
A Linear Approximation to Addition of Three Integers

and Its Implication to HC-128

Subhamoy Maitra1, Goutam Paul2, Shashwat Raizada1, Palash Sarkar1

1 Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India

subho@isical.ac.in, shashwat.raizada@gmail.com, palash@isical.ac.in
2 Department of Computer Science and Engineering,

Jadavpur University, Kolkata 700 032, India.
goutam paul@cse.jdvu.ac.in

Abstract. In this paper, we prove that the addition modulo 2n of three n-bit integers has good linear
approximation. We use this result to identify linear approximations of g1, g2, the feedback functions
of HC-128. This, in turn, shows that the process of keystream output generation of HC-128 can be
well approximated by linear functions. In this direction, we show that the “least significant bit” based
distinguisher (presented by the designer himself) of HC-128 works for the complete 32-bit word. In a
different note, in the line of Dunkelman’s observation, we also study how HC-128 keystream words leak
secret state information of the cipher due to the properties of the functions h1, h2.

Keywords: Bias, Cryptography, Distinguishing Attack, eStream, Keystream, Linear Ap-
proximation, Stream Cipher.

1 Introduction

The eSTREAM [1] Portfolio (revision 1 in September 2008) contains the stream cipher HC-
128 [3] in Profile 1 (SW). Apart from the analysis by the author (Wu) himself to conjecture
the security of this cipher, the only other observation is by Dunkelman [2] in the eStream
discussion forum to show that the keystream words of HC-128 leak information regarding
secret states. There is actually no other published result that shows any weakness of the
cipher. In this paper, we identify a few other weaknesses of HC-128. Though our results
do not constitute an attack on HC-128, we believe these will aid further exposure towards
analysis of the cipher.

Let us first present a brief outline to the linear approximation of addition of n-bit in-
tegers modulo 2n. Consider three integers X = (Xn−1, . . . , X0), Y = (Yn−1, . . . , Y0), Z =
(Zn−1, . . . , Z0) of n-bits each. Let S = (X+Y ) mod 2n, the addition modulo 2n and T = X⊕
Y , the GF(2) addition corresponding to each bit. Similarly consider S ′ = (X+Y +Z) mod 2n,
and T ′ = X ⊕ Y ⊕ Z.

For n = 8, the probabilities of Si = Ti and S ′i = T ′i are presented in the following table.



i Prob(Si = Ti) Prob(S
′
i = T ′i )

0 1.00000000 1.00000000
1 0.75000000 0.50000000
2 0.62500000 0.37500000
3 0.56250000 0.34375000
4 0.53125000 0.33593750
5 0.51562500 0.33398438
6 0.50781250 0.33349609
7 0.50390625 0.33337402

We like to point out that while Prob(Si = Ti) tends to 1
2

as i increases, Prob(S ′i = T ′i ) tends to
1
3
. This shows that Prob(S ′i = 1⊕Xi⊕Yi⊕Zi) is approximately 2

3
for i ≥ 2 and thus the i-th bit

(i ≥ 2) of addition modulo 2n of three integers is highly correlated to the complement of the
bitwise XOR of the integers. We theoretically prove this result in Section 3. The keystream
output generation of HC-128 is actually of the form S = (α⊕(β+((γ⊕δ)+τ))) mod 232, where
S, α, β, γ, δ, τ are 32-bit integers. One may have a look at the functions g1, g2 of HC-128 in this
regard. Given our observation, Prob(Si = 1⊕Ti) ≈ 2

3
for i ≥ 2, where T = α⊕β⊕γ⊕ δ⊕ τ .

In [3], bitwise XOR of least significant bits of 10 (possibly) different keystream words
(rotated by certain amounts) are considered to propose a distinguisher and it has been
commented: “But due to the effect of the two ‘+’ operations in the feedback function,
the attack exploiting those 31 bits is not as effective as that exploiting the least significant
bit”. Our study, related to linear approximation of addition of three integers characterize the
distinguisher for all other bits and we show that for each of the bits 2 to 31, the distinguisher
is almost of the same strength as the distinguisher proposed for the least significant bit in [3].
We present this analysis in Section 4. To be precise, applying the linear approximation results
in Section 3, we show that

– there are 30 many slightly weaker distinguishers other than the one described in [3] at
bit level;

– all these distinguishers can be taken together to mount a word level distinguisher for
HC-128.

In Section 5, we study how the keystream output words leak secret state information in
HC-128. In [2], it has been observed that “XOR of two consecutive keystream words of 32-bit
each” is equal to the “XOR of two consecutive words of the secret array” with probability
≈ 2−16. We study this analysis in more detail and in the process we find a sharper association
which gives twice the above probability.

We start with the description of HC-128 in the following section.

2 Description of HC-128

This is adapted from [3, Section 2].



