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Abstract

We consider information-theoretic key agreement between two parties sharing somewhat
different versions of a secret w that has relatively little entropy. Such key agreement, also known
as information reconciliation and privacy amplification over unsecured channels, was shown to
be theoretically feasible by Renner and Wolf (Eurocrypt 2004), although no protocol that runs
in polynomial time was described. We propose a protocol that is not only polynomial-time, but
actually practical, requiring only a few seconds on consumer-grade computers.

Our protocol can be seen as an interactive version of robust fuzzy extractors (Dodis et al.,
Crypto 2006). While robust fuzzy extractors, due to their noninteractive nature, require w
to have entropy at least half its length, we have no such constraint. In fact, unlike in prior
solutions, in our solution the entropy loss is essentially unrelated to the length or the entropy
of w, and depends only on the security parameter.

1 Introduction

We consider the problem of information-theoretic key agreement between two parties that initially
possess only correlated weak secrets. At the start of the protocol, Alice has a string w, Bob has w ′

that is similar, but not identical, to w, and the adversary Eve’s information about w is incomplete.
The goal is for Alice and Bob to agree on a shared secret key k about which Eve has no information.
Security has to hold even in the case of active Eve, i.e., one who can perform the (wo)man-in-the-
middle attack. It is important that the output k be as long as possible given the entropy of w (the
difference between the length of k and the entropy of w is known as the entropy loss).

This setting arises, for example, when Alice and Bob have access to a (possibly) noisy channel
that can be partially eavesdropped by Eve; or when a trusted server (Alice) stores the biometric of
a user (Bob), and the user subsequently uses his fresh biometric reading to authenticate himself to
the server; or when Alice and Bob are mobile nodes wanting to authenticate each other based on
the fact that their knowledge of a location is greater than Eve’s (e.g., if they are much closer to a
particular location than Eve, and thus are able to observe it at higher resolution).

Renner and Wolf [RW04] proposed the first protocol to solve this problem. This protocol
(described in [RW04, Corollary 9]) is very general: it does not require proximity between w and
w′, but only requires, roughly, that information that w and w ′ contain about each other is more
than the information that Eve has about them. However, the price for this generality is that the
protocol is not practical as presented: the round complexity is quite high, and the local running
time of each party is not even polynomial.
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Renner and Wolf mention briefly, however [RW04, Section 2.2], that local running time can
be made polynomial through the use of error-correcting techniques when w and w ′ “are bitstrings
which differ in a certain limited number of positions” (that is, are close in the Hamming metric).
Indeed, subsequently, Dodis et al. [DKRS06] used error-correcting techniques to propose a protocol
that is computationally efficient not only for the Hamming metric, but also for the set difference
metric. Moreover, their protocol has just a single message from Alice to Bob.

Unfortunately, the price for such high efficiency is high entropy loss: if the length of w is n and
its entropy (after the error-correcting information) is m, then the protocol of Dodis et al. cannot
output k longer than m− (n−m). In particular, if the entropy of w is less than half its length, it
achieves nothing (this is unavoidable in all single-message protocols [DKRS06, KR08a], as pointed
out in [DKRS06] and shown in [DW08]).

Our Contribution We build on the results of [RW04] and [DKRS06] by proposing a protocol
that is efficient for both parties and has both lower round complexity and lower entropy loss than
the protocol of [RW04]. Our analysis decouples security from the length n of w, thus offering a
flexible tradeoff between security and performance. Without going into details of all the parameters,
for security 2−L, the length of k in our protocol is about m− L2/2−O(L log L + L log n) and the
number of messages exchanged between Alice and Bob is L + log n + 5. More details and a more
careful performance comparison are provided in Section 2.

Our protocol is more general than the work of [DKRS06] not only in the entropy requirement,
but also in the kinds of differences between w and w ′ it can handle. Specifically, it can handle any
metric that has secure sketches [DORS08] (see Section 3.2) that do not lose too much entropy (in
particular, therefore, our protocol tolerates Hamming, set difference, edit distance [DORS08] and
point-set difference [CL06] errors). Thus, while Renner and Wolf showed feasibility of key agreement
from correlated information, and Dodis et al. showed its practicality for certain restricted settings,
we demonstrate its practicality for a broad class of settings.

Implementation Results We implemented our protocol using Shoup’s NTL [Sho01], although
we have not performed careful code optimization and did not include any improvements of Sec-
tion 4.2. The protocol was tested for L = 80 and n = 100, 000 on a LAN with Alice and Bob
running on a 2.4Ghz Intel Pentium 4 and a WAN with Alice running on a 2.4Ghz Intel Xeon
instead. The running times over a WAN and LAN were nearly the same, both less than 5 seconds.
Of the total running time, approximately 1.5 seconds were spent by each party on computation and
an additional 1 second was spent in total communication costs. The improvements in Section 4.2
will reduce the running time further (although the impact of these improvements on the number
of rounds and the amount of computation is easy to understand, it is difficult to say how much the
actual total running times will decrease).

Other related work Variants of this problem have been extensively studied, under the names
“information reconciliation,” “privacy amplification,” and “fuzzy extractors.” Without providing
an exhaustive overview of the literature, we note here the most closely related work. Information-
theoretic security against active Eve was achieved by Maurer, Renner, and Wolf [Mau97, MW97,
Wol98, MW03, RW03] in the restricted setting when w = w ′ or when w, w′, and Eve’s informa-
tion come from repeated independent identically distributed experiments. Boyen et al [BDK+05]
removed those restrictions, instead requiring that w and w ′ be close in some metric that has secure
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sketches, but achieved only computational security. One of their solutions relies on the random
oracle model, and the other on computational assumptions necessary to enable password-base au-
thenticated key agreement.

The starting point for our work is the same as for [RW04]: a protocol, also by Renner and
Wolf [RW03], designed for the case of w = w′. We modify it for the case of w 6= w′ in a way that
improves it even for the case of w = w′, and provide a more careful, concrete security analysis for
it ([RW03] provides only an asymptotic analysis that works when n→∞).

