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Abstract

We study the question of information-theoretically secure authenticated key agreement from weak secrets.
In this setting, Alice and Bob share a n-bit secret W , which might not be uniformly random but the adversary
has at least k bits of uncertainty about it (formalized using conditional min-entropy). Alice and Bob wish to
use W to agree on a nearly uniform secret key R, over a public channel controlled by an active adversary Eve.
We show that non-interactive (single-message) protocols do not work when k ≤ n

2 , and require poor parameters
even when n

2 < k � n.
On the other hand, for arbitrary values of k, we design a communication efficient two-message (i.e, one-

round!) protocol extracting nearly k random bits. This dramatically improves the only previously known proto-
col of Renner and Wolf [RW03], which required O(λ) rounds where λ is the security parameter. Our solution
takes a new approach by studying and constructing “non-malleable” seeded randomness extractors — if an
attacker sees a random seed X and comes up with an arbitrarily related seed X ′, then we bound the relationship
between R = Ext(W ;X) and R′ = Ext(W ;X ′).

We also extend our one-round key agreement protocol to the “fuzzy” setting, where Alice and Bob share
“close” (but not equal) secrets WA and WB , and to the Bounded Retrieval Model (BRM) where the size of the
secret W is huge.
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1 Introduction

In this paper, we study the fundamental problem of symmetric key cryptography: Alice and Bob share a secret W
and wish to communicate securely over a public channel controlled by an active adversary Eve. In particular, we
want the communication to be private and authentic. Of course, this problem is well studied and can be solved
using basic cryptographic primitives, either under computational assumptions, or even in the information theoretic
setting. However, the standard solutions for both settings assume that the secret W is perfectly (uniformly) random.

In practice, many secrets, such as human-memorable passphrases and biometrics, are not uniformly random.
Even keys that start out perfectly random may become compromised, for example through side-channel attacks
against hardware or due to a malware infiltration of the storage device. Although all security is lost if the adversary
learns the secret in its entirety, it is often reasonable to assume that the compromise is only partial. This assumption
is natural for side-channel attacks (and was formalized in [MR04, DP08]) where the adversary does not have full
access to the device, and for malware infiltration in the Bounded Retrieval Model [Dzi06, CLW06], where the secret
is made intentionally huge so that a malicious program cannot communicate it fully to an adversary. Lastly, it is
conceivable that Alice and Bob, who do not share a secret initially, can use some physical means to agree on a
key about which an eavesdropping adversary will only have partial information. This is, for example, the case
in Quantum Key Agreement [BB84] and in the wiretap channel model [Wyn75]. In this work, we study a general
setting which encompasses all of the above examples. We assume that Alice and Bob share a weak secret, modeled
as a random variable W arbitrarily distributed over bit-strings of length n, about which an adversary Eve has some
side information, modeled as a random variable Z correlated withW . We want to base symmetric key cryptography
on minimal assumptions about the secrecy of W , and only require thatW has at least k bits of entropy (conditioned
on the side-information Z), where k is roughly proportional to the security parameter. As already mentioned,
standard symmetric key primitives can be used in the case where Alice and Bob share a truly random key and
therefore we ask the following natural question.
Question 1: Can Alice and Bob use a shared weak secret W to securely agree on a nearly uniform random
key R, by communicating over a public and unauthenticated channel, controlled by an active attacker Eve?

One possible solution to this problem, is to use password authenticated key exchange (PAK) [BMP00, BPR00,
KOY01, GL01, CHK+05, GL06], where the secret W is used as a password. PAK allows Alice and Bob to
exchange arbitrarily many random session keys using the secret W , and achieves strong security guarantees even
when the entropy k is very low. On the other hand, all of the practical constructions of PAK either use the random
oracle model or rely on a trusted common reference string. The only exception is the construction of [GL01] which,
instead, requires many rounds of interactions and is not practically efficient. In addition, all of the constructions
require the use of public key cryptography. Thus, even though we are in a symmetric key setting where Alice and
Bob share a secure secretW , the use of PAK requires public key assumptions (and expensive public key operations)
to take advantage of it. Also, PAK is a computational primitive and thus only provides security when the attacker
Eve is computationally bounded.

In contrast, we will study Question 1 in the information theoretic setting, where the adversary Eve is computa-
tionally unbounded. We call protocols that solve the problem of Question 1 in our setting (information-theoretic)
authenticated key agreement (IT-AKA) protocols. Of course, IT-AKA cannot achieve all of the security guarantees
of PAK. For example, IT-AKA can only be used once to convert a weak secret W into a uniformly random key R,
and cannot be used to generate arbitrarily many session keys. Also, authenticated key agreement does not provide
any security guarantees when the entropy k is very low (i.e. when the secret can be guessed with a reasonable
probability). On the other hand, IT-AKA achieves information theoretic security and thus allows us to base all of
symmetric key cryptography (information-theoretic as well computational) on weak secrets. Moreover, our con-
structions will be efficient (no public key operations) and do not require a common reference string or any other
setup. For the rest of the paper, we will therefore assume that the adversary Eve is computationally unbounded.

A weaker variant of the our problem, called privacy amplification [BBR88, Mau92, BBCM95], requires that
Alice and Bob communicate over an authenticated channel (alternatively, that the attacker Eve is passive). In this
setting, key agreement can be solved using a (strong) randomness extractor [NZ96], which uses a seed X that
is made public to the adversary, to extract nearly uniform randomness R = Ext(W ;X) from a weak secret W .
Privacy amplification can therefore be done in a one-message (i.e. non-interactive) protocol, where Alice sends a
seed X to Bob and both parties share the extracted key R.
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The question of authenticated key agreement (when there is no authenticated channel) was first studied by
Maurer and Wolf in [MW97], who constructed an IT-AKA protocol for the case when W has entropy k > 2n

3
(where n is the bit-length of W ). This was later improved to k > n

2 in the work of [DKRS06]. Both of the
above constructions are non-interactive, but only achieve authenticity at a price in the communication complexity
(requiring at least n − k bits) and the size of extracted key (which is at most ` < 2k − n bits long, and thus far
below the full entropy of W ). The most troubling aspect of these constructions, however, is the requirement that
the entropy must exceed k > n

2 , which conflicts with our goal of basing symmetric key cryptography on minimal
secrecy assumptions. Moreover, many natural sources of secret randomness, such as biometrics, are unlikely to
satisfy this requirement.

In terms of negative results, Dodis and Spencer [DS02] showed that interaction is necessary for message au-
thentication if the only randomness available to Alice and Bob comes from a weak secret W whose entropy is
k ≤ n

2 . However, in our setting, we assume that the parties also have access to a local (non-shared) source of
perfect randomness. These two settings are very different and, when no perfect randomness is available, most
cryptographic primitives (including privacy amplification) are impossible even if k > n

2 [MP90, DOPS04, BD07].
Therefore, we feel that the result of Dodis and Spencer has often been incorrectly interpreted (for example in
[RW03, DKRS06, CDF+08]) as showing the impossibility of authenticated key agreement protocols in our more
general setting, where perfect (non-shared) randomness is available. In this paper we rectify this discrepancy by
proving a (non-trivial) generalization of the [DS02] lower bound for our setting, thus showing that, unfortunately,
interaction is indeed required when k ≤ n

2 .
In terms of positive results, the only previously known protocol for IT-AKA with arbitrarily weak secrets (i.e.

allowing entropy k ≤ n
2 ) is an interactive protocol constructed by Renner and Wolf in [RW03]. This protocol

requires Θ(log(n) + λ) rounds of interaction, where λ is the security parameter, but allows the entropy k to be any
constant fraction of n. Thus, there is a huge gap between the lower bound (which requires at least one round of
interaction) and the best construction thus far. We therefore turn our attention to the following question, which will
be the central question of this work.

Question 2: What is the minimal amount of interaction required to achieve authenticate key agreement
(IT-AKA) from arbitrarily weak secrets? In particular, is a one-round (two-message) protocol possible?

In this paper, we answer Question 2 in the affirmative, by constructing the first one-round (two-messages)
IT-AKA protocol for arbitrarily weak secrets. We thus completely bridge the gap between lower bound and con-
struction. Moreover, the minimal entropy k in our construction is only determined by the security parameter λ
and an additive polylogarithmic factor in the size n (i.e. the entropy k can be sub-constant in the size n, further
improving on [RW03]). Therefore, our construction is optimal in the amount of interaction and requires essentially
minimal assumptions on the entropy of the secret W . Our protocol is also efficient in communication complexity
and extracts essentially all of the entropy of W into the final shared key so that, even in the setting n

2 < k � n
where less efficient non-interactive protocols are possible, our interactive construction may be preferred.

Our protocol uses completely different techniques than all of the prior work. The main novelty in our con-
struction is the design of non-malleable extractors, which are an interesting primitive of independent interest. For
non-malleability, we consider an attacker who sees a random extractor seed X and produces an arbitrarily related
seed X ′. We require that the relationship between R = Ext(W ;X) and R′ = Ext(W ;X ′) is “bounded” in some
well-defined manner. Our main construction of non-malleable extractors is based on the (seemingly unrelated)
concept of alternating extraction, recently introduced in [DP07]. Using non-malleable extractors, we show how
Alice can authenticate a message to Bob in a single round of interaction. Lastly, we use this message authentication
protocol as a tool for our construction of authenticated key agreement.