2.1 Notations and Data Structures

The following operations are used in HC-128:

+ : x+ y means x+ y mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232.
� : x� y means x− y mod 512.
⊕ : bit-wise exclusive OR.
‖ : concatenation.
� : right shift operator. x� n means x being right shifted n bits.
� : left shift operator. x� n means x being left shifted n bits.
≫ : right rotation operator. x ≫ n means ((x� n)⊕(x� (32−n)), where 0 ≤ n < 32,
0 ≤ x < 232.
≪ : left rotation operator. x ≪ n means ((x� n)⊕ (x� (32−n)), where 0 ≤ n < 32,
0 ≤ x < 232.

Two tables P and Q, each with 512 many 32-bit elements are used as internal states of
HC-128. A 128-bit key array K[0, . . . , 3] and a 128-bit initialization vector IV [0, . . . , 3] are
used, where each entry of the array is a 32-bit element. Let st denote the keystream word
generated at the t-th step, t = 0, 1, 2, . . ..

The following six functions are used in HC-128:

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x� 3),
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x� 10),
g1(x, y, z) = ((x ≫ 10)⊕ (z ≫ 23)) + (y ≫ 8),
g2(x, y, z) = ((x ≪ 10)⊕ (z ≪ 23)) + (y ≪ 8),
h1(x) = Q[x(0)] +Q[256 + x(2)],
h2(x) = P [x(0)] + P [256 + x(2)],

where x = x(3)‖x(2)‖x(1)‖x(0), x is a 32-bit word and x(0) (least significant byte) , x(1), x(2)

and x(3) (most significant byte) are four bytes.

2.2 Key and IV Setup

1. Let K[0, . . . , 3] be the secret key and IV [0, . . . , 3] be the initialization vector. Let K[i+
4] = K[i] and IV [i+ 4] = IV [i] for 0 ≤ i ≤ 3.

2. The key and IV are expanded into an array W [0, . . . , 1279] as follows.

W [i] =


K[i] 0 ≤ i ≤ 7;
IV [i− 8] 8 ≤ i ≤ 15;
f2(W [i− 2]) +W [i− 7] + f1(W [i− 15]) +W [i− 16] + i 16 ≤ i ≤ 1279.

3. Update the tables P and Q with the array W as follows.

P [i] = W [i+ 256], for 0 ≤ i ≤ 511
Q[i] = W [i+ 768], for 0 ≤ i ≤ 511



4. Run the cipher 1024 steps and use the outputs to replace the table elements as follows.
for i = 0 to 511, do

P [i] = (P [i] + g1(P [i� 3], P [i� 10], P [i� 511]))⊕ h1(P [i� 12]);
for i = 0 to 511, do

Q[i] = (Q[i] + g2(Q[i� 3], Q[i� 10], Q[i� 511]))⊕ h2(Q[i� 12]);

2.3 The Keystream Generation Algorithm

i = 0;
repeat until enough keystream bits are generated
{
j = i mod 512;
if (i mod 1024) < 512
{
P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511]);
si = h1(P [j � 12])⊕ P [j];

}
else
{
Q[j] = Q[j] + g2(Q[j � 3], Q[j � 10], Q[j � 511]);
si = h2(Q[j � 12])⊕Q[j];

}
end-if
i = i+ 1;

}
end-repeat

3 A Linear Approximation to Addition of Three Integers

In this section, we investigate the effectiveness of the approximation when modulo 2n ad-
ditions of three n-bit numbers are replaced by bitwise XOR’s. This result can be used to
approximate the feedback function in HC-128 and has implication towards the security of
HC-128. Nonlinearity analysis of modulo addition of two integers have been studied in liter-
ature with great detail (one may refer to [5, 9, 6] and the references therein). However, these
results do not cover our study related to addition of three integers. For two n-bit numbers,
the probability of the equality of XOR and modulo-2n sum in the i-th least significant bit
tends to 1

2
as i increases. Interestingly, this is not the case in the XOR-approximation of

modulo addition of three numbers, as demonstrated in Theorem 1 at the end of this section.
Let X, Y, Z be three n-bit integers; R = (X + Y + Z) mod 2n, W = X ⊕ Y ⊕ Z, the

bitwise XOR. The i-th bit of the binary representation of X is written as Xi and similarly for
other integers. We wish to compute Prob(Ri = Wi) for i ≥ 0. Here and also in the discussion
below, probabilities are computed over independent and uniform random choices of the bits
of X, Y and Z.



To do this, we need to consider the carry produced in the i-th step of the addition of
X, Y and Z. Since, three bits are involved, the carry can take the values 0, 1 and 2. The 2-bit
carry produced in the i-th step will be denoted by (Bi, Ai) and we assume A−1 = B−1 = 0.
So, Ri = Ai−1 ⊕Xi ⊕ Yi ⊕ Zi and hence Prob(Ri = Wi) = Prob(Ai−1 = 0). So, we need to
analyse the sequence Ai.