2 Overview of the Result

Notation, Distributions, Entropy Let Ul denote the uniform distribution on {0, 1}l. Let
X1, X2 be two probability distributions over some set S. Their statistical distance is

SD (X1, X2)
def

= max
T⊆S
{Pr[X1 ∈ T ]− Pr[X2 ∈ T ]} =

1

2

∑

s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣

(they are said to be ε-close if SD (X1, X2) ≤ ε). The min-entropy of a random variable W is
H∞(W ) = − log(maxw Pr[W = w]) (all logarithms are base 2, unless specified otherwise). Follow-
ing [DORS08], for a joint distribution (W,E), define the (average) conditional min-entropy of W
given E as

H̃∞(W | E) = − log( E
e←E

(2−H∞(W |E=e)))

(here the expectation is taken over e for which Pr[E = e] is nonzero). A computationally unbounded
adversary who receives the value of E cannot find the correct value of W with probability greater

than 2−
eH∞(W |E).

Throughout this paper, for any string x, we use the notation λx to denote its length and hx to
denote its entropy (i.e, H∞(X)).

Model We now define our goal, by modifying the noninteractive robust fuzzy extractor definition
of [DKRS06]. An Interactive Robust Fuzzy Extractor protocol allows two parties, Alice and Bob,
holding instances w,w′ of correlated random variables W,W ′ that are guaranteed to be close but
not identical, to agree on a secret key. We assume that w and w ′ are within distance at most η in
some underlying metric space. The correctness of the protocol guarantees that when the protocol is
executed in the presence of a passive adversary (one who does not interfere with messages between
Alice and Bob), the parties end up agreeing on the same secret key, as long as dis(w,w ′) ≤ η.

The security of the protocol guarantees that even when the protocol is executed in the presence
of an active adversary, who interferes with messages arbitrarily, if both parties accept, then they
agree on a key that is uniformly random from the adversary’s point of view. Moreover, if only
one party accepts, then its key is still uniformly random from the adversary’s point of view. (As
was observed in, for example, [Wol98] and [Sho99], we cannot require that if one party rejects,
then so does the other party, because an active adversary can always replace the last message with
an invalid one—by that time, the sender of that message must have already accepted, while the
recipient will reject.)

We now present the formal definition of an interactive robust fuzzy extractor. Let w,w ′ ∈ {0, 1}n
chosen according to distributions W,W ′ be the secret values held by Alice and Bob respectively.
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Call three correlated random variables (W,W ′, E) (where W and W ′ range over some metric space
M) suitable if H̃∞(W | E) ≥ hW and Pr(w,w′)←(W,W ′)[dis(w,w′) ≤ η] = 1.

Let Protocol (A,B) be executed in the presence of an active adversary Eve. Let Ca be the
random variable describing A’s view of the communication when (A,B) is executed in the presence
of Eve.Likewise, define Cb. (We will use ca, cb to denote specific values of these variables.) We
denote the private coins of Alice and Bob by ra and rb respectively. Alice’s output will be denoted
by kA = A(w, ca, ra), and Bob’s by kB = B(w′, cb, rb) (if successful, both will be of length λk;
rejection will be denoted by a special symbol ⊥). Let C = Ca ∪ Cb ∪ E be Eve’s view of the
protocol; because Eve is computationally unbounded, we can assume she is deterministic.

Definition 1. An interactive protocol (A,B) played by Alice and Bob on a communication channel
fully controlled by an adversary Eve, is an (M, hW , λk, η, δ, ε)-interactive robust fuzzy extraction

protocol if it satisfies the following properties whenever (W,W ′, E) are suitable:

1. Correctness. If Eve is passive, then Pr[kA = kB] = 1.

2. Robustness. The probability that the following experiment outputs “Eve wins” is at most δ:
sample (w,w′, e) from (W,W ′, E); let ca, cb be the communication upon execution of (A,B)
with Eve(e) actively controlling the channel, and let A(w, ca, ra) = kA,B(w′, cb, rb) = kB.
Output “Eve wins” if (kA 6= kB ∧ kA 6=⊥ ∧kB 6=⊥).

3. Extraction. Letting C denote an active Eve’s view of the protocol,

SD ((kA, C,E | kA 6=⊥), (Uλk
, C,E)) ≤ ε and SD ((kB, C,E | kB 6=⊥), (Uλk

, C,E)) ≤ ε .

Our Protocol Before going into details in subsequent sections, we present here a high-level
overview of our protocol. We start with an authentication sub-protocol Auth presented in [RW03]
that achieves the following: using the secret w that is common to Alice and Bob, it allows Alice
to send to Bob an authentic (but nonsecret) message M of length λM bit-by-bit in 2λM messages.
Alice and Bob [RW03] can use this sub-protocol in order to agree on a key k as follows: they use
Auth to get an extractor seed s from Alice to Bob, and then extract k from w using s.1

We modify this protocol by using Auth to authenticate a MAC key instead of an extractor
seed. The MAC key, in turn, is used to authenticate the extractor seed s (which can be done very
efficiently using simple information-theoretic MACs). This seems counterintuitive, because Auth

reveals what is being authenticated, while MAC keys need to remain secret. The insight is to use the
MAC key before Auth begins.2 Our modification is beneficial for three reasons. First, MAC keys can
be made shorter than extractor keys, so Auth is used on a shorter string, thus reducing the number
of rounds and the entropy loss. Second, this modification allows us to use the same MAC key to
authenticate not only the extractor seed s, but also the error-correction information (the so-called
“secure sketch” of w [DORS08]) in the case Bob’s w ′ is different from Alice’s w. Third, because
there are MACs that are secure even against (limited) key modification [DKRS06, CDF+08], we
can lower the security parameters in Auth, further increasing efficiency and reducing entropy loss.

The rest of the paper is devoted to filling in the details of the above overview, including smaller
improvements not discussed here, and proving the following theorem.