We also present two orthogonal extensions of our basic scheme. In the first extension, we consider the fuzzy
case where Alice and Bob have two different but correlated secrets WA,WB . In the second extension, we consider
the case where the shared secret W is huge (e.g. as in the bounded retrieval model) and hence efficient protocols
require locality — i.e. Alice and Bob can only access a small portion of W to run their protocol.
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2 Notation and Preliminaries

The statistical distance between two random variablesA,B is defined by SD(A,B) = 1
2

∑
v |Pr[A = v]− Pr[B = v]|.

We use A ≈ε B as shorthand for SD(A,B) ≤ ε. The min-entropy of a random variable W is H∞(W ) def=
− log(maxw Pr[W = w]). This notion of entropy is useful in cryptography since it measures the predictabil-
ity of W by an adversary. However, cryptographic secrets cannot usually be analyzed in a vacuum and we have
to consider the conditional predictability of W when sampled according to some joint distribution (W,Z) where
the adversary sees Z. Following [DORS08], the correct corresponding notion is average conditional min entropy
defined by H̃∞(W |Z) def= − log (Ez←Z maxw Pr[W = w|Z = z]). We say that a random variable W is an (n, k)-
source if it is distributed over {0, 1}n and H∞(W ) ≥ k. We say that (W |Z) is an (n, k) source if W takes values
over {0, 1}n and H̃∞(W |Z) ≥ k. We review two information theoretic primitives that we will use extensively
throughout the paper: randomness extractors and (one-time) MACs. A randomness extractor uses a random seed
X as a catalyst to extract nearly uniform randomness R = Ext(W ;X) from a weak source W . A message authen-
tication code (MAC) uses a private key R to produce a tag σ for a message µ such that an adversary who sees µ, σ
cannot produce a valid tag σ′ for a modified message µ′ 6= µ.

Definition 1. We say that an efficient function Ext : {0, 1}n × {0, 1}d → {0, 1}` is an (n, k, d, `, ε)-extractor if
for all (n, k)-sources (W |Z), (Z,X,Ext(W ;X)) ≈ε (Z,X,U`) where X is uniform on {0, 1}d.

Definition 2. We say that a family of functions {MACr : {0, 1}m → {0, 1}s}r∈{0,1}n is a δ-secure (one-time)
message authentication code (MAC) if for any µ 6= µ′, σ, σ′, Pr[MACR(µ) = σ |MACR(µ′) = σ′] ≤ δ where R
is uniformly random on {0, 1}n.

3 Interactive Message Authentication

In this section we study the problem of message authentication when Alice and Bob share an arbitrarily weak secret
W about which an adversary Eve has some side-information Z. Alice wants to send an authenticated message µA to
Bob, in the presence of an active attacker Eve, who has complete control over the network and can modify protocol
messages arbitrarily. Bob should either correctly receive µA, or detect an active attack and quit by outputting ⊥.

Definition 3. An (n, k,m, δ)-message authentication protocol AUTH is a protocol in which Alice starts with a
source message µA ∈ {0, 1}m and, at the conclusion of the protocol, Bob outputs a received message µB ∈
{0, 1}m ∪ {⊥}. We require the following properties:
Correctness. If the adversary Eve is passive then, for any source message µA ∈ {0, 1}m, Pr[µB = µA] = 1.
Security. If (W |Z) is an (n, k)-source then, for any source message µA ∈ {0, 1}m and any active adversarial
strategy employed by Eve, Pr[µB 6∈ {µA,⊥}] ≤ δ.

For the case of perfectly random secrets W , it is well-known how to solve the above problem using message
authentication codes (MAC), where the authentication protocol is non-interactive and consists of a single phase
in which Alice sends her message µA along with a tag σ = MACW (µA). We show that this strategy does not
(in general) extend to the case of weak secrets. Namely, single-phase message authentication protocols are only
possible if the entropy of the secret is at least k > n

2 . In addition, even when this condition does hold, a single-phase
protocol will have a communication complexity of roughly n− k bits. This lower bound often makes single-phase
protocols impossible, as in the setting of biometrics where the entropy-rate is often k < n

2 , or impractical, as in
the Bounded Retrieval Model where a communication complexity of n − k bits would be huge and on the order
of several gigabytes. Our lower bound applies to authentication protocols in which Alice can authenticate even a
single bit. As mentioned in the introduction, this result can be thought of as a (non-trivial) extension of [DS02] to
the setting where Alice and Bob have access to a local (non-shared) source of perfect randomness. The proof of the
following theorem appears in Appendix D.

Theorem 4. Any single-phase (n, k,m, δ)-message authentication protocol with security δ < 1
4 must satisfy

k > n
2 and must have a communication complexity of at least n− k − 2 bits.
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Given the above lower bound for non-interactive (single-phase) protocols, we turn our efforts to constructing a
practical and efficient protocol in the interactive setting. We show that the above lower bound does not extend to
even a single round of interaction. Indeed, in the rest of this section, we construct an efficient one-round authenti-
cation protocol. In our protocol, Bob initiates the conversation by sending a random seed to Alice, who then uses
this seed to compute a response which authenticates her message. It may seems strange that the inclusion of one
extra phase, in which Bob only sends a random seed, can help us break the lower bound. Indeed, the seed is not
authenticated and the adversary can modify it arbitrarily. In our protocol, Alice and Bob use the seed as follows:
(1) If the adversary passively forwards the seed, then Alice and Bob distill a shared (almost) uniform key.
(2) If the adversary modifies the seed, then Alice’s and Bob’s keys will be unrelated in some crucial manner.
If the adversary forwards the seed honestly, then Alice and Bob will have a shared random key, and so Alice can
authenticate a message to Bob without breaking our lower bound (e.g. using a standard MAC). However, Eve
can modify the seed arbitrarily and cause Alice to derive some incorrect bogus key, which Alice will then use to
compute her response. In general, this allows the adversary Eve to perform related key attacks where she learns
the value of Alice’s response under a bogus related key and then produces a forged response under the original key.
We therefore use a two-pronged approach to combat this problem. First we construct an extractor which has some
“non-malleability” property (condition (2) above) meaning that if an attacker sees a random seed X and comes
up with a related seed X ′ then we bound the relationship between the Bob’s key R = Ext(W ;X) and Alice’s
bogus key R′ = Ext(W ;X ′). We then construct special MACs which are resistant to the limited types of related
key attacks that our extractor allows. This general framework, where we will need to plug-in specially constructed
extractors and MACs, is presented in Figure 1, which shows an execution of our two-flow protocol with an active
adversary Eve who modifies X to X ′ and (µA, σ′) to (µB, σ̃).

Alice: W,µA Eve: Z Bob: W

Sample X .
R = Ext(W ;X)

X ′ ←−−−−−−−−−− X
R′ = Ext(W ;X ′)
σ′ ← MACR′(µA)

(µA, σ
′) −−−−−−−−−−→ (µB , σ̃)

σ̃
?= MACR(µB)

Figure 1: A Framework for Message Authentication Protocols.

We present two instantiations of the above framework. As our first instantiation, we define a new extractor
primitive with a very strong non-malleability property, essentially guaranteing that randomness extracted under a
modified seed is completely unrelated to that extracted under the original seed. We prove that (surprisingly) such
extractors do indeed exist and can achieve very good parameters. We do so using a probabilistic method argument
and therefore this approach does not help us in finding an efficient implementation. The strong non-malleability
property essentially prevents Eve from performing any kind of related key attack and therefore we can use standard
one-time MACs for the response flow. In our second approach, we define a weaker non-malleability property that
we call look-ahead and give an efficient construction of look-ahead extractors. We then construct a new message
authentication code which is specifically tailored to withstand the types of related key attacks that look-ahead
extractors might allow.

3.1 Approach 1: Fully Non-Malleable Extractors (non-constructive)

In this section, we define a very powerful primitive called a (fully) non-malleable extractor. This is a seeded
extractor which takes a weak secret W and extracts randomness R using a seed X . For the non-malleability
property, we consider the following attack game. The adversary gets the seed X and comes up with an arbitrarily
related seed X ′ 6= X . The adversary then learns the value R′ extracted from W under the seed X ′. We require that
the original randomnessR still looks uniformly random even when givenR′, and thus the two values are completely
unrelated!
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Definition 5. A function nmExt : {0, 1}n × {0, 1}d → {0, 1}` is a (n, k, d, `, ε)- Non-Malleable Extractor (NM-
EXT) if, for any (n, k)-source (W |Z) and any adversarial function A:

(Z,X, nmExt(W ;A(X,Z)), nmExt(W ;X)) ≈ε (Z,X, nmExt(W ;A(X,Z)), U`)

where X is uniformly random over {0, 1}d and A(X,Z) 6= X .