Proposition 1. For i ≥ 0, we have Ai = 1⊕Bi−1⊕Si and Bi = bi−1(1⊕Si)⊕Ai−1XiYiZi,
where

Si =

{
1 if wt(Ai−1, Xi, Yi, Zi) = 0, 1 or 4;
0 otherwise.

(1)

Proof. Consider the i-th step of the addition. This looks as follows.

Bi−1 Ai−1

Xi

Yi

Zi

Bi Ai Ri

Consider the addition of the first column (from the right). This produces a carry value of 0
into the second column if and only if the weight (number of 1’s) of (Ai−1, Xi, Yi, Zi) is 0, 1
or 4. From the definition of Si, the value of this carry from the first into the second column
is 1 ⊕ Si. Now, Ai is 1 if and only if Bi−1 and (1 ⊕ Si) are equal. This gives the expression
for Ai. A similar reasoning gives the expression for Bi. ut

The following result is obtained from Proposition 1.

Proposition 2. If Prob(Ai−1 = 0) = δi−1, then Prob(Si = 0) = 1+δi−1

4
.

Proof. Xi, Yi, Zi are independent of Ai−1. So, we can write

Prob(Si = 0) = Prob(Ai−1 = 0)Prob(wt(Xi, Yi, Zi) = 0 or 1)

+Prob(Ai−1 = 1)Prob(wt(Xi, Yi, Zi) = 0 or 3)

= δi−1 ×
1

2
+ (1− δi−1)

1

4

=
1 + δi−1

4
.

ut

Lemma 1. For i ≥ 0,

Prob(Ai = 0) =
1

2
Γi−1(0, 0) +

1

4
Γi−1(0, 1) +

1

2
Γi−1(1, 0) +

3

4
Γi−1(1, 1). (2)

where for i ≥ −1, and µ1, µ2 ∈ {0, 1}, Γi(µ1, µ2)
4
= Prob(Bi = µ1, Ai = µ2).



Note. Γ−1(0, 0) = 1 and Γ−1(0, 1) = Γ−1(1, 0) = Γ−1(1, 1) = 0.

Proof. We compute as follows.

Prob(Ai = 0) = Prob(Bi−1 6= Si)

= Prob(Bi−1 = 0, Si = 1) + Prob(Bi−1 = 1, Si = 0)

= Prob(Bi−1 = 0, Ai−1 = 0, wt(Xi, Yi, Zi) = 0 or 1)

+Prob(Bi−1 = 0, Ai−1 = 1, wt(Xi, Yi, Zi) = 0 or 3)

+Prob(Bi−1 = 1, Ai−1 = 0, wt(Xi, Yi, Zi) = 2 or 3)

+Prob(Bi−1 = 1, Ai−1 = 1, wt(Xi, Yi, Zi) = 1 or 2)

= Γi−1(0, 0)Prob(wt(Xi, Yi, Zi) = 0 or 1)

+Γi−1(0, 1)Prob(wt(Xi, Yi, Zi) = 0 or 3)

+Γi−1(1, 0)Prob(wt(Xi, Yi, Zi) = 2 or 3)

+Γi−1(1, 1)Prob(wt(Xi, Yi, Zi) = 1 or 2).

Since Xi, Yi and Zi are independent and uniformly distributed over {0, 1},
Prob(wt(Xi, Yi, Zi) = 0 or 1) = 1/2. Similarly, we obtain the other values. ut
The next task is to obtain a recurrence for Γi(µ1, µ2).

Lemma 2. For i ≥ 0, the following holds.

Γi(0, 0) = 1
2
Γi−1(0, 0) + 1

8
Γi−1(0, 1)

Γi(0, 1) = 1
2
Γi−1(0, 0) + 3

4
Γi−1(0, 1) + 1

2
Γi−1(1, 0) + 1

8
Γi−1(1, 1)

Γi(1, 0) = 1
8
Γi−1(0, 1) + 1

2
Γi−1(1, 0) + 3

4
Γi−1(1, 1)

Γi(1, 1) = 1
8
Γi−1(1, 1).

 (3)

Proof. The proofs are similar and we only prove the second point. The event (Bi = 0, Ai = 1)
can be divided into four mutually disjoint events:

Bi−1 = 0, Ai−1 = 0, wt(Xi, Yi, Zi) = 2 or 3;
Bi−1 = 0, Ai−1 = 1, wt(Xi, Yi, Zi) = 1 or 2;
Bi−1 = 1, Ai−1 = 0, wt(Xi, Yi, Zi) = 0 or 1;
Bi−1 = 1, Ai−1 = 1, wt(Xi, Yi, Zi) = 1.