1For technical reasons, since the adversary can modify message of Auth, she may have some information about
the string extracted from w; this problem is easily handled, see Section 4.

2This idea has been used before in several contexts; to the best of our knowledge it was first used in [Che97] in
the context of secure link state routing.
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Theorem 1. Given an [n, κ, 2η+1]2 linear error correcting code, the protocol presented in Section 4
is an (M, hW , λk, η, δ, ε)-interactive robust fuzzy extraction protocol, whereM is the Hamming space
over {0, 1}n with the following parameters: Setting security δ = 2−L, the protocol can extract
λk = hW − (n− κ) − 2 log 1

ε − (L2/2 + O(L(log n + log L))) bits (assuming n < 2L and λk − (n−
κ) + 2 log 1

ε > 10L). The protocol involves an exchange of L + log n + 5 messages between the two
parties.

The constant hidden by the O in the entropy loss is small, with O(L(log n+log L)) really being
less than 3L log 2L + 1

2L log n + 3(log 8L)(log 16n).
We obtain similar results for other metric spaces, with the only difference being that n− κ in

the entropy loss gets replaced by the entropy loss of the secure sketch for that metric space (see
Section 3.2).

Comparison with Prior Work When no error-correction is needed (i.e., w = w ′ and η = 0),
then n − κ = 0, and we get an improvement of the result of [RW03]. The result of [RW03] sets
L = Θ(

√
n/ log n) and loses Θ(n/ log n) bits of entropy. This can be seen in the description of

protocol Auth in [RW03], which has Θ(
√

n) rounds, each losing Θ(L) bits. Our protocol has only
Θ(L) rounds, with each also losing Θ(L) bits. Thus, our result is a Θ(log n)-factor improvement
in efficiency and entropy loss for the same security (moreover, the constant hidden by Θ, although
difficult to compute exactly, is substantial, likely bigger than log n in real applications).

A precise comparison with [RW04], which uses [RW03] as a building block and adds error-
correction, is even more complicated. Our advantage in the number of rounds remains the same,
though the constant factor improves even further. To compare the entropy loss, we can fix the
secure sketch code used in our protocol (which can be based on any linear error-correcting code)
to the one implicitly used in [RW04]. In that case, the entropy loss due to added error-correction
is asymptotically the same for our protocol and for the protocol of [RW04], though the constant
in our protocol is substantially lower. On the other hand, an important advantage of our protocol
is that we can choose a code that is efficiently decodable, in which case the entropy loss due to
error-correction may increase, but the protocol will run in polynomial-time.

We now compare our result to the construction of [DKRS06]. The advantage of the [DKRS06]
construction is that it takes only a single message and the entropy loss is linear in L rather than
quadratic. The disadvantage is that it loses additional n − hW bits of entropy, which means that
it is most effective when W has very high entropy. In particular, it becomes inapplicable when
hW ≤ n/2.

3 Building Blocks

3.1 Extractors

Because in this paper Eve is always assumed to have some external information E about Alice and
Bob’s secrets, we need the following variant, defined in [DORS08, Definition 2], of the definition of
strong extractors of [NZ96]:

Definition 2. Let Ext : {0, 1}n → {0, 1}l be a polynomial time probabilistic function that uses r
bits of randomness. We say that Ext is an average-case (n,m, l, ε)-strong extractor if for all pairs
of random variables (W,E) such that w ∈ W is an n-bit string and H̃∞(W | E) ≥ m, we have
SD ((Ext(W ;X), X,E), (Ul , X,E)) ≤ ε where X is the uniform distribution over {0, 1}r .
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We should note that some strong extractors (in particular, universal hashing [CW79, HILL99])
are already average-case extractors, and any strong extractor can be made average-case with a
slight increase in input entropy [DORS08, Section 2.5].

The following (new) lemma shows that strings extracted by average-case extractors have high
average min-entropy, even given the seed. The proof is in Appendix A.

Lemma 1. Let Ext be a an average-case (n,m, l, ε)-strong extractor. Then if H̃∞(W | E) ≥ m,
and W consists of n-bit strings, H̃∞(Ext(W,X) | X,E) ≥ min

(
l, log 1

ε

)
− 1.

3.2 A Variation on Secure Sketches

So far, we have presented the error-correcting information that Alice sends to Bob in the first
message as a secure sketch. Actually, we need a slight variant on secure sketches, one that provides
some resilience even when the sketch is modified. The requires a different definition than the
definition of [DORS08], though it turns out that known constructions need to be modified only
slightly to satisfy it.

Secure sketches, defined in [DORS08], provide two algorithms: “generate” (Gen) that takes an
input w and produces a sketch P and “recover” (Rec) that outputs w from the sketch P and any
w′ sufficiently close to w. Their security guarantees that some entropy remains in w even given
P . Secure sketches provide no guarantees when P has been tampered with, while we need to make
sure that the output of Rec still has entropy. Thus, we need to add a weak form of robustness (i.e.,
resilience to active attack) to secure sketches. At the same time, we do not need a full recovery
of the original w: we will be satisfied if both Gen and Rec produce some string R that preserves
some of the entropy of w. In that way, our new primitive is like a fuzzy extractor, except we do
not require that R be uniform, merely that it have entropy. In keeping with extractor literature
terminology [CRVW02], we call the primitive a weakly robust fuzzy conductor because it conducts
entropy from w to R and is robust against active attacks on P . Because we no longer recover the
original w but rather reproduce the same R, we rename Rec into Rep.

Let M be a metric space with distance function dis. Suppose (Gen,Rep) are two procedures,
where Gen(w), for w ∈M, outputs an extracted string R ∈ {0, 1}∗ and a helper string P ∈ {0, 1}∗,
and Rep(w′, P ′), for w′ ∈M, P ′ ∈ {0, 1}∗, outputs R′ ∈ {0, 1}∗.
Definition 3. The procedures (Gen,Rep) are an (M, hW , hR, hR′ , η)-weakly robust fuzzy conductor
if they satisfy the following properties:

1. Error-Tolerance. If dis(w,w′) ≤ η and R,P were generated by (R,P ) ← Gen(w), then
Rep(w′, P ) = R.

2. Security of Gen. For any suitable (W,W ′, E), the string R has high entropy even for those

who observe P and E: if (R,P )← Gen(W ), then H̃∞(R | E,P ) ≥ hR.