Upon seeing the definition, it is not clear if non-malleable extractors can exist at all. In fact, one obvious attack
would be for the adversary to choose a random seed X ′ unrelated to X and thus learn some ` bits of information
about W . In order for nmExt(W ;X) to then look random, we need to make sure that W still has at least ` bits
of residual entropy left after ` bits are revealed, showing that we need ` < k

2 (i.e. we can extract at most half
of the entropy) just to protect against an adversary who sees the value of the extractor at a random and unrelated
seed X ′! Of course, an adversary that can choose an arbitrarily related seed X ′ has significantly more power and
there is no immediate reason to believe that we can defend against such an adversary at all. Surprisingly, using
the probabilistic method, we show that non-malleable extractors do indeed exist and that the condition ` < k

2 is
essentially sufficient. The proof appears in Appendix E.1, and is highly non-trivial because it requires us to carefully
analyze the dependencies introduced by the inclusion of a related-seed attacker A.

Theorem 6. There exists an (n, k, d, `, ε)-Non-Malleable Extractor for any integers n ≥ k, d, ` and any ε > 0 as
long as k > 2`+ 3 log (1/ε) + log(d) + 9 and d > log(n− k + 1) + 2 log (1/ε) + 7.

Plugging in a non-malleable extractor and a one-time MAC into our main construction (Figure 1) gives us a two-
phase authentication protocol: Bob picks an extractor seed X , computes R = nmExt(W ;X) and sends X to
Alice. Alice receives a (possibly modified) seed X ′ and computes R′ = nmExt(W ;X ′). She then uses R′ as a
key to a standard MAC to authenticate her message µA to Bob. It is fairly simple to analyze the security of the
protocol. If X ′ 6= X then, by non-malleability, the value R′ is unrelated to the random key R and hence the value
σ′ = MACR′(µA) will not help the adversary produce a valid tag σ̃ under the key R — not even to authenticate
Alice’s actual message µA! On the other hand, if X ′ = X then R′ = R and hence we can rely directly on
the security of the MAC to ensure that µB = µA. Therefore we get the following theorem and corollary for the
existence of highly efficient message authentication protocols. See Appendix E.2 and Appendix E.3 for proofs.

Theorem 7. Assume that nmExt is a (n, k, d, `, ε)-Non-Malleable Extractor and that the collection
{MACr : {0, 1}m → {0, 1}s}, indexed by keys r ∈ {0, 1}`, is a δ-secure one-time MAC. Then our construction
outlined above gives us a (n, k,m, 2(δ + ε))-message authentication protocol with one-round of interaction and a
communication complexity of d+ s+m bits .

Corollary 1. There exist (n, k,m, δ)-message authentication protocols with one-round of interaction for any inte-
gers n ≥ k,m and any δ > 0 as long as k > O

(
log(log(n)) + log(m) + log

(
1
δ

))
. Moreover the communication

complexity of such protocols is O
(
log(n) + log(m) + log

(
1
δ

))
.

3.2 Approach 2: Look-Ahead Extractor (efficient construction)

In this section, we define a weaker notion of non-malleability called look-ahead. A look-ahead extractor uses a
random seed X to extract t blocks of randomness R1, . . . , Rt from a secret W . Assume that a seed X ′ is arbitrarily
related to X and that the blocks R′1, . . . , R

′
t are extracted from W using X ′. We insist that any suffix Ri+1, . . . , Rt

of the original sequence looks uniformly random, even when given the prefix R′1, . . . , R
′
i in the related sequence.

In other words, the adversary cannot modify the extractor seed and use the extracted blocks to look ahead into the
original sequence of blocks.

Definition 8. Let laExt : {0, 1}n × {0, 1}d → ({0, 1}`)t be a function such that laExt(W ;X) outputs blocks
R1, . . . , Rt with Ri ∈ {0, 1}`. We say that laExt is a (n, k, d, `, t, ε)-look-ahead extractor if, for any (n, k)-source
(W |Z), any adversarial function A and any i ∈ {0, . . . , t− 1},(

Z,X, [R′1, . . . , R
′
i], [Ri+1, . . . , Rt]

)
≈ε
(
Z,X, [R′1, . . . , R

′
i], U`(t−i)

)
(1)

where [R1, . . . , Rt] = laExt(W ;X), X ′ = A(X,Z), [R′1, . . . , R
′
t] = laExt(W ;X ′).
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We note that this is a significantly weaker property than full non-malleability. For example, given a random seed
X , there might be a related seed X ′ such that laExt(W ;X) = laExt(W ;X ′) with high probability. Nevertheless,
we will show that look-ahead suffices for our needs. Our construction of a look-ahead extractor is based on the idea
of alternating extraction, which was introduced by Dziembowski and Pietrzak in [DP07] as a tool for building an
intrusion resilient secret sharing scheme. In the following section we review this concept using our own terminology
and present an alternating-extraction theorem which captures the main ideas implicit in [DP07], in an abstracted
and (slightly) generalized form.

Alternating Extraction. Imagine that two parties, Quentin and Wendy, have values Q,W respectively such that
W is kept secret from Quentin and Q is kept secret from Wendy. Let Extq,Extw be randomness extractors (with
possibly different parameters) and assume that Quentin also has a random seed S1 for the extractor Extw. The
alternating extraction protocol is an interactive process between Quentin and Wendy, which runs in t rounds. In
the first round, Quentin sends his seed S1 to Wendy, Wendy computes R1 = Extw(W ;S1), sends R1 to Quentin,
and Quentin computes S2 = Extq(Q;R1). In each subsequent round i, Quentin sends Si to Wendy, who replies
with Ri = Extw(W ;Si), and Quentin computes Si+1 = Extq(Q;Ri). For a pictorial representation, see Figure 3
in Appendix F. Thus Quentin and Wendy together produce the sequence:

R1 = Extw(W ;S1), S2 = Extq(Q;R1), R2 = Extw(W ;S2), . . . , St = Extq(Q;Rt−1), Rt = Extw(W ;St) (2)

The alternating-extraction theorem says that there is no better strategy that Quentin and Wendy can use to
compute the above sequence! More precisely, let us assume that, in each round, Quentin is limited to sending at
most sq bits to Wendy who can then reply by sending at most sw bits to Quentin where sq and sw are much smaller
than the entropy of Q,W (preventing Quentin from sending his entire value Q). Then, for any possible strategy
cooperatively employed by Quentin and Wendy in the first i rounds of interaction, the values Ri+1, Ri+2, . . . , Rt
look uniformly random to Quentin (and, symmetrically, Si+1, Si+2, . . . , St look random to Wendy). In other words,
Quentin and Wendy acting together cannot speed up the process in some clever way so that Quentin would learn
Rj (or even distinguish it from random) in fewer than j rounds! We prove the following theorem in Appendix F.1,
essentially using the techniques of [DP07].1

Theorem 9. (Alternating Extraction). Let (W |Z) be an (nw, kw)-source andQ be an (nq, kq)-source independent
ofW,Z. Let Extw be an (nw, kw−(sw+`)t, `, `, εw) extractor and Extq be an (nq, kq−(sq+`)t, `, `, εq) extractor
so that the seed size and extracted key length is ` in both cases. Let S1 be uniformly random on {0, 1}d and define
R1, S2, R2, . . . , St, Rt as in equation (2). Let Aq(Q,S1, Z),Aw(W,Z) be interactive machines such that, in each
round, Aq sends at most sq bits to Aw which replies with at most sw bits to Aq. Then, for all 0 ≤ i ≤ t− 1,(

V i
q , Ri+1, Ri+2, . . . , Rt

)
≈ε
(
V i
q , U`(t−i)

)
and

(
V i
w, Si+1, Si+2, . . . , St

)
≈ε
(
V i
w, U`(t−i)

)
(3)

where V i
w, V

i
q denote the views of Aw,Aq respectively after the first i rounds of the interaction (including their

inputs and a transcript of communication) and ε = t2(εw + εq).

Construction of a Look-Ahead Extractor. At first it may seem surprising that alternating extraction (which is
an interactive protocol) can help us in the construction of a non-malleable extractor (which is a non-interactive
function). Our construction of a look-ahead extractor is relatively simple. We let X = (Q,S1) be a seed, and
define

laExt(W ; (Q,S1)) def= R1, . . . , Rt. (4)

where R1, . . . , Rt are generated as in (2). Essentially, the extractor uses the seed X = (Q,S1) to run Quentin’s
side and the secret W to run Wendy’s side in the alternating-extraction protocol for t rounds and outputs all of
Wendy’s blocks R1, . . . , Rt at the conclusion. We use the alternating-extraction theorem to analyze resistance of
this construction to malleability attacks. Suppose that a modified seed X ′ = (Q′, S′1) = A((Q,S1), Z) is used
to extract R′1, . . . , R

′
t. Then that corresponds to an adversarial strategy Aq for Quentin where he runs A on his

1One difference between us and [DP07], is that we need all of Ri+1, . . . , Rt to look random and not just Ri+1. The other difference is
that they should look random even given the view V i

q which includes Q.
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inputs, sends the seed S′1 in the first round and uses the modified value Q′ for his side of the protocol. Wendy’s
strategy is unchanged and she sends the values R′1, . . . , R

′
t to Quentin. Note that Quentin’s view is therefore

V i
q = (Z,X,R′1, . . . , R

′
i) and hence the look-ahead property (equation (1)) follows directly from the alternating-

extraction theorem (equation (3)).

