-dimensional lattices
for n ≤ 70 should be considered easy [7]. So the resulting lower bound on the
attacker’s runtime is insignificant.

We will analyze the practical security of SWIFFT. With all known attacks,
breaking SWIFFT directly is harder than breaking the underlying worst-case
problem. As we have seen in Section 3.2, collisions in the SWIFFT compression
functions naturally correspond to vectors with `∞-norm bounded by 1 in cer-
tain lattices. These may be recovered with lattice basis reduction algorithms.
Since these algorithms are highly optimized to find small vectors in the Eu-
clidean norm, it is reasonable to analyze the computational problem of finding
3 See http://www.latticechallenge.org

8

pseudo-collisions instead of collisions. These are vectors in the smallest ball which
contains all vectors corresponding to collisions, so an algorithm which minimizes
the Euclidean norm cannot distinguish between the two. In this section, we give
experimental evidence that according to a well-known heuristic by Lenstra and
Verheul [12], finding pseudo-collisions is comparable to breaking a 68-bit sym-
metric cipher. In comparison, all other attacks analyzed by the SWIFFT authors
take 2106 operations and almost as much space.

In their original proposal of SWIFFT, Lyubashevsky et al. provide a first
analysis of all standard attacks. When it comes to attacks using lattice reduction
they state however, they state that the dimension 1024 of SWIFFT lattices is too
big for current algorithms. We will start by showing in Section 5.1 that reducing
sublattices of dimension 251, which corresponds roughly to m = 4, is sufficient
to find pseudo-collisions and dimension 513 (m = 8) is sufficient for collisions
and beyond this point as Micciancio and Regev observe in [16] “the problem
[SVP] cannot become harder by increasing m”. This means if we find a pseudo-
collision in dimension 251, we can pad it with zeroes to obtain a pseudo-collision
for SWIFFT. In practice, even dimension d = 205 is sufficient to find pseudo-
collisions (cf. Table 1). In particular this means SWIFFTX, where internally
SWIFFT is used with m = 32 is not more secure.

5.1 Existence of (pseudo-)collisions in d-dimensional sublattices

The method we have given in Section 4 for choosing the dimension of the sub-
lattice we attack with lattice-basis reduction algorithms is a heuristic, because
it is based on extensive experiments by Gama and Nguyen. We will now give a
related result independent of experiments but dependent on the construction of
SWIFFT lattices and other lattices of the form {v ∈ Zd : Av ≡ 0 (mod p)},
where A is some integral matrix. These lattices are widely used in practice for
constructing provably secure cryptosystems (see e.g. [8,14,18]) and they originate
from Ajtai’s work [1].

Let hba be a random SWIFFT compression function with parameters (n,m, p).
The range of this function has size |R| = pn. We change the domain of h to all
vectors in a d-dimensional subspace of Znm that have Euclidean norm less than
r =
√
nm/2. The size of this space can be very well approximated by the volume

of a d-dimensional ball with radius r, i.e. |D| = rdπd/2/Γ (d/2 + 1).
Now any collision in the modified hba corresponds to a pseudo-collision of

the corresponding SWIFFT function by the triangle inequality. These collisions
exist for certain by the pigeonhole principle for all d ≥ 251. So the dimension
d = 205 suggested by the heuristic looks too optimistic, but remember that this
argument only gives an upper bound on the required d and doesn’t take into
account the randomness in the choice of â.

The situation for proper collisions is similar. Here, we shrink the input to all
vectors in a d-dimensional subspace that have coefficients in {0, 1}. The size of
this input space is |D| = 2d. Again, collisions exist by the pigeonhole principle
for all d ≥ 513. This suggests that proper collisions are harder to find.

9

5.2 Experiments

For our experiments we chose the sublattice dimension where lattice basis re-
duction algorithms like LLL/BKZ behave optimal in practice (see Section 4).
We then proceeded to compare the following lattice basis reduction algorithms
to see which performs best in practice on the lattices in our experiment. BKZ as
implemented in version 5.4.2 of the “Number Theory Library”(NTL) by Shoup
[20], Primal-Dual (PD) as implemented by Filipović and Koy, and finally RSR
as implemented by Ludwig. Both latter algorithms are available on request from
the authors4. It became apparent that Primal-Dual runs much slower than both
competitors, so for the main experiment we omitted it.

