
Some Observations on HC-128

Subhamoy Maitra1, Goutam Paul2, Shashwat Raizada1

1 Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India.

subho@isical.ac.in, shashwat.raizada@gmail.com
2 Department of Computer Science and Engineering,

Jadavpur University, Kolkata 700 032, India.
goutam paul@cse.jdvu.ac.in

Abstract. In this paper, we use linear approximations of the addition modulo 2n of three n-bit integers
to identify linear approximations of g1, g2, the feedback functions of HC-128. This, in turn, shows that
the process of keystream output generation of HC-128 can be well approximated by linear functions. In
this direction, we show that the “least significant bit” based distinguisher (presented by the designer
himself) of HC-128 works for the complete 32-bit word. In a different note, in the line of Dunkelman’s
observation, we also study how HC-128 keystream words leak secret state information of the cipher due
to the properties of the functions h1, h2 and present improved results.

Keywords: Bias, Cryptography, Distinguishing Attack, eStream, Keystream, Linear Ap-
proximation, Stream Cipher.

1 Introduction

The eSTREAM [1] Portfolio (revision 1 in September 2008) contains the stream cipher HC-
128 [6] in Profile 1 (SW). Apart from the analysis by the author (Wu) himself to conjecture
the security of this cipher, the only other observation is by Dunkelman [2] in the eSTREAM
discussion forum to show that the keystream words of HC-128 leak information regarding
secret states. There is actually no other published result that shows any weakness of the
cipher. In this paper, we identify a few other weaknesses of HC-128. Though our results
do not constitute an attack on HC-128, we believe these will aid further exposure towards
analysis of the cipher.

Each keystream word of HC-128 is 32 bit long (the 0th bit is the least significant bit and
the 31st bit is the most significant bit). In [6], bitwise XOR of least significant bits of 10
(possibly) different keystream words (rotated by certain amounts) are considered to propose
a distinguisher and it has been commented: “But due to the effect of the two ‘+’ operations in
the feedback function, the attack exploiting those 31 bits is not as effective as that exploiting
the least significant bit”. In Section 3, we discuss the linear approximation of the feedback
functions g1, g2. These results are used in Section 4 to characterize the distinguisher for all
other bits. In Section 4.2, we show that for each of the bits 2 to 31, one can have distinguishers
of almost the same strength as the distinguisher proposed for the least significant bit in [6].
Thus it is shown that

– there are 30 many slightly weaker distinguishers other than the one described in [6] at
bit level; these are based on biases of the order of 2−81;

– all these distinguishers can be taken together to mount a word level distinguisher for
HC-128.

In Section 5, we study how the keystream output words leak secret state information in
HC-128. In [2], it has been observed that “XOR of two consecutive keystream words of 32-bit
each” is equal to the “XOR of two consecutive words of the secret array” with probability
≈ 2−16. We study this analysis in more detail and in the process we find a sharper association
which gives twice the above probability.

We start with the description of HC-128 in the following section.

2 Description of HC-128

This is adapted from [6, Section 2].

2.1 Notations and Data Structures

The following operations are used in HC-128:

+ : x+ y means x+ y mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232.
� : x� y means x− y mod 512.
⊕ : bit-wise exclusive OR.
‖ : concatenation.
� : right shift operator. x� n means x being right shifted n bits.
� : left shift operator. x� n means x being left shifted n bits.
≫ : right rotation operator. x ≫ n means ((x� n)⊕(x� (32−n)), where 0 ≤ n < 32,
0 ≤ x < 232.
≪ : left rotation operator. x ≪ n means ((x� n)⊕ (x� (32−n)), where 0 ≤ n < 32,
0 ≤ x < 232.

Two tables P and Q, each with 512 many 32-bit elements are used as internal states of
HC-128. A 128-bit key array K[0, . . . , 3] and a 128-bit initialization vector IV [0, . . . , 3] are
used, where each entry of the array is a 32-bit element. Let st denote the keystream word
generated at the t-th step, t = 0, 1, 2,

The following six functions are used in HC-128:

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x� 3),
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x� 10),
g1(x, y, z) = ((x ≫ 10)⊕ (z ≫ 23)) + (y ≫ 8),
g2(x, y, z) = ((x ≪ 10)⊕ (z ≪ 23)) + (y ≪ 8),
h1(x) = Q[x(0)] +Q[256 + x(2)],
h2(x) = P [x(0)] + P [256 + x(2)],

where x = x(3)‖x(2)‖x(1)‖x(0), x is a 32-bit word and x(0) (least significant byte) , x(1), x(2)

and x(3) (most significant byte) are four bytes.