Theorem 10. Given an (nw, kw − (2`)t, `, `, εw)-extractor Extw and an (nq, nq − (2`)t, `, `, εq)-extractor Extq,
our construction yields an (nw, kw, nq + `, `, t, t2(εw + εq))-look-ahead extractor.

Proof. Follows from the above discussion showing how to construct a strategyAq for Quentin given a malleability
attacker A. Notice that the strategy Aq sends sq = ` bits in each round. Also, we assume that Q is chosen to be
uniformly random over {0, 1}nq and therefore kq = nq. The rest of the parameters follow directly from Theorem 9.
2

As shown in Appendix F.2, we can plug in the concrete efficient extractor construction of [GUV07] and get the
following parameters.

Theorem 11. For all integers n ≥ k and all ε > 0 there exist (n, k, d, `, t, ε)-look-ahead extractors as long as

k ≥ 2(t+ 2) max(`, O(log(n) + log(t) + log(1/ε))) ≥ O(t(`+ log(n) + log(t) + log(1/ε)))

and d ≥ O(t(`+ log(n) + log(t) + log(1/ε))).

Authentication using Look-Ahead. We will plug the look-ahead extractor into our framework (Figure 1) to
construct a message authentication protocol. However, if Eve now modifies the extractor seed during the initial
flow then she gets to perform some (limited) related key attack and, therefore, we cannot analyze the security of the
construction using standard MACs. Instead, we must carefully construct and analyze a new message authentication
code with look-ahead security – i.e. one which is secure under the types of related key attacks allowed by the
look-ahead extractor.

Definition 12. A family of functions {MACr : {0, 1}m → {0, 1}s} indexed by keys r ∈ ({0, 1}`)t is a
(m, s, `, t, ε, δ)-MAC with look-ahead security if, for any random variablesR = [R1, . . . , Rt], R′ = [R′1, . . . , R

′
t], V

which satisfy the look-ahead property:(
V, [R′1, . . . , R

′
i], [Ri+1, . . . , Rt]

)
≈ε
(
V, [R′1, . . . , R

′
i], U(t−i)`

)
∀i ∈ {0, . . . , t− 1} (5)

any µA ∈ {0, 1}m and any adversarial function A, we have

Pr
[
µB 6= µA,MACR(µB) = σ̃

∣∣∣∣ σ′ ← MACR′(µA)
(µB, σ̃)← A(V, σ′)

]
≤ δ

It is simple to show that our construction (Figure 1) is a secure message authentication protocol if we plug-in a
look-ahead extractor and a MAC with look-ahead security.

Theorem 13. Plugging a (n, k, d, `, t, ε)-look-ahead extractor and a (m, s, `, t, ε, δ)-MAC with look-ahead secu-
rity into our construction (Figure 1) yields a (n, k,m, δ)-message authentication protocol with a communication
complexity of d+m+ s bits.

Proof. We can describe Eve through two adversarial functions A1,A2 where X ′ = A1(X,Z) is the function used
to modify the initial flow, and (µB, σ̃) = A2(X,Z,MACR′(µA)) is the function used to modify the response flow.
Now, for any function A1 (including ones which can leave the initial flow unmodified) the definition of look-ahead
extractors ensures that the variables V = (X,Z), R = laExt(W ;X), R′ = laExt(W ;X ′) satisfy the look-ahead
property ((5) in Definition 12). Therefore, Definition 12 ensures that the probability of A2 successfully producing
(µB, σ̃) such that µB 6= µA and Bob accepts (µB, σ̃) is upper-bounded by δ. 2

We now proceed to construct a MAC with look-ahead security. To show the intuition behind our construction,
we first (informally) analyze a simple variant for 1 bit messages. For a key R = [R1, R2, R3, R4], let us define
MACR(0) = [R1, R4] and MACR(1) = [R2, R3]. Then, if the adversary learns MACR′(1) = [R′2, R

′
3], the random
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variable R4 still looks random and so it is hard to predict MACR(0) = [R1, R4]. On the other hand, if the adversary
learns MACR′(0) = [R′1, R

′
4], the variable R′1 is useless in helping predict [R2, R3], and R′4 is too short (only ` bits

long) to reveal enough information about [R2, R3] (which has almost 2` bits of entropy)! In the rest of the section,
we formalize the above idea and generalize it to longer messages. All proofs appear in Appendix F.

Definition 14. Given S1, S2 ⊆ {1, . . . , t}, we say that the ordered pair (S1, S2) is top-heavy if there is some
integer j such that,

∣∣∣S≥j1

∣∣∣ > ∣∣∣S≥j2

∣∣∣, where S≥j def= {s ∈ S | s ≥ j}. Note that it is possible that (S1, S2) and
(S2, S1) are both top-heavy. For a collection Ψ of sets Si ⊆ {1, . . . , t} we say that Ψ is pairwise top-heavy if every
ordered pair (Si, Sj) of sets Si, Sj ∈ Ψ with i 6= j, is top-heavy.

For example, if S1 := {1, 4}, S2 := {2, 3}, then both of the ordered pairs (S1, S2) and (S2, S1) are top heavy.
Therefore the collection Ψ = {S1, S2} is pairwise top-heavy. We show that any collection of pairwise top-heavy
sets can be used to construct a MAC with look-ahead security.

Lemma 15. Assume that a collection Ψ = {S1, . . . , S2m} of sets Si ⊆ {1, . . . , t} is pairwise top-heavy. Then
the family of functions MACr(µ) def= [ri | i ∈ Sµ], indexed by r ∈ ({0, 1}`)t, is a (m, s, `, t, ε, δ)-MAC with look-
ahead security where s = `maxSi∈Ψ (|Si|), δ ≤

(
2m−` + 2mε

)
. Furthermore, if there is an efficient mapping of

µ ∈ {0, 1}m to Sµ, then the construction is efficient.

Therefore, to construct efficient MACs with look-ahead security, we must construct a large collection of sets which
is pairwise top-heavy. We generalize our example of Ψ = { {1, 4} , {2, 3} } to many bits, by mapping an m bit
message µ = (b1, . . . , bm) ∈ {0, 1}m to a subset S ⊆ {1, . . . , 4m} using the function

f(b1, . . . , bm) def= {4i− 3 + bi, 4i− bi | i = 1, . . . ,m} (6)

i.e. each bit bi decides if to include the values {4i− 3, 4i} (if bi = 0) or the values {4i− 2, 4i− 1} (if bi = 1).

Lemma 16. The above construction gives us a pairwise top-heavy collection Ψ of 2m sets S ⊆ {1, . . . , t} where
t = 4m. Furthermore, the function f is an efficient mapping of µ ∈ {0, 1}m to Sµ.

Corollary 2. We get an (m, s, `, t, ε, δ)-MAC with look-ahead security for any m, `, ε, with t = 4m, s = 4m`,
δ ≤

(
2m−` + 2mε

)
.

Plugging in our parameters for look-ahead extractors (Theorem 11) with those for MACs with look-ahead security
(Corollary 2), we construct message authentication protocols with the following parameters.

Theorem 17. We construct an efficient one-round (n, k,m, δ)-message authentication protocol for any integers
n ≥ k,m and any δ > 0 as long as k > O(m(m + log(n) + log(1/δ))). The protocol has communication
complexity O(m(m + log(n) + log(1/δ))). Moreover, the size of the MAC key (and thus the entropy loss of the
protocol) is bounded by τ = 4m(m+ log(1/δ)).

The parameters of our above construction are vastly sub-optimal for all but very short messages (especially com-
pared to our non-constructive existential results). However, we will see that we can use the above protocol effi-
ciently as building block for authenticated key agreement by authenticating only a very short message. In turn,
authenticated key agreement will allow us to build an authentication protocol for longer messages. Therefore, in
Theorem 21, we will see that we can get efficient one-round message authentication proctors with significantly
better parameters by constructing authenticated key agreement protocols first!

4 Authenticated Key Agreement

We now turn to the problem of authenticated key agreement ( IT-AKA). As before, Alice and Bob share a secret W
about which Eve has some side-information Z. They would like to run a protocol, in which they agree on a shared
random key. More concretely, Alice and Bob each have candidate keys rA, rB respectively, which are initially set
to the special value ⊥. At some point during the protocol execution, Alice and Bob can reach one of two special
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states called KeyDerived and KeyConfirmed. Upon reaching either of these states, a party sets its candidate key
to some `-bit value (not ⊥) and does not modify it afterwards. Informally, the KeyDerived, KeyConfirmed states
should be interpreted as follows:
(1) If a party (Alice) reaches the KeyDerived state, then she possesses a uniformly random candidate key, which
remains private no matter how the adversary acts during the remainder of the protocol execution. However, she is
not sure if her key is shared with Bob, or if Bob is even involved in the protocol execution at all.
(2) If a party (Bob) reaches the KeyConfirmed state and gets a candidate key rB , then Alice must be involved in
the protocol execution, must have reached the KeyDerived state, and must have a shared random candidate key
rA = rB (though Alice may not yet be convinced that the key is shared).