3. Security of Rep. Even if the adversary modifies P , the string produced by Rep has high
entropy: for all (adversarial) functions A and suitable (W,W ′, E), if (R,P ) ← Gen(W ),
P ′ ← A(P,E), and R′ ← Rep(W ′, P ′), then H̃∞(R′ | E,P ) ≥ hR′ .

We can build weakly robust fuzzy conductors out of any secure sketch (SS,Rec). (Secure
sketches, defined in [DORS08], allow the recovery of w from a close string w ′). We use the se-
cure sketch constructions of [DORS08] to build weakly robust fuzzy conductors for Hamming, set
difference, and edit distance metrics. Namely, in Appendix B, we easily obtain
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• for Hamming distance over an alphabet of size F , given an [n, κ, 2t+1] linear error-correcting
code for the alphabet, we get hR = hW − (n−κ) log F , hR′ = hW − 2(n−κ) log F , and η = t.

• for set difference, with sets whose elements come from a universe of size U , we get hR =
hW − η log(U + 1) and hR′ = hW − 2η log(U + 1) for any η.

• for edit distance over an alphabet of size we get hR = hW − dnc e log(n − c + 1) − α, and
hR′ = hW −dnc e log(n− c+1)− 2α, where α = (2c− 1)ηdlog(F c +1)e, for any constant c and
η.

3.3 One-time message authentication codes (MACs).

One-time MACs allow information-theoretic authentication of a message using a key shared in
advance.

Definition 4. A function family
{
MACk : {0, 1}λM → {0, 1}λσ

}
is a δ-secure one-time deterministic

MAC for messages of length λM with tags of length λσ if for any M ∈ {0, 1}λM and any function
(adversary) A : {0, 1}λσ → {0, 1}λM × {0, 1}λσ ,

Pr
k

[
MACk(M

′) = σ′ ∧ M ′ 6= M | (M ′, σ′) = A(MACk(M))
]
≤ δ .

MAC Construction. We will use the following standard MAC technique [dB93, Tay93, BJKS93].
View the key k as two values, a and b, of λσ bits each. Split the message M into c chunks
M0, . . . ,Mc−1, each λσ bits long, and view these as coefficients of a polynomial M̃(x) ∈ F2λσ [x] of

degree c−1. Then MACk(M)
def

= aM̃(a)+ b. This is a dλM/λσe 2−λσ -secure message authentication
code.

This construction has two properties that are particularly important to us. First, its key length
is close to optimal (it is not hard to show that λσ ≥ log 1

δ —else, adversary could simply guess a
tag; and |k| ≥ 2 log 1

δ—else, there would be fewer than 1
δ tags for M ′ given one of the 1

δ tags for
M). Second, it is secure even when the adversary knows something about the key, with security
degrading according to the amount of information adversary knows (this kind of security was first
addressed in [MW97]). Intuitively, the security of this MAC is roughly the entropy of the key minus
half the key length. More formally,

Proposition 1. Let (K,E) be a joint distribution. Then for all (adversarial) functions M with
λM -bit outputs and A,

Pr
(k,e)←(K,E)

[
MACk(M

′) = σ′ ∧ M ′ 6= M | (M ′, σ′) = A(MACk(M(e)), e)
]
≤
⌈

λM

λσ

⌉
2λσ− eH∞(K|E) .

We defer the proof of this proposition to Appendix C. We note that its proof becomes simpler
(than similar prior proofs) if we use the notion of average min-entropy. In particular, we will use
following lemma [DORS08] that states that average min-entropy of a variable from the point of view
of an adversary doesn’t decrease by more than the number of bits (correlated with the variable)
observed by the adversary.

Lemma 2. If B has at most 2λ possible values, then H̃∞(A | B,E) ≥ H̃∞(A,B | E)−λ ≥ H̃∞(A |
E)− λ.
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Alice and Bob share a string R. Alice wishes to authentically send Bob M = M1 . . . MλM

of λM bits. The value λM and the number of ones in M is known to Bob.
For i = 1 to λM :

1. Alice sends Bob challenge xi ∈r {0, 1}q .

2. Bob receives x′i, sends b′i = Ext(R;x′i), and challenge y′i ∈r {0, 1}q

3. Alice receives bi, yi, verifies that bi = Ext(R;xi) and aborts if not.
She sends (1, ai = Ext(R; yi)) if Mi = 1, and (0,⊥) otherwise.

4. Bob receives b′i, a
′
i aborts if b′i = 1 and a′i 6= Ext(R; y′i)

and accepts otherwise.
If i = λM , Bob verifies that the number of ones in the received string
match the expected number of ones; aborts otherwise.

Note that step 3 and 4 of each iteration are combined with steps 1 and 2, respectively, of
the next iteration.

Figure 1: Protocol Interactive Message Authentication Auth

3.4 A Modification of Renner-Wolf Interactive Authentication

The [RW03] authentication protocol allows two parties who share the same string R to authenticate
a message M , even if R has very little entropy.

We generalize this protocol slightly (to use general extractors instead of the specific polynomial
authentication function) and present it in Figure 1. We assume that Ext is an average-case extractor
that takes seeds of length q, and outputs L + 1-bit strings that are 2−L−1-close to uniform as long
as the input has sufficient entropy h (in particular, h ≥ 3L + 1 suffices if one is using universal
hashing as the extractor). For our purposes, it suffices to assume that the length of M and the
number of ones in it (i.e., its Hamming weight wt(M)) are known to Bob. If |M | is known but
wt(M) is not, M can be first encoded as a balanced string (i.e., a string with the same number of
zeros and ones), by encoding, for example, a 0 as 01 and a 1 as a 10. This doubles the length of
M .3

We note that [RW03] present a technique that can be used even if |M | is unknown (namely,
encoding M as a string that becomes balanced only at the end), but we will not need it here.