For our experiments, we fixed n = 64, m = 16 to their standard values and
chose the third parameter p variable. This results in a steady decrease in the
Hermite factor and increase in the dimension required to find pseudo-collisions
(see Table 2). We found that for smaller values of p, corresponding to smaller

n m p δ d

64 16 29 1.0140 125
64 16 33 1.0135 130
64 16 37 1.0131 134
64 16 41 1.0127 138
64 16 45 1.0124 141
64 16 49 1.0121 144
64 16 53 1.0119 147
64 16 57 1.0117 150
64 16 61 1.0115 152

Table 2. Parameters used for our experiments.

values of d, pseudo-collisions were found too fast to make sensible measurements.
For each of these 9 parameter sets, we created 10 random SWIFFT lattices

using the PRNG which is part of NTL. We then proceeded to break all instances
with the NTL floating-point variant of BKZ (bkzfp), by increasing the BKZ
parameter β until a pseudo-collision was found and recording the total time
taken in each case. We also broke all instances with a floating-point variant of
Schnorr’s random sampling reduction (RSR) algorithm [19] (rsrfp) implemented
by Ludwig [5] using the parameters δ = 0.9, u = 22 and again increasing β until
a pseudo-collision was found.

In all cases, we computed the average runtime of both algorithms and plot-
ted the base two log of this value relative to the dimension d. We also plotted a
conservative extrapolation (assuming linear growth in logscale) for the average

4 PD, Bartol Filipović, bartol.filipovic@sit.fraunhofer.de
PSR, Christoph Ludwig, cludwig@cdc.informatik.tu-darmstadt.de

10

runtime of both algorithms (see Figure 1). The same growth assumption has of-
ten been made when analyzing NTRU lattices [9]. These are similar to SWIFFT
lattices as we will see in Section 5.3.

-10

 0

 10

 20

 30

 40

 50

 120 130 140 150 160 170 180 190 200

lo
g_

2(
tim

e)
 [s

]

d

linear regression for bkzfp
linear regression for rsrfp

runhash-bkzfp
runhash-rsrfp

Fig. 1. Average runtimes of our experiments.

All our experiments where run on a single 2.3 GHz AMD Opteron processor.
According to the predictions of Lenstra and Verheul [12] the computational
hardness of a problem solved after t seconds on such a machine is comparable
to breaking a k-bit symmetric cipher, where

k = log2(t) + log2(2300)− log2(60 · 60 · 24 · 365.25)− log2(5 · 105) + 56.

Using the data in Figure 1, we can compute the security level k corresponding
to the average runtime of each algorithm relative to the dimension d for each
parameter set.

The rightmost side of Figure 1 corresponds to p = 257, i.e. a real SWIFFT
lattice. The extrapolated symmetric bit security for finding pseudo-collisions on
these lattices is k = 68.202. Any parameter set, where d ≥ 260 would correspond
to a cipher with symmetric bit-security at least 100 according to our extrapola-
tion. Parameters realizing this paradigm are given in Section 4.1.

5.3 Hybrid lattice reduction

There is a strong similarity between NTRU lattices and SWIFFT lattices which
we will make explicit. According to the most recent NTRU flavor [9], an NTRU

11

trapdoor one-way function family is described by the parameters

(qNTRU , pNTRU , NNTRU , dNTRUf , dNTRUg , dNTRUr).

These relate to SWIFFT families in the following way. Choose n = NNTRU ,m =
2, p = qNTRU . Use the polynomial f(x) = xn − 1 for the ring Rp,n. Let Td be
the set of trinary polynomials of degree n− 1 with d+ 1 entries equal to 1 and d
entries equal to −1. In the NTRU setting, we choose our hash-keys (a1, a2) not
uniformly from R2

p,n but rather from (1 + pNTRUTdNT RU
f

) × TdNT RU
g

which are
the NTRU secret key spaces.

The strong limitation on the choice of keys allows the trapdoor to work. The
use of a reducible polynomial does not guarantee collision resistance anymore
[13], but one-wayness is sufficient for NTRUs security. In summation, the step
from NTRU to SWIFFT is exchanging a huge NNTRU = 401, qNTRU = 2048
with n = 64, p = 257 but in turn increase m from 2 to 16. This seems risky
because as we mentioned at the beginning of this section, the problem cannot
become harder by increasing m beyond some unknown threshold which is at most
8. This upper bound for the threshold given by the dimension d of a sublattice
in which short enough lattice vectors must exist (see Section 5.1).

The strongest attack on NTRU lattices is a hybrid method presented at
CRYPTO 2007 by Howgrave-Graham [10]. It combines both Meet-in-the-middle
(MITM) attacks by Odlyzko [11] and lattice reduction attacks by Coppersmith
and Shamir [6]. In our brief summary of the attack we describe three distinct
phases.
1. Reduce the public NTRU lattice and save the result in B.
2. Reduce the maximal sublattice of B, which satisfies the geometric series

assumption (GSA), i.e. for which the ‖b∗i ‖ descend linearly in logscale.
3. Let k be the last index of a length contributing vector in B∗, meaning ‖b∗i ‖ ≈

0 for all i > k. Howgrave-Graham introduced a modification of Babai’s
Nearest Plane algorithm that allows us to perform a MITM attack on the
final dim(B)− k entries of the secret keys.