Consequently, Γi(0, 1) = Prob(Bi = 0, Ai = 1) is the sum of the probabilities of the above
four events. Using the independence of Xi, Yi, Zi from Ai−1 and Bi−1, each probability be-
comes the product of two probabilities. For example,

Prob(Bi−1 = 0, Ai−1 = 0, wt(Xi, Yi, Zi) = 2 or 3)
= Γi−1(0, 0)Prob(wt(Xi, Yi, Zi) = 2 or 3) = 1

2
Γi−1(0, 0) and similarly for the other three

cases. This gives the required expression for Γi(0, 1). ut
Equation (2) expresses Prob(Ai = 0) in terms of the four Γi−1’s. On the other hand, (3)

expresses each Γi in terms of the four Γi−1’s. If we put these two together, then we can express
Prob(Ai = 0) in terms of the four Γi−2’s. Clearly this process can be repeated, so that we
can express Prob(Ai = 0) in terms of the four Γi−j−1’s for j = 0, 1, . . . , i. The following result
makes this precise.



Lemma 3. For i ≥ 0,

Prob(Ai = 0) = δ
(0)
j Γi−j−1(0, 0) + δ

(1)
j Γi−j−1(0, 1) + δ

(2)
j Γi−j−1(1, 0) + δ

(3)
j Γi−j−1(1, 1), (4)

where δ
(0)
0 = 1/2, δ

(1)
0 = 1/4, δ

(2)
0 = 1/2, δ

(3)
0 = 3/4 and for 0 ≤ j ≤ i− 1,

δ
(0)
j+1 = 1

2
δ
(0)
j + 1

2
δ
(1)
j

δ
(1)
j+1 = 1

8
δ
(0)
j + 3

4
δ
(1)
j + 1

8
δ
(2)
j

δ
(2)
j+1 = 1

2
δ
(1)
j + 1

2
δ
(2)
j

δ
(3)
j+1 = 1

8
δ
(1)
j + 3

4
δ
(2)
j + 1

8
δ
(3)
j .

 (5)

Proof. The case of j = 0 is exactly Lemma 1 and the recurrence (5) follows by induction
using Lemma 2. ut

This leads to the following theorem.

Theorem 1. For i ≥ −1, Prob(Ai = 0) =
1

3

(
1 +

1

22i+1

)
.

Proof. For i = −1, we have Prob(Ai = 0) = 1 and this verifies with the given expression.

For i ≥ 0, from Lemma 3, we can write

Prob(Ai = 0) = δ
(0)
i Γ−1(0, 0) + δ

(1)
i Γ−1(0, 1) + δ

(2)
i Γ−1(1, 0) + δ

(3)
i Γ−1(1, 1)

= δ
(0)
i .

The last equation holds since Γ−1(0, 0) = 1 and Γ−1(0, 1) = Γ−1(1, 0) = Γ−1(1, 1) = 0.

So, we are reduced to computing δ
(0)
i . From (5), we see that δ

(3)
j does not influence

δ
(0)
j+1, δ

(1)
j+1 and δ

(2)
j+1. So, the first three equations of (5) can be solved independent of the

fourth equation. It is easily verified by induction that the following constitutes the solution
to these three equations.

δ
(0)
j =

1

3

(
1 +

1

22j+1

)
;

δ
(1)
j =

1

3

(
1− 1

22j+1

)
;

δ
(2)
j =

1

3

(
1 +

1

22j+1

)
.

This gives the required result. ut



4 Implication to HC-128

Here we present how the result of the previous section can be used in analysing HC-128.
As we will be using the keystream word number as subscript, we will denote the b-th least
significant bit of an n-bit word w by wb, 0 ≤ b ≤ n − 1, i.e., w = (wn−1, wn−2, . . . , w1, w0).
This notation is also extended to wb, where b > n− 1. In that case, wb will mean wb mod n.

Based on this notation and using approximation to Theorem 1, we write the following
result.

Corollary 1. Suppose X1, X2, X3 are three n-bit numbers with S = (X1 +X2 +X3) mod 2n.
Then, for 0 ≤ b ≤ n− 1,

Prob(Sb
i = Xb

1 ⊕Xb
2 ⊕Xb

3) = pb,

where pb = 1
3
(1 + 1

22b−1 ), i.e.,

pb =


1 if b = 0;
1
2

if b = 1;
1
3

(approximately) if 2 ≤ b ≤ n− 1.

HC-128 uses two functions g1, g2 of similar kind. The two ‘+’ operations in g1 or g2 are
believed to be a source of high nonlinearity, but we found good linear approximation in this
case. We have described in the previous section that the addition of three integers does not
provide as good nonlinearity as the addition of two integers.

During the keystream generation part of HC-128, the array P is updated as

P [i] = P [i] + g1(P [i� 3], P [i� 10], P [i� 511]),

where
g1(x, y, z) = ((x ≫ 10)⊕ (z ≫ 23)) + (y ≫ 8).

Thus, the update rule can be restated as

Pupdated[i] = P [i] +
(
(P [i� 3] ≫ 10)⊕ (P [i� 511] ≫ 23)

)
+ (P [i� 10] ≫ 8).