Each round of the protocol reveals L + 1 bits of information correlated to R if Mi = 0, and
2L + 1 bits of information of information correlated to R if Mi = 1. Hence, by Lemma 2, the

3More efficient methods for encoding M as a balanced string are, of course, also possible. The length of M
can be increased by less than log

2
|M | through the use of algorithms from Bos and Chaum [BC92] or Reyzin and

Reyzin [RR02]. These algorithms compute a bijection between integers in [1,
`

n
n/2

´

] and subsets of size n/2 of a set

of size n. Any such subset can be viewed as a balanced string (where the ith bit is set to 1 iff the ith element is in
the subset). Therefore, to balance a string M , it can be viewed as integer, and the subset produced by one of the
above algorithms can be viewed as its balanced encoding.
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adversary’s uncertainty about R will be sufficient for the extractor to work until the last round as
long as H̃∞(R|E) ≥ 3L+1+(L+1)(λM +wt(M)), and by Lemma 1 the ai and bi values will have
entropy L from the adversary’s point of view.

The intuition for the security of this protocol is that Eve cannot answer a random query xi or
yi with probability greater than 2−L because of the entropy of the answers, and hence can neither
remove zero bits (because challenges to Bob keep him synchronized) nor insert one bits (because
Alice is required to answer a challenge for each one). She can insert zero bits and change zeros to
ones, but that is taken care of by the assumption that Bob knows λM and wt(M).

We do not formally define or prove security of this protocol, as the proof is essentially the same
as in [RW03]. The probability that Eve succeeds in transmitting M ′ 6= M to Bob and Bob does
not reject (or Alice rejects and Bob accepts) is at most 2−L.

We note the following security property observed in [RW04]. Consider a setting where, because
of Eve’s malicious interference, Bob does not have the same R as Alice does, but instead some
(possibly correlated) R′. The protocol may not be complete, of course. However, it still secure, in
the sense that Eve’s chances of authenticating a message M ′ 6= M are not more than when R is the
same for Alice and Bob, as long as R′ also has sufficient entropy (≥ 3L+1+(L+1)(λM +wt(M))).

An additional security property (neither mentioned nor needed before) is that no information
about the message M being authenticated is revealed to Eve until Bob receives the first message
of the protocol. This holds with probability at least 1− 2−L even when Eve is active, because she
cannot get Alice to reveal even the first bit M1 without answering her challenge xi, which she is
unlikely to do without Bob’s help.

4 Our Protocol

We propose the following privacy amplification protocol, in which Alice starts with w and Bob with
w′ such that dis(w,w′) ≤ η. Below, MAC refers to the construction from Lemma 3.3 and Ext refers
to an arbitrary average-case extractor (the choice of extractor will affect security only marginally,
and will mostly affect efficiency, as we discuss below; in particular, extractors as simple as universal
hashing can be used). Lengths that are currently undefined (such as of MAC keys and extractor
seeds) will be set in subsequent sections in order to achieve desired security levels. In the protocol
description below, extractor outputs of varying lengths and distance from uniform are needed at
different stages of the protocol. We account for this variation by using two different extractors,
denoted by Ext1, Ext2.

1. Alice generates a random MAC key k1 and extractor seed s1, computes (R,P ) ← Gen(w),
σ1 = MACk1

(s1, P ), and sends ((s1, P ), σ1) to Bob.

2. Alice initiates the Renner-Wolf message authentication protocol(Auth) for the message k1

(suitably converted to a balanced string as indicated in Section 3.4), using R as the shared
secret value.

3. Bob receives ((s′1, P
′), σ′1), and computes R′ = Rep(w′, P ′). He responds to Alice’s Auth

protocol, using the string R′ as the shared secret value.

4. Upon completion of Alice’s side of Auth (if she has not yet rejected), Alice

• extracts k2 = Ext1(R; s1);
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• generates a random seed s2;

• sends Bob s2 and σ2 = MACk2
(s2);

• outputs her final key kA = k3 = Ext2(R; s2).

5. Upon completion of Bob’s side of the Auth with the received message k ′1, and receipt of s′2, σ
′
2

from Alice, Bob

• verifies the first MAC, Verifyk′

1
((s′1, P

′), σ′1) (if fail, rejects);

• computes the key for the second MAC, k ′2 = Ext1(R
′; s′1);

• verifies the second MAC, Verifyk′

2
(s′2, σ

′
2) (if fail, rejects);

• outputs his final key kB = k′3 = Ext2(R
′; s′2).

The intuition behind the security of this protocol is in the ordering of events. First, Alice
authenticates a message (s1, P ) to Bob using a MAC with a truly random key k1 which is unknown
to Eve. This ensures that Eve cannot (except with negligible probability) succeed in modifying the
message while preserving the integrity of the tag. However, Bob does not know k1, either—which
means he must defer the verification of the tag σ until a later stage.

Second, after she is sure that Bob has received the message and the tag (and thus it is too late
for Eve to try modifying them), Alice transmits k1 to Bob using the Renner-Wolf authentication
protocol. The protocol reveals all of k1 to Eve, but at this point k1 is completely useless to her,
because it is too late to try to modify the message and the tag. She cannot modify k1 (except
with negligible probability), by the security of the authentication protocol. It is crucial here that
the authentication protocol is secure even if Eve modified P (such modification would not be
detected until later), giving Alice and Bob different secrets R and R ′, because both R and R′ have
sufficiently high entropy. This enables Bob to verify the correctness of the MAC (and hence ensure
that R = R′) at the end of the protocol.