Definition 18. In a (n, k, `, ε, δ)-(information theoretic) authenticated key agreement protocol (IT-AKA), Alice and
Bob have candidate keys rA, rB ∈ {0, 1}` ∪ {⊥} respectively. For any active adversarial strategy A employed by
Eve, let RA, RB be random variables which denote the values of the candidate keys rA, rB at the conclusion of the
protocol execution and let T be a random variable which denotes the transcript of the (entire) protocol execution
as seen by Eve. We require that the protocol satisfies the following three properties:
(Correctness.) If Eve is passive, then Alice reaches the KeyDerived state, Bob reaches the KeyConfirmed state,
and RA = RB (with probability 1).
(Key Privacy.) If (W |Z) is an (n, k)-source then, for any adversarial strategy A employed by Eve, if Alice reaches
the KeyDerived state during the protocol execution, then (Z, T,RA) ≈ε (Z, T, U`).
(Key Authenticity.) We say that the protocol has pre-application authenticity if for any (n, k)-source (W |Z) and
any adversarial strategy A employed by Eve, the probability that a party reaches the KeyConfirmed state and
RA 6= RB is at most δ. We say that the protocol has post-application authenticity if the above holds even if the
adversary is given RA immediately after Alice reaches the KeyDerived state.

Notes on the Definition. To understand the definition, we need to think of key agreement in a broader context
where the key is used for some cryptographic task — for example to encrypt and authenticate a message. Generally,
the sender (Alice) would like to be assured that her key is private (and will remain private), but she does not need the
key to be shared at the time that she prepares/sends her authenticated-ciphertext. On the other hand, the recipient
(Bob) would like to know that the key he uses for decryption/validation is the same shared key which was used
by Alice. For this reason, we make our definition asymmetric, requiring that Alice reaches KeyDerived (at which
point she can prepare/send her authenticated-ciphertext) and Bob alone reaches KeyConfirmed (at which point he
can validate/decrypt). Notice, that this definition captures and generalizes prior definitions for non-interactive key
agreement protocols ([MW03, DKRS06]) where Alice distills (some) key rA on her own, goes into the KeyDerived
state, and sends a single protocol message to Bob (without being certain that he will receive it). We therefore also
generalize the notion of pre/post-application authenticity from [DKRS06], where it was noted that, if Alice wants
to use her key rA immediately after reaching KeyDerived (and before Bob reaches KeyConfirmed), we need to
make sure that her use of the key does not help the adversary Eve break authenticity. Therefore, we will construct
protocols meeting the stronger post-application authenticity guarantee where, even if the adversary is given (the
entire) key rA, she cannot cause Bob to derive rB 6= rA. Lastly, we note that when Bob reaches KeyConfirmed
and wants to use his shared key towards Alice, then she must also reach KeyConfirmed before she can trust the
authenticity of the key (i.e. to validate/decrypt and authenticated ciphertext). However, after reaching KeyDerived,
Alice is certain that the key is private from the adversary and thus only Bob can possibly know it. Hence, without
loss of generality, Alice and Bob can reserve a small portion (order of security parameter) of the key as a special
tag which they will not use in any other application, but can be sent in the future (outside of the key agreement
protocol) by Bob to Alice so that she can reach the KeyConfirmed state as well. We do not include this in our main
protocol definition/construction, since it is often not needed (i.e. if Alice wants to send an authenticated encryption
to Bob), adds an extra flow from Bob to Alice, and can be added generically if desired.

We begin with a lower-bound showing that non-interactive authenticated key agreement (even with pre-application
security) is essentially impossible when k < n

2 and inefficient (in communication complexity) when n
2 < k � n

2 .

Theorem 19. A non-interactive (single-phase) (n, k, `, ε, δ)-IT-AKA with pre-application authenticity having key
length ` ≥ 4, and security δ < 1

2 , ε <
1
16 , must satisfy k > n

2 and have a communication complexity is at least
n− k − 2 bits.

9



.

Construction. We proceed to construct an efficient, two-phase (one-round), IT-AKA protocol where Bob sends a
message to Alice, Alice goes into KeyDerived and sends a reply to Bob, and Bob goes into KeyConfirmed. Our
construction uses the message-authentication protocols from Section 3 as building blocks. The main idea behind
our construction is fairly simple; Alice uses the authentication protocol to authenticate an extractor seed Xkey to
Bob who then uses it to extract a shared key with Alice. Unfortunately, this might not work in general, since the
adversary Eve can potentially learn some information about W which is dependant on the seed Xkey during the
course of the authentication protocol. Hence the final extracted key might not look random to her. However, we
show that for any authentication protocol which follows our framework (Figure 1), our construction of IT-AKA as
described above and shown in Figure 2, is secure.

Alice: W Eve: Z Bob: W

Sample Xkey Sample Xauth

RA := Extkey(W ;Xkey) Rauth := Extauth(W ;Xauth)
X ′auth ←−−−−−−−−−− Xauth

KeyDerived
R′auth := Extauth(W ;X ′auth)
σ′ ← MACR′

auth
(Xkey)

(Xkey, σ
′) −−−−−−−−−−→ (X ′key, σ̃)

If σ̃ ?= MACRauth(X ′key)
KeyConfirmed
RB := Extkey(W ;X ′key)

Figure 2: Authenticated Key Agreement Protocol

The security of the above construction is easy to explain on an intuitive level. By the security of the authen-
tication protocol, if Bob reaches the KeyConfirmed state, then X ′key = Xkey and therefore RA = RB , showing
authenticity (even if Eve sees RA). For privacy, on the other hand, the only information that an active adversary
might possibly get about W and which depends on Xkey, is the tag σ′ = MACR′auth

(Xkey). However, σ′ is in-
dependent of W when conditioned on R′auth. Therefore, the keys RA, RB are secure as long as there is enough
entropy left over in W conditioned on R′ and Z. We formalize this argument in Theorem 20 and then plug in the
parameters of extractors and our two authentication protocols (non-constructive and constructive) from Section 3
in corollaries 3 and 4. The proofs appear in Appendix G.

Theorem 20. Let AUTH be an (n, k,m, δ)-message authentication protocol which instantiates our framework
with the functions Extauth,MAC such that key size for MAC is bounded by τ . Let Extkey be an (n, k − τ, d =
m, `, ε)-extractor. Then the our construction in Figure 2 is an (n, k, `, ε, δ)-IT-AKA with pre-application authentic-
ity. If we assume that AUTH is an (n, k − `,m, δ)–message authentication protocol, then we get post-application
authenticity.

Corollary 3. There exists a (possibly inefficient) one-round (n, k, `, ε, δ)-authenticated key agreement protocol
with post-application authenticity for any integers n ≥ k, any ε > 0, δ > 0 with key length

` = k −O(log(n) + log(1/δ) + log(1/ε))

and communication complexity O(log(n) + log(1/δ) + log(1/ε)).

Corollary 4. We construct an efficient one-round (n, k, `, ε, δ)-authenticated key agreement protocol with post-
application authenticity for any constant α > 0, and any integers n ≥ k, any ε > 0, δ > 0 with key length

` = (1− α)k −O
(
log2(n) + log2(1/δ) + log2(1/ε)

)
and communication complexity O

(
log2(n) + log2(1/δ) + log2(1/ε)

)
.
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As mentioned at the end of Section 3.2, we can use our construction of IT-AKA (which uses interactive message
authentication as a building block) to improve the efficiency of message authentication! The idea is to perform
key agreement with post-application authenticity and let Alice use her key rA as a key for a standard MAC to to
authenticate a long message efficiently in the second flow. We prove the following theorem in Appendix G.4.

Theorem 21. We construct an efficient one-round (n, k,m, δ)-message authentication protocols for any integers
n ≥ k,m and any δ > 0 as long as k > O

(
log2(n) + log2(1/δ) + log(m)

)
.

In Appendix C, we show how to extend our basic IT-AKA protocol to the “fuzzy case” and to the Bounded retrieval
model.
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A Background on Randomness Extractors and MACs

We will use the following two recent constructions of randomness extractors. The first, by Guruswami, Umans and
Vadhan achieves the following parameters.

Lemma 22. ([GUV07]) For every constant α > 0 all integers n ≥ k and all ε ≥ 0, there is an explicit (efficient)
(n, k, d, `, ε)-extractor with ` = (1− α)k − d, and d = O(log(n) + log(1/ε)).

The following extractor also has locality meaning that only a small portion of the secret W is accessed during
extraction. We use this lemma which appeared in [Vad04] and is based on the the extractor of [Zuc97].

Lemma 23. ([Zuc97, Vad04]) Let κ, α > 0 be arbitrary constants. Then for every n ∈ N and every ε >
exp(−n/2O(log∗(n))) there is an explicit (efficient) (n, k, d, `, ε)-extractor where k = ρn, d = O(log(n)+log(1/ε))
and ` = (1− κ)αn. Furthermore, the extractor can achieve locality τ = (1 + κ)`/α+O(log(1/ε)).

We also mention that explicit efficient constructions of message authentication codes (based on the polynomial
evaluation ε-universal hash function) achieve the following parameters.

Lemma 24. For any m, δ > 0 there is an efficient δ-secure MAC family {MACr : {0, 1}m → {0, 1}s}r∈{0,1}n
with s ≤

(
log(m) + log

(
1
δ

))
, n ≤ 2s.