Suppose P ′
updated is the updated value of P [i], when we replace the two +’s by ⊕’s in the

right hand side. Then for 0 ≤ b ≤ n− 1, the b-th bit of the updated value would be given by

(P ′
updated[i])

b = (P [i])b ⊕ (P [i� 3])10+b ⊕ (P [i� 511])23+b ⊕ (P [i� 10])8+b.

According to Corollary 1, for 0 ≤ b ≤ n− 1, we have

Prob
(
(P ′

updated[i])
b = (Pupdated[i])

b
)

= pb.

Following the same notation as in [3, Section 4], we may write the keystream generation step
as

si = h1(Pupdated[i� 12])⊕ Pupdated[i],



for 0 ≤ i mod 1024 < 512. Consider

ψb
i =

{
(h1(Pupdated[i� 12])⊕ P ′

updated[i])
b if b = 0, 1;

1⊕ (h1(Pupdated[i� 12])⊕ P ′
updated[i])

b if 2 ≤ b < 32.

Then we have the following result.

Proposition 3. The expected number of bits where two 32-bit integers si, ψi match is 21.5.

Proof. The result follows from Corollary 1. As ψb
i = 1 ⊕ (h1(P [i � 12]) ⊕ P ′

updated[i])
b for

2 ≤ b < 32, in these cases Prob(sb
i = ψb

i ) ≈ 2
3
. Further, Prob(s1

i = ψ1
i ) = 1

2
and Prob(s0

i =
ψ0

i ) = 1. This gives that the expected number of matches between si, ψi is 30· 2
3
+ 1

2
+1 = 21.5.

ut

Proposition 3 shows the association of the HC-128 keystream words si with its linear
approximation ψi.

4.1 Extending the Distinguisher of [3] to Other Bits

In [3, Section 4], it was shown that for 1024τ + 10 ≤ j < i < 1024τ + 511,

Prob
(
s0

i ⊕ s0
i−1024⊕ s10

i−3⊕ s8
i−10⊕ s23

i−1023 = s0
j ⊕ s0

j−1024⊕ s10
j−3⊕ s8

j−10⊕ s23
j−1023

)
=

1

2
+ 2−81.

Thus, a distinguisher can be mounted based on the equality of the least significant bits of
the keystream word combinations si⊕ si−1024⊕ (si−3 ≫ 10)⊕ (si−10 ≫ 8)⊕ (si−1023 ≫ 23)
and sj ⊕ sj−1024 ⊕ (sj−3 ≫ 10) ⊕ (sj−10 ≫ 8) ⊕ (sj−1023 ≫ 23). According to [3, Section
4], this distinguisher requires 2164 pairs of above keystream word combinations for a success
probability 0.9772. It has been commented in [3] that the distinguisher will not be effective
due to the use of modulo addition. In contrary to the belief of the designer of HC-128, we
show here that the distinguisher works for all the bits (except one) in the keystream words.
Our analysis shows that there exist biases in the equality of 31 out of the 32 bits (except the
second least significant bit) of the word combinations si⊕ si−1024⊕ (si−3 ≫ 10)⊕ (si−10 ≫
8)⊕ (si−1023 ≫ 23) and sj ⊕ sj−1024 ⊕ (sj−3 ≫ 10)⊕ (sj−10 ≫ 8)⊕ (sj−1023 ≫ 23), which
leads to a distinguisher for each of those 31 bits separately.

Our analysis generalizes the idea of [3, Section 4] by applying Corollary 1. The keystream
output word of HC-128 is generated as si = h1(P [i � 12]) ⊕ P [i], 0 ≤ i mod 1024 < 512.
Denoting P [i � 12] at the i-th step as zi, and substituting P [i] = si ⊕ h1(zi) in the update
rule for P , we get, for 10 ≤ i mod 1024 < 511,

si⊕h1(zi) =
(
si−1024⊕h′1(zi−1024)

)
+g1

(
si−3⊕h1(zi−3), si−10⊕h1(zi−10), si−1023⊕h′1(zi−1023)

)
.

Here h1(.) and h′1(.) indicate two different functions since they are related to two P arrays
at two different 1024 size blocks that act as two different S-boxes.

As per the discussion following Corollary 1, we can write, for 10 ≤ i mod 1024 < 511,

sb
i ⊕ sb

i−1024 ⊕ s10+b
i−3 ⊕ s8+b

i−10 ⊕ s23+b
i−1023



= h1(zi)
b ⊕ h′1(zi−1024)

b ⊕ h1(zi−3)
10+b ⊕ h1(zi−10)

8+b ⊕ h′1(zi−1023)
23+b

holds with probability p0 = 1 for b = 0, with probability p1 = 1
2

for b = 1 and with probability
pb = 1

3
for 2 ≤ b ≤ 31. In short, we can write, for 0 ≤ b ≤ 31,

Prob(Ψ b
i = Hb

i ) = pb,

where

Ψ b
i = sb

i ⊕ sb
i−1024 ⊕ s10+b

i−3 ⊕ s8+b
i−10 ⊕ s23+b

i−1023

and

Hb
i = h1(zi)

b ⊕ h′1(zi−1024)
b ⊕ h1(zi−3)

10+b ⊕ h1(zi−10)
8+b ⊕ h′1(zi−1023)

23+b.