The last steps of the protocol are a bit confusing, because instead of just outputting k2 as the
final key, Alice adds a level of indirection, using k2 as a key to authenticate another extractor seed
s2, which is then used to extract the output key. This is similar to [RW03] and is needed because
k2, computed as Ext(w; s1), is guaranteed to be close to uniform only when s1 is a random seed
independent of Eve’s view. However, s1 is revealed to Eve before Auth and an active Eve can
modify the challenges within Auth (which are extractor seeds) to be correlated to s1. By the time
Ext(w; s1) is computed after Auth, s1 is not necessarily independent of Eve’s view. Thus, k2 is not
necessarily suitable for the final output, although it is possible to show that it still has entropy and
is therefore suitable as a MAC key. In Section 4.2 we show how to reduce the length of k2 (and
thus the entropy loss) as compared to the protocol of [RW03].

4.1 Analysis

The security parameter for our protocol is L. Through out this section, as with the rest of the
paper, for any string x we use λx to denote the length of the x and hx to denote its entropy (i.e,
H∞(x)).

Robustness We can view the protocol as consisting of two phases.

• Phase 1: Agreeing on k2 from close secrets w,w′

10



• Phase 2: Using k2 to agree final string k3

Security of Phase 1.

Suppose Eve succeeds in an active attack against Phase 1, i.e., k2 6= k′2. There are two
possibilities.

1. k1 = k′1 (Eve does not attack protocol Auth). Therefore, in order for k2 6= k′2, either s1 6= s′1 or
P 6= P ′. Because Bob verifies the first MAC, Eve needs to come up with a valid ((s′1, P

′
1), σ

′
1),

which she has to do when she forwards Bob his very first message. This case again gives rise
to two possible options, depending on when Eve sends to Bob her guess for ((s ′1, P

′
1), σ

′
1):

• If Eve sends it right after Alice sends ((s1, P1), σ1) and her first challenge x1 to Bob,
then this is equivalent to an active attack on a MAC, because she needs to produce
her “guess” for ((s′1, P

′
1), σ

′
1), before she sees any information correlated with k1. We

denote this probability by Pr[mac]. For an appropriate setting of length of k1 (namely,
2L+2 log λ(s1,P )/L, where λ(s1,P ) is the length of s1 and P ) using the MAC construction

from Section 3.3, we can show that Pr[mac] ≤ 2−L.

• If Eve sends it later, then she needs to respond to x1. We denote this probability by
Pr [random− challenge]. From Section 3.4, Pr[random− challenge] ≤ 2−L.

2. k1 6= k′1 : In this case, Eve has to authenticate k ′1 6= k1, using Protocol Auth in order to succeed.
Therefore, her chances of success in this case are bounded by her chances of succeeding in an
active attack against Auth. We denote this probability by Pr[Auth]. Again, if we run Auth on
the security parameter L + 1, we can show that Pr[auth] ≤ 2−L.

Security of Phase 2. This analysis is essentially the same as in [RW03]; we improve it in the
next section. The key k2 = Ext(R, s1) agreed upon by the parties at the end of Phase 1 is used
in Phase 2 to authenticate a fresh extractor seed s2 (of length λs2

) using the single message MAC
scheme of Section 3.3. However, the authentication protocol of Phase 1 gives Eve the ability to
query the parties and get some information about Ext(w, s1), decreasing the entropy of k2. Knowing
that this decrease will be no more than the amount communicated about R during Phase 1 (which
is Θ(L2) bits), we will set the length of k2 to be twice that plus 2L + 2 log λs2

/L to get the desired
2−L security for the second MAC.

It is easy to verify by counting the entropy lost during each round that the protocol, as presented
here, gives us Theorem 1 up to constant factors. (More precisely, it proves the following modification
of Theorem 1: in the expression for λk, increase the coefficient of L2 from 1/2 to 9, and increase
the number of messages by a factor of 4.) In the next section we present a number of improvements
that reduce the entropy loss by (significant) constant factors, proving Theorem 1.

4.2 Constant-Factor Improvements

In this section we propose improvements that reduce the round complexity by a factor of 4 and the
entropy loss by a factor of up to 18, making this protocol considerably more practical.
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Reducing the length of the extracted MAC key k2 Note that choosing the length of k2 as
above increases the entropy loss of the protocol by almost a factor of 3. By reworking the analysis
of Phase 1 using the notion of average min-entropy (similar to the analysis in Appendix C ), we can
show that requiring k2 to be longer than twice the communication in Phase 1, as discussed above,
is unnecessary. Using the same notation that we used in the protocol description, we let σ2 denote
the tag of the MAC. To succeed in forging it, the adversary Eve needs to successfully change σ2

to σ′2. In addition, in Phase 1 she is also allowed to query Alice and Bob, say, T times. Protocol
Auth implicitly imposes the constraint that Eve needs to also respond to T such queries. Let us
denote her queries by (q1, . . . , qT ) and responses by (q′1, . . . , q

′
T ). We analyze the security of phases

I and II jointly by looking at the average min-entropy of (σ ′2, (q
′
1, . . . , q

′
T )) given (σ2, (q1, . . . , qT )).

It turns out to be roughly λk2
− T − λσ2

, which makes the likelihood that Eve to completes phase
I and comes up with σ′2 is no more than 2−L if λk2

> 2L + T .

Working Base 4. Recall that in ith round of Auth, Bob sends Alice an extractor seed sufficient
to extract L + 1 bits, and Alice responds with either nothing or the extracted string, depending
on the value of the ith bit of the message being transmitted. We improve this by encoding the
message transmitted by Auth (namely, the MAC key k1) in base 4 rather than in base 2. Bob will
send Alice an extractor seed sufficient to extract 3L + 1 bits, and Alice will respond with nothing,
the first L+1 bits, the first 2L+1 bits, or all 3L+1 bits depending on the ith digit of the message.
This protocol works for strings that are “balanced” in base 4: i.e., messages M of length κM whose
base-4 digits whose digits add up to 1.5κM . It takes κM rounds and loses 2.5LκM bits of entropy,
while maintaining the same security. This improves the number of rounds by a factor 2 and the
entropy loss by a factor of 3/2.5 = 1.2, because κM is half of the length that M would have if
written in binary (the techniques used to balance a message in base 2 are also applicable in base
4, and increase the length by essentially the same ratio).