2.2 Key and IV Setup

1. Let K[0, . . . , 3] be the secret key and IV [0, . . . , 3] be the initialization vector. Let K[i+
4] = K[i] and IV [i+ 4] = IV [i] for 0 ≤ i ≤ 3.

2. The key and IV are expanded into an array W [0, . . . , 1279] as follows.

W [i] =


K[i] 0 ≤ i ≤ 7;
IV [i− 8] 8 ≤ i ≤ 15;
f2(W [i− 2]) +W [i− 7] + f1(W [i− 15]) +W [i− 16] + i 16 ≤ i ≤ 1279.

3. Update the tables P and Q with the array W as follows.

P [i] = W [i+ 256], for 0 ≤ i ≤ 511
Q[i] = W [i+ 768], for 0 ≤ i ≤ 511

4. Run the cipher 1024 steps and use the outputs to replace the table elements as follows.
for i = 0 to 511, do

P [i] = (P [i] + g1(P [i� 3], P [i� 10], P [i� 511]))⊕ h1(P [i� 12]);
for i = 0 to 511, do

Q[i] = (Q[i] + g2(Q[i� 3], Q[i� 10], Q[i� 511]))⊕ h2(Q[i� 12]);

2.3 The Keystream Generation Algorithm

i = 0;
repeat until enough keystream bits are generated
{
j = i mod 512;
if (i mod 1024) < 512
{
P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511]);
si = h1(P [j � 12])⊕ P [j];

}
else
{
Q[j] = Q[j] + g2(Q[j � 3], Q[j � 10], Q[j � 511]);
si = h2(Q[j � 12])⊕Q[j];

}
end-if
i = i+ 1;

}
end-repeat

3 Linear Approximation of Feedback Functions g1, g2

HC-128 uses two functions g1, g2 of similar kind. The two ‘+’ operations in g1 or g2 are
believed to be a source of high nonlinearity, but we find good linear approximation in this
case by using the result of linear approximation of the addition of three integers.

Linear approximations of modulo-2n addition of k many n-bit integers have been studied
in [5]. For k = 2, the probability of the equality of XOR and modulo-2n sum in the i-th least
significant bit tends to 1

2
as i increases. Below, we briefly discuss the case for k = 3, i.e.,

the XOR-approximation of modulo addition of three integers, that would be subsequently
used in approximating g1, g2. We do not claim that the probability calculation in Theorem 1
below as our contribution, but we have presented an outline for better understanding.

Let X1, X2, X3 be three n-bit integers; S = (X1 +X2 +X3) mod 2n, T = X1 ⊕X2 ⊕X3,
the bitwise XOR. For i ≥ 0, let Ci denote the carry produced in the i-th step of the addition
of X1, X2 and X3. Since three bits are involved, Ci can take the values 0, 1 and 2. For the
LSB addition, we assume C−1 = 0. Denote pi,v = Prob(Ci = v), i ≥ −1, v ∈ {0, 1, 2}. We
know that Prob(Si = Ti) = Prob(Ci−1 = 0 or 2) = pi−1,0 + pi−1,2 = 1− pi−1,1. The following
recurrences are easy to show.

1. pi+1,0 = 1
2
pi,0 + 1

8
pi,1.

2. pi+1,1 = 1
2
pi,0 + 3

4
pi,1 + 1

2
pi,2.

3. pi+1,2 = 1
8
pi,1 + 1

2
pi,2.

The solution gives pi,1 = 2
3
(1− 1

4i+1) and so we have the following result.

Theorem 1. For i ≥ 0, Prob(Si = Ti) = 1
3
(1 + 1

22i−1).

As we will be using the keystream word number as subscript, we will denote the b-th least
significant bit of an n-bit word w by wb, 0 ≤ b ≤ n − 1, i.e., w = (wn−1, wn−2, . . . , w1, w0).
This notation is also extended to wb, where b > n− 1. In that case, wb will mean wb mod n.

Based on this notation and using approximation to Theorem 1, we write the following
result.