B Background Lemmas for (conditional) Min-Entropy and Statistical Distance

The following two lemmas follows directly from the definition of statistical distance and conditional min entropy
respectively.

Lemma 25. Assume that A,B are random variables such that A ≈ε B and f is a (randomized) function. Then
(A, f(A)) ≈ε (B, f(B)).

Lemma 26. For any random variable W , H∞(W ) = − log (maxA Pr[A() = W ]). For any random variables
W,Z, H̃∞(W |Z) = − log (maxA Pr[A(Z) = W ]). In both cases the maximum is taken over all functions A.

We will use the following lemma from [DORS08].

Lemma 27. Let A,B,C be random variables.
(a) For any δ > 0, Prb←B

[
H∞(A|B = b) < H̃∞(A|B)− log

(
1
δ

)]
≤ δ.

(b) If B takes on values in a set of size at most 2λ then H̃∞(A|(B,C)) ≥ H̃∞((A,B)|C) − λ ≥ H̃∞(A|C) − λ
and, in particular, H̃∞(A|B) ≥ H̃∞(A)− λ.

We also use the following two lemmas from [DP07].

Lemma 28. Assume that A,B,C,C ′ are random variables such that A → B → C is a Markov chain and
(B,C) ≈ε (B,C ′). Then (A,B,C) ≈ε (A,B,C ′).

Lemma 29. Assume that A,B,C,C ′, F are random variables and f is a function such that (A,C, f(C,B)) ≈ε
(A,C, F ) and (A,C) ≈δ (A,C ′). Then (A,C ′, f(C ′, B)) ≈ε+δ (A,C ′, F ).

Lastly, we use the following (slightly more complicated) lemma whose prove we provide.

Lemma 30. Assume that (A,B,C) are random variables such that (A,C) ≈ε (A,Uq) and B is distributed over
{0, 1}λ. Then, maxA Pr[C = A(A,B)] ≤ 2λ−q + ε.

Proof. For any correlated random variables A,B,C we can write (A,C,B) ≈0 (A,C, f(A,C)) where f is some
(possibly inefficient) randomized function whose range is {0, 1}λ. In particular, f samples from the distribution of
B conditioned on A,C. Therefore, applying Lemma 25, we get

(A,C,B) ≈0 (A,C, f(A,C)) ≈ε (A,Uq, f(A,Uq))
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Lastly, for any A,

Pr[C = A(A,B)] ≤ Pr[C = A(Uq, f(A,Uq))] + ε

≤ 2−H̃∞(Uq |A,f(A,Uq)) + ε

≤ 2λ−H̃∞(Uq |A) + ε

≤ 2λ−q + ε.

2

C Extensions: The Fuzzy Case and Bounded Retrieval Model

The Fuzzy Case. So far, we considered the scenario where Alice and Bob share the same secret W about which
Eve has some side-information Z. We now turn to the case where Alice and Bob have some highly-correlated (but
possibly unequal) secrets WA,WB respectively. This can happen, for example, when the secret is a biometric and
the variables WA,WB represent different (and usually fuzzy) scans of the same biometric.2 In this setting, Alice
and Bob need to perform information reconciliation to agree on the same shared secret. Using terminology from
[DORS08], this is done by having Bob send some secure sketch, Sk = SS(WB), which Alice uses to reconstruct
Bob’s secret from her version of it by running an efficient recovery procedure WB = Rec(WA, Sk). The sketch
is secure if it does not reveal much information about WB so that H̃∞(WB|Z,SS(WB)) ≥ H̃∞(WB|Z) − α for
some small α. See [DORS08] for a formal definition of secure sketches and efficient secure sketch constructions
for several specific types of correlations for WA,WB (e.g. closeness with respect to hamming distance). The work
of [RW04] gave a general but inefficient construction of secure sketches for arbitrarily correlated variables with
using hash functions. In this work we will use secure sketches in a black-box manner and only require that the size
of the sketch is bounded by some “small” value α (as is the case in the constructions of [DORS08, RW04].

Information reconciliation using secure sketches becomes problematic over an insecure channel since an active
adversary Eve gets additional attack power by modifying the sketch Sk = SS(WB). In other words, we cannot
(in general) compose information reconciliation together with a (standard) authenticated key agreement protocol
to get a fuzzy key agreement protocol for the above scenario. However, we show that this can be done using our
construction based on look-ahead extractors from Section 3.2. In particular, we notice that the look-ahead property
holds for the values [R′1, . . . , R

′
t] extracted by Alice and [R1, . . . , Rt] extracted by Bob, even if Alice uses an

adversarially modified seed X ′ and a modified secret W ′B = Rec(WA, Sk′) where Sk′ is an adversarially modified
sketch.

Theorem 31. Assume that (WA,WB, Z) is some joint distribution such that (WB|Z), (WA|Z) are both (n, k)-
sources and that (SS,Rec) is a secure sketch construction for the joint distribution (WA,WB), where the size of
the sketch is bounded by α. Then(

Z,SS(WB), X, [R′1, . . . , R
′
i], [Ri+1, . . . , Rt]

)
≈ε

(
Z,SS(WB), X, [R′1, . . . , R

′
i], U`(t−i)

)
(7)

where [R1, . . . , Rt] = laExt(WB;X), X ′ = A1(Z,SS(WB), X), Sk′ = A2(Z,SS(WB), X), W ′ = Rec(WA, Sk′)
[R′1, . . . , R

′
t] = laExt(W ′;X ′).

If we base alternating-extraction on an (n, k−α−(2`t), `, `, εw)-extractor Extw and an (nq, nq−(2`+α)t, `, `, εq)-
extractor Extq, then the ahcieved security is ε ≤ t2(εq + εw).

Proof. We use the alternating-extraction theorem where, in the honest execution, Quentin uses X = (Q,S1) and
Warren uses WB . Let Z ′ = (Z, SS(WB)). Then an adversarial strategy in which Eve modifies X = (Q,S1),Sk =
SS(WB) to X ′ = (Q′, S′1) and Sk′ corresponds to a joint adversarial strategy by Quentin and Warren where
Quentin uses X ′ = (Q′, S′1) and also sends Sk′ to Warren in the first round. Warren samples from the distribution
(WA|WB = wB) where wB is his secret (i.e he samples from what Alice’s secret would be conditioned on Bob’s
value). He then applies W ′B = Rec(WA, Sk′) and follows the rest of the alternating-extraction protocol honestly.

2The natural application in this setting is the case where Alice is a client who stores an initial scan WB of her biometric on server Bob.
Later, Alice takes a new scan WA and would like to agree on a key with the server.
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Notice that Quentin’s view in this protocol is Z ′, Q,R′1, . . . , R
′
t whose joint distribution is identical to that in the

statement of the theorem. Therefore, our theorem follows directly from alternating extraction. For parameters,
notice that H̃∞(WB|Z ′) ≥ kw − α and the communication from Quentin to warren is limited to `+ α bits. 2

Informally, since the look-ahead property (equation (7)) continues to hold even with the inclusion of an information-
reconciliation step, so does the authenticity property of our constructed message authentication and our IT-AKA pro-
tocol.

The Bounded Retrieval Model. The Bounded Retrieval Model was first proposed (concurrently) by [Dzi06,
CLW06] and has since been studied by [CDD+07, DP07]. The main idea is to make Alice and Bob share an
intentionally huge secret key, on the order of several gigabytes. The size of the key is crucial in protecting against
intrusion attacks where the adversary get complete control over the storage device through some malware (i.e.
a virus or trojan horse) which infiltrates Alice’s or Bob’s storage. It is assumed that, although the malware has
complete access to secret data, it cannot communicate all of it to the adversary, because of limits on bandwidth or
security systems that detect excessive communication. Here, we will assume that the adversary gets access to the
storage device only prior to the execution of the protocol. Therefore this scenario falls into our framework where
Alice and Bob share a (now huge) secret W about which the adversary has side-information Z.

Although, our current protocols, as presented, already achieve low communication complexity and entropy loss
when the size n of the secret W is huge (and even if it is much larger than k), they may not be efficient since they
require the parties to read the entire secret to run the protocol. Therefore, we would like to construct protocols
which have an additional locality requirement so that the parties only read a small number of positions in W .
We notice that, in our IT-AKA construction, the secret W is only read by the (standard) extractor Extkey and the
look-ahead extractor Extauth. We can plug in the local extractor of Vadhan [Vad04] whose parameters are given in
Lemma 23 for Extkey. Therefore, we must only construct a look-ahead extractor with good locality. We notice that,
since our construction of a look-ahead extractor is based on alternating-extraction, and in particular, the black-box
use of two extractors Extw,Extq, we can also ensure that these extractors have good locality by employing the
construction of Vadhan [Vad04].

D Lower Bounds for Non-Interactive Protocols

Both of our lower bounds follow as consequences of the following lemma.

Lemma 32. For any randomized functions Auth : {0, 1}n → {0, 1}s, Ver : {0, 1}n×{0, 1}s → {0, 1}, and any
values 0 ≤ ρ ≤ 1, one of the following three conditions holds:
(1) There is an (n, k)-source W such that Pr[Ver(W,Auth(W )) = 1] < ρ.
(2) There is an (n, k)-source W and a value σ ∈ {0, 1}s such that Pr[Ver(W,σ) = 1] > ρ/2.
(3) There is an (n, k)-source W such that H̃∞(W |Auth(W )) ≤ max(0, 2k − n) + log

(
1
ρ

)
+ 2.