Obviously, for 0 ≤ b ≤ 31, Prob(Ψ b
i = Hb

i ⊕ 1) = 1− pb.
Thus, we can state the following technical result.

Lemma 4. For 1024τ + 10 ≤ j < i < 1024τ + 511 and 0 ≤ b ≤ 31,

Prob(Ψ b
i ⊕ Ψ b

j = Hb
i ⊕Hb

j ) = qb

where

qb =


1 if b = 0;
1
2
if b = 1;

5
9
if 2 ≤ b ≤ 31.

Proof. Prob(Ψ b
i ⊕ Ψ b

j = Hb
i ⊕Hb

j )
= Prob(Ψ b

i = Hb
i ) · Prob(Ψ b

j = Hb
j ) + Prob(Ψ b

i = Hb
i ⊕ 1) · Prob(Ψ b

j = Hb
j ⊕ 1)

= pb · pb + (1− pb) · (1− pb).
Substituting the values of pb from Corollary 1, we get the result. ut

Obviously, for 0 ≤ b ≤ 31, Prob(Ψ b
i ⊕ Ψ b

j = Hb
i ⊕Hb

j ⊕ 1) = 1− qb.
Also we have the following result about the collision in H(.).

Proposition 4. [3, Theorem 1] For 1024τ + 10 ≤ j < i < 1024τ + 511 and 0 ≤ b ≤ 31,

Prob(Hb
i = Hb

j ) =
1

2
+ 2−81.

Obviously, Prob(Hb
i = Hb

j ⊕ 1) = 1
2
− 2−81.

Combining the above results, we get the following theorem.

Theorem 2. For 1024τ + 10 ≤ j < i < 1024τ + 511, Prob(Ψ b
i = Ψ b

j ) = ρb, where

ρb =


1
2

+ 2−81 if b = 0;
1
2

if b = 1;
1
2

+ 2−81

9
if 2 ≤ b ≤ 31.



Proof. Prob(Ψ b
i = Ψ b

j )
= Prob(Ψ b

i ⊕ Ψ b
j = Hb

i ⊕Hb
j ) · Prob(Hb

i = Hb
j ) + Prob(Ψ b

i ⊕ Ψ b
j = Hb

i ⊕Hb
j ⊕ 1) · Prob(Hb

i =
Hb

j ⊕ 1).
Substituting values from Lemma 4 and Proposition 4, we get the result. ut

Note that for the special case of b = 0, we have a distinguisher based on the bias 1
2
+2−81

in the equality of the LSB’s of Ψi and Ψj. This is exactly the distinguisher described in [3,
Section 4]. Our results show that we can also mount a distinguisher of around the same order
for each of the 30 bits corresponding to b = 2, 3, . . . , 31 based on the bias 1

2
+ 2−81

9
.

If one checks how many bit positions match between two random 32-bit numbers, the
expected value is 16. Below we show that if one performs a bitwise comparison of the 32-bit
elements Ψi = (Ψ 31

i , Ψ 30
i , . . . , Ψ 0

i ) and Ψj = (Ψ 31
j , Ψ 30

j , . . . , Ψ 0
j ) in HC-128, where 1024τ + 10 ≤

j < i < 1024τ + 511, then the expected number of matches between the corresponding bits
is more than 16, and to be precise, is 16 + 13

12
· 2−79.

Theorem 3. Let M denotes the number of matches between the corresponding bits of Ψi and
Ψj, for 1024τ + 10 ≤ j < i < 1024τ + 511. Then the expected number of matches is given by
E(M) = 16 + 13

12
· 2−79.

Proof. Let mb = 1, if Ψ b
i = Ψ b

j ; otherwise, let mb = 0, 0 ≤ b ≤ 31. Hence, the total number

of matches is given by M =
31∑

b=0

mb. From Theorem 2, we have Prob(mb = 1) = ρb. Hence,

E(mb) = ρb and by linearity of expectation, E(M) =
31∑

b=0

E(mb) =
31∑

b=0

ρb. Substituting the

values of ρb’s from Theorem 2, we get E(M) = 16 + 13
3
· 2−81. ut

Thus our contributions in this section constitute of

– identifying 30 many slightly weaker distinguishers other than the one described in [3] at
bit level (Theorem 2);

– further, all these distinguishers can be taken together to mount a word level distinguisher
for HC-128 (Theorem 3).

These distinguishers have not been identified in [3].