Corollary 1. Suppose X1, X2, X3 are three n-bit integers with S = (X1 +X2 +X3) mod 2n.
Then, for 0 ≤ b ≤ n− 1,

Prob(Sb
i = Xb

1 ⊕Xb
2 ⊕Xb

3) = pb,

where pb = 1
3
(1 + 1

22b−1), i.e.,

pb =


1 if b = 0;
1
2

if b = 1;
1
3

(approximately) if 2 ≤ b ≤ n− 1.

During the keystream generation part of HC-128, the array P is updated as

P [i] = P [i] + g1(P [i� 3], P [i� 10], P [i� 511]),

where
g1(x, y, z) = ((x ≫ 10)⊕ (z ≫ 23)) + (y ≫ 8).

Thus, the update rule can be restated as

Pupdated[i] = P [i] +
(
(P [i� 3] ≫ 10)⊕ (P [i� 511] ≫ 23)

)
+ (P [i� 10] ≫ 8).

Suppose P ′
updated is the updated value of P [i], when we replace the two +’s by ⊕’s in the

right hand side. Then for 0 ≤ b ≤ n− 1, the b-th bit of the updated value would be given by

(P ′
updated[i])

b = (P [i])b ⊕ (P [i� 3])10+b ⊕ (P [i� 511])23+b ⊕ (P [i� 10])8+b.

According to Corollary 1, for 0 ≤ b ≤ n− 1, we have

Prob
(
(P ′

updated[i])
b = (Pupdated[i])

b
)

= pb.

Following the same notation as in [6, Section 4], we may write the keystream generation step
as

si = h1(Pupdated[i� 12])⊕ Pupdated[i],

for 0 ≤ i mod 1024 < 512. Consider

ψb
i =

{
(h1(Pupdated[i� 12])⊕ P ′

updated[i])
b if b = 0, 1;

1⊕ (h1(Pupdated[i� 12])⊕ P ′
updated[i])

b if 2 ≤ b < 32.

Then we have the following result.

Theorem 2. The expected number of bits where the two 32-bit integers si and ψi match is
21.5.

Proof. Let mb = 1, if sb
i = ψb

i ; otherwise, let mb = 0, 0 ≤ b ≤ 31. Hence, the total number

of matches is given by M =
31∑

b=0

mb. By linearity of expectation, E(M) =
31∑

b=0

E(mb) =

31∑
b=0

Prob(mb = 1). The probabilities Prob(mb = 1) can be computed from Corollary 1. As

ψb
i = 1 ⊕ (h1(P [i � 12]) ⊕ P ′

updated[i])
b for 2 ≤ b < 32, in these cases Prob(sb

i = ψb
i) ≈ 2

3
.

Further, Prob(s1
i = ψ1

i) = 1
2

and Prob(s0
i = ψ0

i) = 1. This gives the value of E(M) as
30 · 2

3
+ 1

2
+ 1 = 21.5. ut

Theorem 2 shows the association of the HC-128 keystream words si with its linear ap-
proximation ψi.

4 A Class of Distinguishers for HC-128

In this section, we use the linear approximation of the feedback functions g1, g2 described in
the previous section to construct 30 new bit-level distinguishers.

4.1 Brief Outline of the Distinguisher of [6]

Before presenting the ideas in this section, let us revisit the keystream word generation of
HC-128. The keystream words are generated using both the arrays P,Q, each consisting of
512 many words. However, the updates of P and Q arrays are independent. For 512 many
iterations, the array P is updated with the older values from P itself and for the next 512
many iterations the array Q is updated with the older values of Q as well and this continues
alternatively. Below, while discussing the distinguisher, following the notations of [6], we
consider the older P and the updated P at the same time as an array of 1024 many words.
The idea is mentioned more clearly with the following tabular representation. This is how the
keystream words si’s are related to the array elements P [i]’s for explaining the distinguisher.

. . .

Old P array: P [t + 0] P [t + 1] . . . P [t + i− 512] . . . P [t + 511]

Keystream: st st+1 . . . st+i−512 . . . st+511

Intermediate Q array: Q[t + 0] Q[t + 1] Q[t + 511]

Keystream: st+512 st+513 st+1023

New P array: P [t + 512] P [t + 513] . . . P [t + i] . . . P [t + 1023]

Keystream: st+1024 st+1025 . . . st+i+512 . . . st+1535

. . .