Proof. Let us pick some specific functions Auth,Ver and some value ρ. Assume that, for these choices, conditions
(1) and (2) do not hold. We show that condition (3) must hold.

First, for any σ ∈ {0, 1}s, let us define S(σ) := {w ∈ {0, 1}n | Pr[Ver(w, σ) = 1] ≥ ρ/2}. Essentially S(σ)
denotes the set of values w under which σ will correctly verify with high probability. Therefore, if for some σ,
|S(σ)| ≥ 2k , then the random variable W which is distributed uniformly on S(σ) satisfies condition (2) and we
get a contradiction. Hence the size of S(σ) is upper bounded by 2k for each σ.

Assume that the function Auth uses d random coins. Then, for each w ∈ {0, 1}n, r ∈ {0, 1}d, we define

S̃(w, r) := S(Auth(w; r)) = {w̃ ∈ {0, 1}n | Pr[Ver(w̃,Auth(w; r)) = 1] ≥ ρ/2} (8)

We define the predicate Good(w, r) such that

Good(w, r)⇔ Pr[Ver(w,Auth(w; r)) = 1] ≥ ρ/2⇔ w ∈ S(w, r) (9)
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On a high level, Good(w, r) indicates that the value σ = Auth(w; r) is likely to verify correctly and, since
condition (1) does not hold, we expect that Good(w, r) occurs with high probability. Specifically, let W be some
arbitrary (n, k) source and let R be uniformly distributed over {0, 1}d. Then, since W does not satisfy condition
(1),

ρ ≤ Pr[Ver(W,Auth(W ;R)) = 1]
≤ Pr[Good(W,R)] + Pr[Ver(W,Auth(W ;R)) = 1 | ¬Good(W,R)]
≤ Pr[Good(W,R)] + ρ/2

=⇒ Good(W,R) ≥ ρ/2 (10)

We now use the above analysis to bound p = 2−H̃∞(W |Auth(W ;R)) by

p = E
σ←Auth(W ;R)

max
w

Pr[W = w | Auth(W ;R) = σ] (11)

≥ E
σ←Auth(W ;R)

max
w

(Pr[W = w | Auth(W ;R) = σ,Good(W,R)] Pr[Good(W,R)])

≥ (ρ/2) E
σ←Auth(W ;R)

max
w

Pr[W = w | Auth(W ;R) = σ,Good(W,R)] (12)

≥ (ρ/2) E
σ←Auth(W )

max
w

Pr[W = w | Auth(W ) = σ,W ∈ S(σ)] (13)

≥ (ρ/2) E
σ←Auth(W )

max
w

Pr[W = w |W ∈ S(σ)] (14)

where (11) is the definition of conditional min-entropy, (12) follows from the analysis of Good(W,R) in (10), and
(13) follows from the definition of Good(w, r) in (9).

Now, let us further assume that W is uniformly distributed over some subsetW ⊂ {0, 1}n of size |W| = 2k.
Then, continuing from (14), we get

p ≥ (ρ/2) E
σ←Auth(W )

1
|S(σ) ∩W|

≥ (ρ/2)
(

E
σ←Auth(W )

|S(σ) ∩W|
)−1

(15)

Where (15) follows by Jensen’s inequality. Now we’d like to say that there exists some set W such that the
value Eσ←Auth(W ;R) |S(σ) ∩ W| is small (recall, we define W as the uniform distribution on W). We show that
such a set exists using a probabilistic method argument. Let Sets(n, k) bet these of all subsetsW ⊂ {0, 1}n of size
|W| = 2k. Then, whenW is chosen randomly from Sets(n, k), we claim that

E
W←Sets(n,k)

(
E

σ←Auth(W ;R)
|S(σ) ∩W|

)
≤ E

W←Sets(n,k),σ←Auth(W )
|S(σ) ∩W| (16)

≤ 1 + (2k − 1)
maxσ |S(σ)|

(2n − 1)
≤ 1 + 22k−n (17)

To see this, we notice that, in the experiment described in the right-hand side of (16), a random setW is chosen,
then a random w ∈ W and r ∈ {0, 1}d and we compute |S(w, r) ∩ W|. However, a syntactically different but
semantically equivalent way of describing such an experiment, would be to first choose a random w ∈ {0, 1}n
r ∈ {0, 1}d and compute S(w, r); then choose the remaining 2k−1 elements randomly from {0, 1}n \{w} to form
W . The expected value of each individual remaining element falling into S(w, r) is |S(w, r)|/(2n− 1) and, by the
linearity of expectation, we then get the first part of (17). Recalling that |S(σ)| ≤ 2k and k ≤ n, the second part of
(17) follows.

Therefore, it follows that there exists some specific set W ⊆ {0, 1}n of size 2k, and hence a corresponding
(n, k)-source W , such that (combining (15), (17)) we get
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p = 2−H̃∞(W |Auth(W )) ≥ ρ

2(1 + 22k−n)

and hence

H̃∞(W |Auth(W )) ≤ log(1 + 22k−n) + log
(

1
ρ

)
+ 1 ≤ max(0, 2k − n) + log

(
1
ρ

)
+ 2.

2

D.1 Proof of Theorem 4.

A single-phase protocol consists of Alice sending a message σ to Bob. Let us fix Alice’s source message to the bit
µA = 1, and let us define the randomized function Auth which maps Alice’s secret w (along with some random
coins) to the value σ that she will send to Bob. We also define the randomized function Ver(w, σ) used by Bob
to verify if σ authenticates the bit 1. Following, Lemma 32, one of the following three conditions must hold: (1)
the scheme does not achieve correctness and Pr[Ver(W,Auth(W ))] < ρ, (2) a message σ which authenticates 1 is
easy to guess, or (3) the message σ which authenticated 1 reduces the entropy of the secret by n − k bits. In the
case of (2), the adversary can successfully authenticate the bit 1 to Bob without any help from Alice. In the case
of (3), if Alice attempts to authenticate the bit 1 to Bob, then the adversary’s uncertainty about Alice’s secret w is
reduced to k − (n − k) = 2k − n bits and, if k < n/2, the adversary completely learns w. Hence, upon seing
the message σ that authenticates the bit 1, the adversary can forge a message σ′ which authenticates the bit 0. This
intuition is formalized in the proof below. We prove a slightly more general version of Theorem 4 where we also
allow imperfect correctness – i.e. Bob is only required to output the correct message µA with probability ρ.

Theorem 33. Any single-phase (n, k,m, δ)-message authentication protocol with correctness ρ and security δ <
ρ2

4 must satisfy k > n
2 and must have communication complexity at least n−k−log

(
1
ρ

)
−2 bits. In particular, when

ρ = 1 as specified in Definition 3, then security δ < 1
4 can only be achieved if k > n

2 and with a communication
complexity of at least n− k − 2 bits.

Proof. As in our discussion, let Auth be the (randomized) functions used by Alice to authenticate the bit 1 to Bob
and let Ver be the (randomized) function used by Bob to detect if the received message authenticates 1. Since we
have correctness ρ, all (n, k) sources W satisfy Pr[Ver(W,Auth(W )) = 1] ≥ ρ. By Lemma 32, one of conditions
(2) or (3) must then hold.

If condition (2) holds, then there is an (n, k) source W and a value σ such that Pr[Ver(W,σ) = 1] ≥ ρ/2.
Hence, if the adversary sends σ to Bob, Bob will output µB = 1 with probability at least ρ/2 and, therefore δ ≥ ρ/2.
Assuming δ < ρ2

4 < ρ/2, condition (3) must hold. So there is an (n, k)-source W such that H̃∞(W |Auth(W )) ≤
max(0, 2k − n) + log

(
1
ρ

)
+ 2.

First let us assume that k < n/2. Then 2−H̃∞(W |Auth(W )) ≥ ρ/4. By Lemma 26, there then exists an adversary
A such that Pr[A(Auth(W )) = W ] ≥ ρ/4. Assume that Alice’s source message is µA = 1. The adversary Eve
waits to receive σ = Auth(W ), then computes W̃ ← A(σ) and σ̃ to be a randomly computed authentication of the
bit 0 using the secret W̃ . Then, Pr[W̃ = W ] ≥ ρ/4 and, by correctness, the probability that Bob outputs µB = 0
upon receiving σ̃ conditioned on W̃ = W is at least ρ. Hence, Eve succeeds with probability δ ≥ ρ2

4 .

Lastly, assume that the communication complexity of the protocol is strictly less than n − k − log
(

1
ρ

)
− 2.

Then, H̃∞(W |Auth(W )) > k − (n − k − log
(

1
ρ

)
− 2) > 2k − n + log

(
1
ρ

)
+ 2 contradicting our assumption

that condition (3) holds.
2

D.2 Proof of Theorem 19.

We again prove a slightly stronger version of the theorem where we also assume imperfect correctness (i.e. the
probability that, in an honest execution, Alice reaches KeyDerived, Bob reaches KeyConfirmed and the parties
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agree on a key is at least ρ).