5 Collisions in h1, h2 and State Leakage in Keystream

Whereas the previous sections concentrated on the functions g1, g2; here, in a different di-
rection, we study the other two functions h1, h2. Without loss of generality, we focus on
the keystream block corresponding to the P array, i.e., the block of 512 rounds where P is
updated in each round and Q remains constant. As j runs from 0 to 511, we denote the
corresponding output h1(P [j � 12])⊕ P [j] by sj. Here, h1(x) = Q[x(0)] +Q[256 + x(2)]. The
results we present in this section are in terms of the function h1. The same analysis holds
for the function h2 in the other keystream block.



In [2], it has been observed that Prob(sj ⊕ sj+1 = P [j]⊕P [j + 1]) ≈ 2−16, where sj, sj+1

are two consecutive keystream output words. We study that in more detail in this section
and in the process we find a sharper association in Theorem 5 which gives twice the above
probability.

The following technical result establishes that XOR of two words of P is leaked in the
keystream words if the corresponding values of h1(.) collide.

Lemma 5. For 0 ≤ u 6= v ≤ 511, su ⊕ sv = P [u] ⊕ P [v] if and only if h1(P [u � 12]) =
h1(P [v � 12]).

Proof. We have su = h1(P [u � 12]) ⊕ P [u] and sv = h1(P [v � 12]) ⊕ P [v]. Thus, su ⊕ sv =
(h1(P [u � 12]) ⊕ h1(P [v � 12])) ⊕ (P [u] ⊕ P [v]). The term (h1(P [u � 12]) ⊕ h1(P [v � 12]))
vanishes if and only if su ⊕ sv = P [u]⊕ P [v]. ut

Now we detail the result related to collision in h1. Note that the array P from which the
input to the function h1 is selected and the array Q from which the output of h1 is chosen
can be assumed to contain uniformly distributed 32-bit elements. In Lemma 6, which is in a
more general setting than just HC-128, we use notations h and U ; these may be considered
to model h1 and Q respectively.

Lemma 6. Let h(x) = U [x(0)] +U [x(2) +2m] be an n-bit to n-bit mapping, where each entry
of the array U is an n-bit number, U contains 2m+1 many elements and x(0) and x(2) are
two disjoint m-bit segments from the n-bit input x. Suppose x and x′ are two n-bit random
inputs to h. Assuming that the entries of U are distributed uniformly at random, we have
Prob

(
h(x) = h(x′)

)
= αm,n, where

αm,n = 2−2m + 21−m−n(1− 2−m) + 2−2n(1− 2−m)2 + 2−n(1− 2−m)2(1− 2−n)2.

Proof. The value of h(x) equals the value h(x′) in the following five ways.

1. x(0) = x′(0) and x(2) = x′(2). This happens with probability 2−m · 2−m.
2. x(0) = x′(0) and x(2) 6= x′(2) and U [x(2)] = U [x(2)]. This happens with probability 2−m ·

(1− 2−m) · 2−n.
3. x(0) 6= x′(0) and x(2) = x′(2) and U [x(0)] = U [x′(0)]. This happens with probability 2−m ·

(1− 2−m) · 2−n.
4. x(0) 6= x′(0) and x(2) 6= x′(2) and U [x(0)] = U [x′(0)] and U [x(2)] = U [x′(2)]. This happens

with probability (1− 2−m) · (1− 2−m) · 2−n · 2−n.
5. x(0) 6= x′(0) and x(2) 6= x′(2) and U [x(0)] 6= U [x′(0)] and U [x(2)] 6= U [x′(2)], but still h(x) =
h(x′) due to random association. This happens with probability (1 − 2−m) · (1 − 2−m) ·
(1− 2−n) · (1− 2−n) · 2−n.

Adding the above five components, we get the result. ut

The following corollary comes from Lemma 6 when we consider any t out of n bits. The
notation x =t y means x and y match in any predefined set of t bits, 0 ≤ t ≤ n.



Corollary 2. For 0 ≤ t ≤ n, we have Prob
(
h(x) =t h(x

′)
)

= pt, where

pm,n,t = αm,n + (1− αm,n)2−t.

Proof. The event
(
h(x) =t h(x

′)
)

can occur in the following two ways.

1. When h(x) = h(x′) and thus any t-bit portions are also equal. According to Lemma 6,
this happens with probability αm,n.

2. When h(x) 6= h(x′), the two fixed t-bit segments may equal due to random association.
This happens with probability (1− αm,n)2−t.

Adding the two components, we get the result. ut

Note that αm,n > 2−2m and the main contributing part to αm,n is 2−2m (see item 1 in the
proof of Lemma 6) when m < n

2
. For HC-128, m = n

4
and that creates a bias in the equality

of h1(.) for two different inputs. With m = 8 and n = 32, the above probability turns out to
be α8,32 = 0.0000152590 which is slightly greater than 2−16. We like to point out that if one
checks the equality of two n-bit random integers, then the probability of that event is 2−n

only, which is as low as 2−32.
Next we formalize the result given in [2].