Table 1. Evolution of the Array P and Correspondence with the Keystream Words si’s.

Thus, for 10 ≤ i < 511, P [i] (before the update in step i) corresponds to si−1024 and
P [i�511] corresponds to si−1023. The keystream output word of HC-128 is generated as si =
h1(P [i�12])⊕P [i], following an update of P [i] by adding to it g1(P [i�3], P [i�10], P [i�511]),
0 ≤ i mod 1024 < 512. In other words, we can ignore the update and write the keystream
generation as follows:

si = h1(P [i� 12])⊕
(
P [i] + g1(P [i� 3], P [i� 10], P [i� 511])

)
or

si ⊕ h1(P [i� 12]) = P [i] + g1(P [i� 3], P [i� 10], P [i� 511]).

Denoting P [i � 12] at the i-th step as zi, and substituting P [i] = si ⊕ h1(zi) in the update
rule for P , we get, for 10 ≤ i mod 1024 < 511,

si⊕h1(zi) =
(
si−1024⊕h′1(zi−1024)

)
+g1

(
si−3⊕h1(zi−3), si−10⊕h1(zi−10), si−1023⊕h′1(zi−1023)

)
.

Here h1(.) and h′1(.) indicate two different functions since they are related to two P arrays
at two different 1024 size blocks that act as two different S-boxes. Inside g1, we have three
rotations, one XOR and one addition and outside g1 we have one more addition. Since the
LSB of the XOR of two words equal the LSB of the sum of those two words, we can write
the above equation as

s0
i ⊕ s0

i−1024 ⊕ s10
i−3 ⊕ s8

i−10 ⊕ s23
i−1023

= h1(zi)
0 ⊕ h′1(zi−1024)

0 ⊕ h1(zi−3)
10 ⊕ h1(zi−10)

8 ⊕ h′1(zi−1023)
23.

Thus, for 1024τ + 10 ≤ j < i < 1024τ + 511,

s0
i ⊕ s0

i−1024 ⊕ s10
i−3 ⊕ s8

i−10 ⊕ s23
i−1023

= s0
j ⊕ s0

j−1024 ⊕ s10
j−3 ⊕ s8

j−10 ⊕ s23
j−1023

if and only if H(Zi) = H(Zj), where

H(Zi) = h1(zi)
0 ⊕ h′1(zi−1024)

0 ⊕ h1(zi−3)
10 ⊕ h1(zi−10)

8 ⊕ h′1(zi−1023)
23.

Here Zi = (zi, zi−1024, zi−3, zi−10, zi−1023) is an 80-bit input and H(.) can be assumed as a
random 80-bit-to-1-bit S-box.

The following result (with proof for better clarity) gives the collision probability for a
general random m-bit-to-n-bit S-box.

Proposition 1. [6, Theorem 1] Let H be an m-bit-to-n-bit S-box and all those n-bit ele-
ments are randomly generated, where m ≥ n. Let x1 and x2 be two m-bit random inputs to
H. Then H(x1) = H(x2) with probability 2−m + 2−n − 2−m−n.

Proof. If x1 = x2 (this happens with probability 2−m), then H(x1) = H(x2) happens with
probability 1. If x1 = x2 (this happens with probability 1 − 2−m), then H(x1) = H(x2)
happens with probability 2−n. Thus, Prob

(
H(x1) = H(x2)

)
= 2−m · 1 + (1− 2−m) · 2−n. ut

Coming back to HC-128, m = 80 and n = 1 for the S-box whose outputs are H(Zi) and
H(Zj), we have, according to Proposition 1, Prob

(
H(Zi) = H(Zj)

)
= 1

2
+ 2−81. Hence, for

1024τ + 10 ≤ j < i < 1024τ + 511,

Prob
(
s0

i ⊕ s0
i−1024⊕ s10

i−3⊕ s8
i−10⊕ s23

i−1023 = s0
j ⊕ s0

j−1024⊕ s10
j−3⊕ s8

j−10⊕ s23
j−1023

)
=

1

2
+ 2−81.