Working in Parallel. We further improve Auth by having Alice and Bob authenticate two
halves of M to each other. Namely, Alice authenticates half of M to Bob at the same time as
Bob authenticates half of M to Alice. Since M was initially chosen by Alice, she first has to
sends half of M to Bob to he can authenticate it back to her. This has to occur in Alice’s second
message, because we need to make sure that M remains secret until after Bob’s first message. Note
that Bob’s messages for authenticating his half of M can be combined with his answers to Alice’s
challenges. Namely, in each round, Alice will send Bob an extractor seed sufficient to extract 4L+1
bits, and Bob will respond with the first L + 1 bits, the first 2L + 1 bits, or the first 3L + 1 bits,
or all 4L + 1 bits depending on the appropriate digit of M .

Note that the security proof goes through without adding any new challenges from Bob to Alice
(i.e., Alice’s responses remain 0, L + 1, 2L + 1 or 3L + 1 extracted bits long).

This improvement cuts the number of rounds essentially by a factor of 2 (except for the fact
that Bob ends up one round behind), and cuts the entropy loss by a factor of 5/4=1.25 (because
there are no challenges from Bob to Alice, only from Alice to Bob, and now there are half as many
of those).

Not converting to/from a balanced string. Because MACs work even when the key does not
have full entropy, Alice can simply choose a random balanced string for the MAC key k1 instead of
choosing fully random k1, converting it to a balanced string for Auth, and then having Bob convert
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it back. The security of the MAC will remain essentially 2−L if k1 is a random string of length
2L + 2 log L bits that is balanced when viewed in base 4 (because its entropy H∞(k1) will be at
least 2L + log L by bounds on the central quadrinomial coefficient).

While this by itself is not a big improvement (on Alice’s side, choosing a random balanced string
is about as hard as choosing a random string of length 2L and converting to a balanced one of
length 2L + log L; so the savings are mainly on Bob’s side), it enables the next one.

Lowering the number of extracted bits in Auth. If we lower the bit length of the extracted
strings exchanged in Auth, we increase the probability that the adversary succeeds in making a few
changes to k1. However, by using a MAC secure against related key attacks, we can actually tolerate
a few such changes. Cramer et al. [CDF+08, Corollary 2], following a construction in [DKRS06],
present a MAC that is essentially as efficient as the one we use, and is secure even if the adversary
is allowed to change the key by exclusive-or with an adversarially chosen string. Thus, we need to
make sure that Eve’s changes to k1 can be characterized as exclusive-or with a particular string.

Namely, suppose that instead of using responses of length 0, L + 1, 2L + 1, or 3L + 1, Alice
uses responses of length 0, µ + 1, 2µ + 1, or 3µ + 1, and instead of using responses of length
L + 1, 2L + 1, 3L + 1, or 4L + 1, Bob uses responses of length L + 1, L + µ + 1, L + 2µ + 1, or
L+3µ +1, for some µ < L. The fact that Bob’s responses are of length at least L+1 ensures that
Eve cannot insert or delete digits from k1 but with probability 2−L. She can, however, increase
a digit with probability 2−µ. Because we require a balanced string, any decreased digit must be
compensated by an increased digit; thus, if the total sum of digit changes is γ, then the probability
that Eve does not get caught is 2−γµ/2.

We are working base 4, but using MACs that are based on bit-string keys. We will convert
from base 4 to base 2 using the Gray code: 0→ 00, 1 → 01, 2 → 11, 3 → 10. This will ensure that
Hamming distance between the key sent by Alice and the key received by Bob is at most γ. (If we
did not use the working-in-base-4 improvement, then, of course, this would not be necessary.)

The MAC of [CDF+08] is secure when the adversary chooses the modification to the key without
seeing the key. Namely, for any string ∆, the probability that the adversary can forge a MAC with
the key k1⊕∆ is low, where the probability is taken over a random k1. In our setting, the adversary
does get to see the key, because Auth does not hide k1. However, what helps is that ∆ likely has
low Hamming weight, because to achieve high Hamming weight, Eve would have to successfully
respond to a number of random challenges which does not hold. Therefore, the number of possible
∆ values is small, which is almost as good as having a fixed ∆.

More precisely, let π be the security of the MAC for any fixed ∆, and α be the length of the
MAC key. Then there are at most α2/2 values of ∆ of Hamming weight 2, and by the union bound,
the probability that will succeed with a forgery of the MAC by changing k1 by two bits is at most
πα2/2. At the same time, the probability that Eve will then be able to change k1 by two bits is at
most 2−µ. Letting µ = 2 log α, we get that Eve’s probability of success overall is π/2. Similarly,
there are at most α3/3! values of ∆ of Hamming weight 3, and the overall probability of success
using any such ∆ is π/3!. Continuing in this manner, we get that overall probability of Eve’s
success through modification of k1 is less than π(1/2! + 1/3! + 1/4! + . . . ) = π(e − 2) < π (we are
using here that ∆ of Hamming weight 1 is impossible because the string k1 ⊕∆ that Bob receives
must be balanced).

Now to achieve MAC security π = 2−L, we need to set the length of the MAC key, to be
α ≤ 2L + 2 log(n/L + 3) + 2, and µ = 2 log(α) = 2 log(2L + 2 log(n/L + 3) + 2). This follows

13



from [CDF+08, Corollary 2].
Careful counting of round complexity and entropy loss, taking into account the improvements

above, gives us the statement Theorem 1.
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A Proof of Lemma 1

Proof.