Phases 1–2 ensure that ‖b∗k‖ is as big as possible. This allows Babai’s original al-
gorithm, and the modification to better approximate CVP in the lattice spanned
by the first k basis vectors.

Stated in this form the same algorithm can be used to search for collisions
(not pseudo-collisions) in SWIFFT lattices. However, preliminary experiments
show that this methodology is not helpful. At the end of phase 2 we find that
k ≈ 128. Obviously, even if the CVP oracle works perfectly we would still have
to do a MITM attack on the last dim(B)− k ≈ 896 entries. This is too much to
be practical.

We are currently working on a generalization of the attack, where step 2 is
iterated for m− 1 different overlapping parts of the basis, namely

[b1, . . . ,b2n], [bn+1, . . . ,b3n], . . . , [b(m−2)n+1, . . . ,bmn].

This modification is only sensible for SWIFFT and not NTRU. It should bring
k closer to dim(B) possibly at the expense of CVP approximation quality. It
remains to be seen if this is a good strategy.

12

5.4 Acknowledgments

We would like to thank Chris Peikert and Alon Rosen for helpful advice and en-
couragement. We also want to thank Bartol Filipović, Henrik Koy and Christoph
Ludwig for letting us use their lattice reduction code. Finally, we thank Markus
Rückert and Michael Schneider for their patience and unbounded cooperation.

References

1. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In Proceedings of the Annual Symposium on the Theory of Computing (STOC)
1996, pages 99–108. ACM Press, 1996.

2. Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio, Chris Peik-
ert, and Alon Rosen. SWIFFTX: A proposal for the SHA-3 standard. http:

//www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdf, 2008.
3. Johannes Buchmann, Martin Döring, and Richard Lindner. Efficiency improvement

for NTRU. In Ammar Alkassar and Jörg Siekmann, editors, SICHERHEIT 2008,
volume 128 of Lecture Notes in Informatics, pages 79–94. Bonner Köllen Verlag,
2008.

4. Johannes Buchmann, Richard Lindner, and Markus Rückert. Explicit hard in-
stances of the shortest vector problem. In Johannes Buchmann and Jintai Ding,
editors, PQCrypto, volume 5299 of Lecture Notes in Computer Science, pages 79–
94. Springer, 2008.

5. Johannes Buchmann and Christoph Ludwig. Practical lattice basis sampling re-
duction. In Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors, ANTS,
volume 4076 of Lecture Notes in Computer Science, pages 222–237. Springer, 2006.

6. Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In EUROCRYPT,
pages 52–61, 1997.

7. Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P.
Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science,
pages 31–51. Springer, 2008.

8. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In Proceedings of the Annual Sym-
posium on the Theory of Computing (STOC) 2008, pages 197–206. ACM Press,
2008.

9. Phil Hirschhorn, Jill Hoffstein, Nick Howgrave-Graham, and William Whyte.
Choosing NTRU parameters in light of combined lattice reduction and MITM ap-
proaches. http://www.ntru.com/cryptolab/pdf/params.pdf, will be published
at ACNS 2009.

10. Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against ntru. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes
in Computer Science, pages 150–169. Springer, 2007.

11. Nick Howgrave-Graham, Jospeh H. Silverman, and William Whyte. A meet-in-
the-middle attack on an NTRU private key. http://www.ntru.com/cryptolab/

tech_notes.htm#004.
12. Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. J. Cryp-

tology, 14(4):255–293, 2001.
13. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks

are collision resistant. In International Colloquium on Automata, Languages and

13

Programming (ICALP) 2006, Lecture Notes in Computer Science, pages 144–155.
Springer-Verlag, 2006.

14. Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-
based digital signatures. In Theory of Cryptography Conference (TCC) 2008, Lec-
ture Notes in Computer Science, pages 37–54. Springer-Verlag, 2008.

15. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWI-
FFT: A modest proposal for FFT hashing. In Fast Software Encryption (FSE)
2008, Lecture Notes in Computer Science, pages 54–72. Springer-Verlag, 2008.

16. Daniele Micciancio and Oded Regev. Post Quantum Cryptography, chapter Lattice-
based Cryptography. Springer-Verlag, 2009.

17. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In Theory of Cryptography Conference (TCC) 2006,
Lecture Notes in Computer Science, pages 145–166. Springer-Verlag, 2006.

18. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM,
2005.

19. Claus-Peter Schnorr. Lattice reduction by random sampling and birthday methods.
In Helmut Alt and Michel Habib, editors, STACS, volume 2607 of Lecture Notes
in Computer Science, pages 145–156. Springer, 2003.

20. Victor Shoup. Number theory library (NTL) for C++. http://www.shoup.net/

ntl/.