Thus, a distinguisher can be mounted based on the equality of the least significant bits of
the keystream word combinations si⊕ si−1024⊕ (si−3 ≫ 10)⊕ (si−10 ≫ 8)⊕ (si−1023 ≫ 23)
and sj ⊕ sj−1024 ⊕ (sj−3 ≫ 10) ⊕ (sj−10 ≫ 8) ⊕ (sj−1023 ≫ 23). According to [6, Section
4], this distinguisher requires 2164 pairs of above keystream word combinations for a success
probability 0.9772. It has been commented in [6] that the distinguisher will not be effective
due to the use of modulo addition. In contrary to the belief of the designer of HC-128, we
show in the next section that the distinguisher works for all the bits (except one) in the
keystream words.

4.2 Extending the Distinguisher of [6] to Other Bits

Our analysis shows that there exist biases in the equality of 31 out of the 32 bits (except the
second least significant bit) of the word combinations si⊕ si−1024⊕ (si−3 ≫ 10)⊕ (si−10 ≫
8)⊕ (si−1023 ≫ 23) and sj ⊕ sj−1024 ⊕ (sj−3 ≫ 10)⊕ (sj−10 ≫ 8)⊕ (sj−1023 ≫ 23), which
leads to a distinguisher for each of those 31 bits separately.

Our analysis generalizes the idea of [6, Section 4] by applying Corollary 1. We refer to the
visualization of the array P as explained in Table 1. The keystream output word of HC-128
is generated as si = h1(P [i � 12]) ⊕ P [i], 0 ≤ i mod 1024 < 512. Denoting P [i � 12] at
the i-th step as zi, and substituting P [i] = si ⊕ h1(zi) in the update rule for P , we get, for
10 ≤ i mod 1024 < 511,

si⊕h1(zi) =
(
si−1024⊕h′1(zi−1024)

)
+g1

(
si−3⊕h1(zi−3), si−10⊕h1(zi−10), si−1023⊕h′1(zi−1023)

)
.

Here h1(.) and h′1(.) indicate two different functions since they are related to two P arrays
at two different 1024 size blocks that act as two different S-boxes.

As per the discussion following Corollary 1, we can write, for 10 ≤ i mod 1024 < 511,

sb
i ⊕ sb

i−1024 ⊕ s10+b
i−3 ⊕ s8+b

i−10 ⊕ s23+b
i−1023

= h1(zi)
b ⊕ h′1(zi−1024)

b ⊕ h1(zi−3)
10+b ⊕ h1(zi−10)

8+b ⊕ h′1(zi−1023)
23+b

}
(1)

holds with probability p0 = 1 for b = 0, with probability p1 = 1
2

for b = 1 and with probability
pb = 1

3
for 2 ≤ b ≤ 31. In short, we can write, for 0 ≤ b ≤ 31,

Prob
(
Ψ b

i = Hb(Zi)
)

= pb,

where
Ψ b

i = sb
i ⊕ sb

i−1024 ⊕ s10+b
i−3 ⊕ s8+b

i−10 ⊕ s23+b
i−1023

and

Hb(Zi) = h1(zi)
b ⊕ h′1(zi−1024)

b ⊕ h1(zi−3)
10+b ⊕ h1(zi−10)

8+b ⊕ h′1(zi−1023)
23+b.

Here Zi = (zi, zi−1024, zi−3, zi−10, zi−1023) is an 80-bit input and each Hb(.), 0 ≤ b ≤ 31, is a
random 80-bit-to-1-bit S-box. Obviously, for 0 ≤ b ≤ 31, Prob

(
Ψ b

i = Hb(Zi)⊕ 1
)

= 1− pb.
Thus, we can state the following technical result.

Lemma 1. For 1024τ + 10 ≤ j < i < 1024τ + 511 and 0 ≤ b ≤ 31,

Prob
(
Ψ b

i ⊕ Ψ b
j = Hb(Zi)⊕Hb(Zj)

)
= qb

where

qb =


1 if b = 0;
1
2
if b = 1;

5
9
if 2 ≤ b ≤ 31.

Proof. Prob
(
Ψ b

i ⊕ Ψ b
j = Hb(Zi)⊕Hb(Zj)

)
= Prob

(
Ψ b

i = Hb(Zi)
)
·Prob

(
Ψ b

j = Hb(Zj)
)
+Prob

(
Ψ b

i = Hb(Zi)⊕1
)
·Prob

(
Ψ b

j = Hb(Zj)⊕1
)

= pb · pb + (1− pb) · (1− pb).
Substituting the values of pb from Corollary 1, we get the result. ut

Obviously, for 0 ≤ b ≤ 31, Prob
(
Ψ b

i ⊕ Ψ b
j = Hb(Zi)⊕Hb(Zj)⊕ 1

)
= 1− qb.