H̃∞(Ext(W,X)|X,E) = − log

(
E
x,e

( max
s∈{0,1}l

Pr[Ext(W,X) = s|X = x,E = e])

)

= − log

(
∑

x,e

Pr[X = x,E = e] max
s∈{0,1}l

Pr[Ext(W,X) = s|X = x,E = e]

)

= − log

(
∑

x,e

max
s

Pr[Ext(W,X) = s,X = x,E = e]

)

For each (x, e) let sxe denote the extractor output that maximizes Pr[Ext(W,X) = s,X =
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x,E = e]. Let T = {(sxe, x, e)}. Then it follows from the definition of statistical distance that:

H̃∞(Ext(W,X)|X,E) = − log Pr[(Ext(W,X), X,E) ∈ T ])

(by definition of T )

≥ − log(Pr[(Ul, X,E) ∈ T ] + ε)

(by definition of Ext and SD ())

= − log

(
∑

x,e

Pr[Ul = sxe, X = x,E = e] + ε

)

(because each pair (s, e) occurs once in T

= − log

(
∑

x,e

Pr[Ul = sxe] Pr[X = x] Pr[E = e] + ε

)

= − log

(
∑

x,e

2−l Pr[X = x] Pr[E = e] + ε

)

= − log(2−l + ε)

≥ min
(
l, log 1

ε

)
− 1 .

B Building Weakly Robust Fuzzy Conductors

As mentioned before, weakly robust fuzzy conductors can be built trivially out of any secure sketch
(SS,Rec) defined in [DORS08]. For the sake of completeness, we review the definition below.

Definition 5. An (m, m̃, t)-secure sketch is a pair of efficient randomized procedures (SS,Rec) s.t.:

1. The sketching procedure SS on input w ∈ M returns a bit string s ∈ {0, 1}∗. The recovery
procedure Rec takes an element w′ ∈M and s ∈ {0, 1}∗.

2. Correctness: If dis(w,w′) ≤ t then Rec(w′,SS(w)) = w.

3. Security: For any distribution W over M with min-entropy m, the (average) min-entropy
of W conditioned on s does not decrease very much. Specifically, if H∞(W ) ≥ m then
H̃∞(W | SS(W )) ≥ m̃.

The quantity m− m̃ is called the entropy loss of the secure sketch. ♦

To build a weakly robust fuzzy conductor from a secure sketch, simply let Gen(w) = (w,SS(w)),
and R = Rep(w′, P ′) = Rec(w′, P ′) unless Rec(w′, P ′) fails to produce a value that is within η of
w′ (which can happen only if P ′ 6= P ), in which case let Rep(w′, P ′) = w′. If the sketch length is
λ, then this construction is an (M, hW , hW − λ, hW − 2λ, η)-weakly robust fuzzy conductor. This
can be seen as follows: H̃∞(R|E,P ) ≥ hW − λ by Lemma 2. If Rec(w′, P ′) = R′, then w can be
recovered from R′ if one knows SS(w′) and SS(w), by computing Rec(R′,SS(w′)) to get w′ and then
Rec(w′,SS(w)) to get w. Hence, H̃∞(R′|E,SS(w),SS(w′)) ≥ H̃∞(w|E,SS(w),SS(w′)) ≥ hW − 2λ,
again by Lemma 2.
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This produces weakly robust fuzzy conductors for Hamming distance and set difference, using
deterministic secure sketches of Constructions 3, 5, and 6 of [DORS08]. In particular, for Hamming
distance over an alphabet of size F , given an [n, k, 2t + 1] linear error-correcting code for the
alphabet, this gives hR = hW − (n − k) log F , hR′ = hW − 2(n − k) log F , and η = t. For set
difference, with sets whose elements come from a universe of size n, this gives hR = hW−η log(n+1)
and hR′ = hW − 2η log(n + 1) for any η. Construction 9 of [DORS08], for edit distance, needs to
modified slightly by omitting the information required to reverse the embedding, and letting R be
the embedded version of w, R = SHc(w); this produces a weakly robust fuzzy conductor for edit
distance over alphabet of size F with λ = (2c− 1)ηdlog(F c +1)e, hR = hW −dnc e log(n− c+1)−λ,
and hR′ = hW − dnc e log(n− c + 1)− 2λ, for any choice of positive integer c and any η.

C Proof of MAC Construction (Proposition 1)

Proof. To prove security of the MAC construction, fix M and A; assume without loss of generality
that A never outputs M ′ = M . A receives e and σ = MACk(M(e)), and needs to predict σ′ =
MACk(M

′) for a new message M ′ of its choice. Note that M and M ′ are computed as deterministic
functions of σ and e. Let (Σ′,Σ) denote the distribution on σ′ and σ (induced by K,E).

Recall that the likelihood of outputting the correct value of some variable X by an adversary

who knows the value of a correlated Y is 2−
eH∞(X|Y ). We can therefore prove the security of the

MAC by analyzing the average min-entropy of the Σ′ conditioned on E and Σ. By Lemma 2, this
min-entropy is H̃∞(Σ′ | Σ, E) ≥ H̃∞(Σ′,Σ | E)− λσ.

To estimate H̃∞(Σ′,Σ | E), notice that for our MAC construction, knowing M,M ′, σ, σ′ gives
us an equation for a of the form a(M̃ (a)− M̃ ′(a))− σ′ + σ = 0 (and b is then uniquely determined

by a, M and σ). This is a nonzero polynomial in a of degree
⌈

λM
λσ

⌉
and therefore has at most

⌈
λM
λσ

⌉
roots. Let the roots be ordered lexicographically and let r denote the position of a in this

lexicographic ordering. Knowledge of k given e is equivalent to the knowledge of σ, σ ′, r given e,
from which M = M(e),M ′ = M(σ, e), the polynomial, its roots, and a, b can be uniquely computed.
Let R denote the distribution on r (induced by (K,E)). Therefore,

H̃∞(Σ,Σ′ | E) ≥ H̃∞(Σ,Σ′, R | R,E) = H̃∞(K | R,E) ≥ H̃∞(K | E)− log

⌈
λM

λσ

⌉

(by Lemma 2). Thus, H̃∞(Σ′|Σ, E) ≥ H̃∞(K|E)− λσ − log
⌈

λM
λσ

⌉
. Raising 1/2 to this power gives

the desired result.
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