Theorem 4. In HC-128, consider a block of 512 many keystream words corresponding to
array P . For 0 ≤ u 6= v ≤ 511, Prob

(
(su ⊕ sv) = (P [u]⊕ P [v])

)
= α8,32 > 2−16.

Proof. The result follows from Lemma 5 and Lemma 6. ut

Now, we present a sharper result which gives twice the probability of the observation
in [2].

Theorem 5. In HC-128, consider a block of 512 many keystream words corresponding to
array P . For any u, v, 0 ≤ u 6= v < 500, if

(
(s

(0)
u = s

(0)
v ) & (s

(2)
u = s

(2)
v )

)
, then

Prob
(
(su+12 ⊕ sv+12) = (P [u+ 12]⊕ P [v + 12])

)
≈ 1

215
.

Proof. From Lemma 5, s
(b)
u ⊕s(b)

v = P [u](b)⊕P [v](b) if and only if h1(P [u�12])(b) = h1(P [v�
12])(b), for b = 0, 1, 2, 3. Given that s

(0)
u = s

(0)
v and s

(2)
u = s

(2)
v , we have

P [u](0) = P [v](0) and P [u](2) = P [v](2) if and only if
h1(P [u� 12])(0) = h1(P [v � 12])(0) and h1(P [u� 12])(2) = h1(P [v � 12])(2).
Thus,

Prob
(
P [u](0) = P [v](0) & P [u](2) = P [v](2) | s(0)

u = s
(0)
v & s

(2)
u = s

(2)
v

)
= Prob

(
h1(P [u� 12])(0) = h1(P [v � 12])(0) & h1(P [u� 12])(2) = h1(P [v � 12])(2)

)
= p8,32,16 ≈ α8,32 + (1− α8,32)2

−16 (from Corollary 2)
≈ 1

215 .
By definition, h1(x) = Q[x(0)] + Q[256 + x(2)]. So the equalities P [u](0) = P [v](0) and

P [u](2) = P [v](2) give h1(P [u]) = h1(P [v]) and this in turn gives su+12 ⊕ sv+12 = P [u+ 12]⊕
P [v + 12] by Lemma 5. ut



The Glimpse Main Theorem [4, 7] is an important result on the weakness of RC4 stream
cipher. It states that at any round, Prob(S[j] = i − z) = Prob(S[i] = j − z) ≈ 2−7, where
S is the internal state of RC4, i and j are the deterministic and pseudo-random indices
respectively and z is the keystream output byte. This result quantifies the leakage of state
information into the keystream. Note that the leakage probability is twice the random associ-
ation 2−8. Our Theorem 5 is a Glimpse-like theorem on HC-128 that leaks state information
into the keystream with a probability ≈ 2−15 which is much more than 2−31 (two times the
random association 2−32), and is in fact two times the square-root of the random association.

6 Conclusion

In this paper we study the linear approximation of addition of three integers and found that
the addition of three integers does not provide good nonlinearity. This result is used for
analysis of HC-128 and we extend the least significant bitwise distinguisher proposed by the
designer himself to all the bits (except one) of the 32-bit keystream output word. We also
studied in detail the idea of Dunkelman towards secret state information leakage in keystream
output words. Though our results do not have any immediate threat to the applicability of
HC-128, these ideas identify weaknesses of the cipher that may provide further insight.

References

1. http://www.ecrypt.eu.org/stream/
2. O. Dunkelman. A small observation on HC-128. http://www.ecrypt.eu.org/stream/phorum/read.php?1,1143

Date: November 14, 2007.
3. H. Wu. The Stream Cipher HC-128. http://www.ecrypt.eu.org/stream/hcp3.html
4. R. J. Jenkins. ISAAC and RC4. 1996.

Available at http://burtleburtle.net/bob/rand/isaac.html [last accessed on July 18, 2008].
5. H. Lipmaa and S. Moriai. Efficient Algorithms for Computing Differential Properties of Addition. FSE 2001,

pages 336-350, vol. 2355, Lecture Notes in Computer Science, Springer.
6. H. Lipmaa, J. Wallen and P. Dumas. On the Additive Differential Probability of Exclusive-Or. FSE 2004, pages

317-331, vol. 3017, Lecture Notes in Computer Science, Springer.
7. I. Mantin. A Practical Attack on the Fixed RC4 in the WEP Mode. ASIACRYPT 2005, pages 395-411, volume

3788, Lecture Notes in Computer Science, Springer.
8. I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. FSE 2001, pages 152-164, vol. 2355, Lecture

Notes in Computer Science, Springer.
9. J. Wallén. Linear Approximations of Addition Modulo 2n. FSE 2003, pages 261-273, vol. 2887, Lecture Notes in

Computer Science, Springer.