For a given b, all the Hb(Zi)’s are the outputs of the same random secret 80-bit-to-1-bit
S-box Hb(.). So setting m = 80 and n = 1 in Proposition 1, we get the following corollary.

Corollary 2. For 1024τ + 10 ≤ j < i < 1024τ + 511 and 0 ≤ b ≤ 31,

Prob
(
Hb(Zi) = Hb(Zj)

)
=

1

2
+ 2−81.

Obviously, Prob
(
Hb(Zi) = Hb(Zj)⊕ 1

)
= 1

2
− 2−81.

Combining the above results, we get the following theorem.

Theorem 3. For 1024τ + 10 ≤ j < i < 1024τ + 511, Prob(Ψ b
i = Ψ b

j) = ρb, where

ρb =


1
2

+ 2−81 if b = 0;
1
2

if b = 1;
1
2

+ 2−81

9
if 2 ≤ b ≤ 31.

Proof. Prob(Ψ b
i = Ψ b

j)

= Prob
(
Ψ b

i ⊕ Ψ b
j = Hb(Zi)⊕Hb(Zj)

)
· Prob

(
Hb(Zi) = Hb(Zj)

)
+ Prob

(
Ψ b

i ⊕ Ψ b
j = Hb(Zi)⊕

Hb(Zj)⊕ 1
)
· Prob

(
Hb(Zi) = Hb(Zj)⊕ 1

)
.

Substituting values from Lemma 1 and Corollary 2, we get the result. ut

Note that for the special case of b = 0, we have a distinguisher based on the bias 1
2
+2−81

in the equality of the LSB’s of Ψi and Ψj. This is exactly the distinguisher described in [6,
Section 4]. Our results show that we can also mount a distinguisher of around the same order
for each of the 30 bits corresponding to b = 2, 3, . . . , 31 based on the bias 1

2
+ 2−81

9
.

If one checks how many bit positions match between two random 32-bit integers, the
expected value is 16. Below we show that if one performs a bitwise comparison of the 32-bit
elements Ψi = (Ψ 31

i , Ψ 30
i , . . . , Ψ 0

i) and Ψj = (Ψ 31
j , Ψ 30

j , . . . , Ψ 0
j) in HC-128, where 1024τ + 10 ≤

j < i < 1024τ + 511, then the expected number of matches between the corresponding bits
is more than 16, and to be precise, is 16 + 13

12
· 2−79.

Theorem 4. For 1024τ + 10 ≤ j < i < 1024τ + 511, the expected number of bits where the
two 32-bit integers Ψi and Ψj match is 16 + 13

12
· 2−79.

Proof. Let mb = 1, if Ψ b
i = Ψ b

j ; otherwise, let mb = 0, 0 ≤ b ≤ 31. Hence, the total number

of matches is given by M =
31∑

b=0

mb. From Theorem 3, we have Prob(mb = 1) = ρb. Hence,

E(mb) = ρb and by linearity of expectation, E(M) =
31∑

b=0

E(mb) =
31∑

b=0

ρb. Substituting the

values of ρb’s from Theorem 3, we get E(M) = 16 + 13
3
· 2−81. ut

Thus our contributions in this section constitute of

– identifying 30 many slightly weaker distinguishers other than the one described in [6] at
bit level (Theorem 3);

– further, all these distinguishers can be taken together to mount a word level distinguisher
for HC-128 (Theorem 4).

These distinguishers have not been identified in [6].

5 Collisions in h1, h2 and State Leakage in Keystream

Whereas the previous sections concentrated on the functions g1, g2; here, in a different di-
rection, we study the other two functions h1, h2. Without loss of generality, we focus on
the keystream block corresponding to the P array, i.e., the block of 512 rounds where P is
updated in each round and Q remains constant. As j runs from 0 to 511, we denote the
corresponding output h1(P [j � 12])⊕ P [j] by sj. Here, h1(x) = Q[x(0)] +Q[256 + x(2)]. The
results we present in this section are in terms of the function h1. The same analysis holds
for the function h2 in the other keystream block.

In [2], it has been observed that Prob(sj ⊕ sj+1 = P [j]⊕P [j + 1]) ≈ 2−16, where sj, sj+1

are two consecutive keystream output words. We study that in more detail in this section
and in the process we find a sharper association in Theorem 6 which gives twice the above
probability.

The following technical result establishes that XOR of two words of P is leaked in the
keystream words if the corresponding values of h1(.) collide.

Lemma 2. For 0 ≤ u 6= v ≤ 511, su ⊕ sv = P [u] ⊕ P [v] if and only if h1(P [u � 12]) =
h1(P [v � 12]).

Proof. We have su = h1(P [u � 12]) ⊕ P [u] and sv = h1(P [v � 12]) ⊕ P [v]. Thus, su ⊕ sv =
(h1(P [u � 12]) ⊕ h1(P [v � 12])) ⊕ (P [u] ⊕ P [v]). The term (h1(P [u � 12]) ⊕ h1(P [v � 12]))
vanishes if and only if su ⊕ sv = P [u]⊕ P [v]. ut

Now we detail the result related to collision in h1. Note that the array P from which the
input to the function h1 is selected and the array Q from which the output of h1 is chosen
can be assumed to contain uniformly distributed 32-bit elements. In Lemma 3, which is in a
more general setting than just HC-128, we use notations h and U ; these may be considered
to model h1 and Q respectively.

Lemma 3. Let h(x) = U [x(0)] +U [x(2) +2m] be an n-bit to n-bit mapping, where each entry
of the array U is an n-bit number, U contains 2m+1 many elements and x(0) and x(2) are
two disjoint m-bit segments from the n-bit input x. Suppose x and x′ are two n-bit random
inputs to h. Assuming that the entries of U are distributed uniformly at random, we have
Prob

(
h(x) = h(x′)

)
= αm,n, where

αm,n = 2−2m + 21−m−n(1− 2−m) + 2−2n(1− 2−m)2 + 2−n(1− 2−m)2(1− 2−n)2.

Proof. The value of h(x) equals the value h(x′) in the following five ways.

1. x(0) = x′(0) and x(2) = x′(2). This happens with probability 2−m · 2−m.
2. x(0) = x′(0) and x(2) 6= x′(2) and U [x(2)] = U [x(2)]. This happens with probability 2−m ·

(1− 2−m) · 2−n.
3. x(0) 6= x′(0) and x(2) = x′(2) and U [x(0)] = U [x′(0)]. This happens with probability 2−m ·

(1− 2−m) · 2−n.
4. x(0) 6= x′(0) and x(2) 6= x′(2) and U [x(0)] = U [x′(0)] and U [x(2)] = U [x′(2)]. This happens

with probability (1− 2−m) · (1− 2−m) · 2−n · 2−n.

5. x(0) 6= x′(0) and x(2) 6= x′(2) and U [x(0)] 6= U [x′(0)] and U [x(2)] 6= U [x′(2)], but still h(x) =
h(x′) due to random association. This happens with probability (1 − 2−m) · (1 − 2−m) ·
(1− 2−n) · (1− 2−n) · 2−n.

Adding the above five components, we get the result. ut

The following corollary comes from Lemma 3 when we consider any t out of n bits. The
notation x =t y means x and y match in any predefined set of t bits, 0 ≤ t ≤ n.

Corollary 3. For 0 ≤ t ≤ n, we have Prob
(
h(x) =t h(x

′)
)

= pt, where

pm,n,t = αm,n + (1− αm,n)2−t.

Proof. The event
(
h(x) =t h(x

′)
)

can occur in the following two ways.

1. When h(x) = h(x′) and thus any t-bit portions are also equal. According to Lemma 3,
this happens with probability αm,n.

2. When h(x) 6= h(x′), the two fixed t-bit segments may equal due to random association.
This happens with probability (1− αm,n)2−t.

Adding the two components, we get the result. ut

Note that αm,n > 2−2m and the main contributing part to αm,n is 2−2m (see item 1 in the
proof of Lemma 3) when m < n

2
. For HC-128, m = n

4
and that creates a bias in the equality

of h1(.) for two different inputs. With m = 8 and n = 32, the above probability turns out to
be α8,32 = 0.0000152590 which is slightly greater than 2−16. We like to point out that if one
checks the equality of two n-bit random integers, then the probability of that event is 2−n

only, which is as low as 2−32.
Next we formalize the result given in [2].

Theorem 5. In HC-128, consider a block of 512 many keystream words corresponding to
array P . For 0 ≤ u 6= v ≤ 511, Prob

(
(su ⊕ sv) = (P [u]⊕ P [v])

)
= α8,32 > 2−16.

Proof. The result follows from Lemma 2 and Lemma 3. ut

Now, we present a sharper result which gives twice the probability of the observation
in [2].

Theorem 6. In HC-128, consider a block of 512 many keystream words corresponding to
array P . For any u, v, 0 ≤ u 6= v < 500, if

(
(s

(0)
u = s

(0)
v) & (s

(2)
u = s

(2)
v)

)
, then

Prob
(
(su+12 ⊕ sv+12) = (P [u+ 12]⊕ P [v + 12])

)
≈ 1

215
.

Proof. From Lemma 2, s
(b)
u ⊕s(b)

v = P [u](b)⊕P [v](b) if and only if h1(P [u�12])(b) = h1(P [v�
12])(b), for b = 0, 1, 2, 3. Given that s

(0)
u = s

(0)
v and s

(2)
u = s

(2)
v , we have

P [u](0) = P [v](0) and P [u](2) = P [v](2) if and only if
h1(P [u� 12])(0) = h1(P [v � 12])(0) and h1(P [u� 12])(2) = h1(P [v � 12])(2).

Thus,

Prob
(
P [u](0) = P [v](0) & P [u](2) = P [v](2) | s(0)

u = s
(0)
v & s

(2)
u = s

(2)
v

)
= Prob

(
h1(P [u� 12])(0) = h1(P [v � 12])(0) & h1(P [u� 12])(2) = h1(P [v � 12])(2)

)
= p8,32,16 ≈ α8,32 + (1− α8,32)2

−16 (from Corollary 3)
≈ 1

215 .
By definition, h1(x) = Q[x(0)] + Q[256 + x(2)]. So the equalities P [u](0) = P [v](0) and

P [u](2) = P [v](2) give h1(P [u]) = h1(P [v]) and this in turn gives su+12 ⊕ sv+12 = P [u+ 12]⊕
P [v + 12] by Lemma 2. ut

The Glimpse Main Theorem [3, 4] is an important result on the weakness of RC4 stream
cipher. It states that at any round, Prob(S[j] = i − z) = Prob(S[i] = j − z) ≈ 2−7, where
S is the internal state of RC4, i and j are the deterministic and pseudo-random indices
respectively and z is the keystream output byte. This result quantifies the leakage of state
information into the keystream. Note that the leakage probability is twice the random associ-
ation 2−8. Our Theorem 6 is a Glimpse-like theorem on HC-128 that leaks state information
into the keystream with a probability ≈ 2−15 which is much more than 2−31 (two times the
random association 2−32), and is in fact two times the square-root of the random association.

6 Conclusion

In this paper, we study the linear approximation of the feedback functions g1, g2 of HC-
128. Using this result, we extend the least significant bitwise distinguisher proposed by the
designer himself to all the bits (except one) of the 32-bit keystream output word. We also
studied in detail the idea of Dunkelman towards secret state information leakage in keystream
output words. Though our results do not have any immediate threat to the applicability of
HC-128, these ideas identify weaknesses of the cipher that may provide further insight.

References

1. http://www.ecrypt.eu.org/stream/
2. O. Dunkelman. A small observation on HC-128. http://www.ecrypt.eu.org/stream/phorum/read.php?1,1143

Date: November 14, 2007.
3. R. J. Jenkins. ISAAC and RC4. 1996.

Available at http://burtleburtle.net/bob/rand/isaac.html [last accessed on July 18, 2008].
4. I. Mantin. A Practical Attack on the Fixed RC4 in the WEP Mode. ASIACRYPT 2005, pages 395-411, volume

3788, Lecture Notes in Computer Science, Springer.
5. O. Staffelbach and W. Meier. Cryptographic Significance of the Carry for Ciphers Based on Integer Addition.

CRYPTO 1990, pages 601-614, vol. 537, Lecture Notes in Computer Science, Springer.
6. H. Wu. The Stream Cipher HC-128. http://www.ecrypt.eu.org/stream/hcp3.html