Theorem 34. Any single-phase (non-interactive) (n, k, `, ε, δ)-IT-AKA with pre-application authenticity, correct-
ness ρ > 9

10 , key length ` ≥ 4, and security δ < ρ
2 , ε <

1
16 , must satisfy k > n

2 and have a communication

complexity is at least n− k − log
(

1
ρ

)
− 2 bits.

Proof. Without loss of generality, a single-phase protocol has Alice go into KeyDerived and send a single
message to Bob who goes into the KeyConfirmed state. Let Auth be the functions used by Alice to prepare her
message for Bob, and Ver be the function which returns 1 if Bob goes into the KeyConfirmed state. Then, one
of the three conditions of Lemma 32 must hold. Condition (1) cannot hold by the correctness of our protocol. If
condition (2) holds, then the adversary can break authenticity by sending σ to Bob without Alice’s participation with
probability δ ≥ ρ/2 and therefore it cannot hold either. Therefore, condition (3) holds and H̃∞(W |Auth(W )) ≤
max(0, 2k−n)+log

(
1
ρ

)
+2. Assuming k ≤ n

2 , we get H̃∞(W |Auth(W )) log
(

1
ρ

)
+2 and hence, by Lemma 26,

there is a function A such that Pr[A(Auth(W )) = W ] ≥ ρ/4.
Then we construct an attacker B(Auth(W )) which predicts RA (given Auth(W )) as follows: run W̃ =

A(Auth(W )), and then follow Bob’s procedure using W̃ ,Auth(W ). Let E1 be the even that W̃ = A(Auth(W ))
and E2 be the event, after Alice sends Auth(W ) in a passive execution, Bob recovers the key RB = RA. Then the
probability that B succeeds is at least Pr[E1 ∩ E2] ≥ Pr[E1] + Pr[E2] − 1 ≥ ρ/4 + ρ − 1 ≥ 1/8. However, if RA
is at least 4 bits long and ε close to uniform (conditioned on Auth(W )) then, Pr[B(Auth(W )) = RA] ≤ 1/16 + ε.
Therefore ε ≥ 1/16.

Lastly, we reuse the argument in the proof of Theorem 33 which show that (3) can only hold if the communica-
tion complexity is at least n− k − log

(
1
ρ

)
− 2 bits.

2

E Proofs for Authentication Based on Fully Non-Malleable Extractors

E.1 Existence of Non-Malleable Extractors

As with regular extractors, we first define a simpler notion of a worst-case non-malleable extractor (Definition 35)
and then show that it implies our standard notion of an (average case) non-malleable extractor in Definition 5.

E.1.1 Existence of Non-Malleable Worst Case Extractors

Definition 35. We say that a function nmExt : {0, 1}n × {0, 1}d → {0, 1}` is a (n, k, d, `, ε)- Non-Malleable
Worst-Case Extractor if, for any (n, k)-source W , any adversarial function A, we have:

(X, nmExt(W ;A(X)), nmExt(W ;X)) ≈ε (X, nmExt(W ;A(X,Z)), U`)

where X is uniformly random over {0, 1}d and A(X) 6= X .

The main theorem of this section will be to show the existence of non-malleable worst-case extractors.

Theorem 36. There exists an (n, k, d, `, ε)-Non-Malleable Worst-Case Extractor as long as

d > log(n− k + 1) + 2 log (1/ε) + 5 (18)
k > 2`+ 2 log (1/ε) + log(d) + 6 (19)

We prove Theorem 36 using the probabilistic method showing that a random function R is a non-malleable
(worst-case) extractor with overwhelming probability. First, a function R : {0, 1}n × {0, 1}d → {0, 1}` is an
(n, k, d, `, ε) Non-Malleable Worst-Case Extractor if for all distinguishers D, all adversarial function A, all (n, k)-
sources W :

Pr[D(X,R(W,A(X)), R(W,X)) = 1]− Pr[D(X,R(W,A(X)), U`) = 1] ≤ ε (20)
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Moreover, we can only consider (n, k)-sourcesW which are uniformly distributed on some subsetW ⊆ {0, 1}n
of size |W| = 2k. This is because if (20) fails on some arbitrary (n, k)-source W then, the uniform distribution on
the 2k elements w in the support of W which maximize

Pr[D(X,R(w,A(X)), R(w,X)) = 1]− Pr[D(X,R(w,A(X)), U`) = 1]

also causes (20) to fail.
Let us, for now fix some functions D,A and a set W ⊆ {0, 1}n of size |W| = 2k and let W be uniformly

distributed onW . We use the bold-face R to denote a random variable which is distributed uniformly on the space
of all functions R : {0, 1}n × {0, 1}d → {0, 1}`.

For each x ∈ {0, 1}d, u ∈ {0, 1}`, we define

Count(x, u) :=
∣∣∣{u2 ∈ {0, 1}` : D(x, u, u2) = 1

}∣∣∣ (21)

For each w ∈ W , x ∈ {0, 1}d we define the following random variables (with randomness coming from the
random variable R):

Left(w, x) := D(x,R(w,A(x)),R(w, x)) (22)

Right(w, x) :=
(

Count(x,R(w,A(x)))
2`

)
(23)

Q(w, x) := Left(w, x)−Right(w, x) (24)

and set

Q :=

∑
w,xQ(w, x)

2k+d
(25)

Essentially, Q is a random variable which maps each choice of the function R← R to the value

p(R) := Pr[D(X,R(W,A(X)), R(W,X)) = 1]− Pr[D(X,R(W,A(X)), U`) = 1] (26)

Therefore, we want to upper bound
Pr[Q > ε] = Pr

R←R
[p(R) > ε] (27)

We notice that, for any w, x, we have E[Left(w, x)] = E[Right(w, x)] and therefore E[Q(w, x)] = 0 and
E[Q] = 0. However, the values Q(w, x) are not necessarily independent from each other, preventing us from using
a simple Chernoff Bound on (27). For example if A(A(x)) = x then

Left(w, x) = D(x,R(w,A(x)),R(w, x)) and Left(w,A(x)) = D(x,R(w, x),R(w,A(x)))

are not independent and hence neither are Q(w, x),Q(w,A(x)). We show that all bad dependance is essentially
of this form. More precisely, let us represent the function A as a directed graph G = (V,E) on the vertex set
V = {0, 1}d and edges E := {(A(x), x) : x ∈ {0, 1}d} i.e there is an edge from x′ to x iff A(x) = x′. Since
A is a function, the in-degree of each vertex is 1. We show that, if we limit ourselves to values of x contained in a
subset of V that does not have cycles then the variables Q(x,w) have very limited sort of dependence.

Lemma 37. For V ′ ⊆ V , let G′ ⊆ G be a restriction of G to the vertices V ′ and assume that the graph G′ is an
acyclic subgraph of G. Then the set {Q(w, x)}w∈W,x∈V ′ of random variables can be enumerated by Q1, . . . ,Qm

for m = |V ′|2k such that E[Qi|Q1, . . . ,Qi−1] = 0 for all 1 ≤ i ≤ m.

Proof. The graph G′ is a directed acyclic graph and hence defines a partial order “≤” on the vertices V ′ so that, if
(x′, x) ∈ V ′ then x′ ≤ x. We use the partial order on V ′ to define a partial order on the set {Q(w, x)}w∈W,x∈V ′ .
Lastly, we can extend this partial order to a total order and thus enumerate the above set as Q1, . . . ,Qm such that
if x′ ≤ x and Qi = Q(w, x′),Qj = Q(w, x) then i ≤ j. Now we show that, for all 1 ≤ i ≤ m, we have
E[Qi|Q1, . . . ,Qi−1] = 0. The randomness of these variables comes solely from the choice of R ← R. We can
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think of a uniformly random function R as being choosing a random output for every input in the domain of R.
Then conditioned on any choice of the value of R for all points other than (w, x) we have

E[Qi] = E[Q(w, x)] = E
[
D(x, u′,R(w, x))−

(
Count(x, u′)

2`

)]
= 0 (28)

Moreover, by the properties of our ordering, the variables Q1, . . . ,Qi−1 are independent of R(w, x) and hence the
statement of the lemma follows. 2

The good news of Lemma 37 is that restrictions of G which are acyclic do not contain bad dependance. We
now show that we can partition the entire vertext set V = {0, 1}d into two subsets V1, V2 of equal size such that the
restriction of G to either of these sets is acyclic.

Lemma 38. For any directed graph G = (V,E) where all vertices have an ind-degree of 1 and where |V | is even,
there is a partition of V into V1, V2 such that |V1| = |V2| and, letting Gb be the restriction of G to the set Vb, both
graphs G1, G2 are acyclic.

Proof. The key realization is that each vertex v ∈ V can belong to at most one cycle. We can break apart each
cycle by placing half the vertices into V1 and the other half into V2. We can do this for all cycles (one-by-one)
keeping V1 and V2 balanced (during this stage, we allow |V1| = |V2|+ 1 to break up cycles of odd lengths). At the
conclusion, we will end up with two equally sized sets V1, V2 neither of which contains a cycle. 2

Now, combining Lemma 37, Lemma 38 we can partition {Q(w, x)} into two (enumerated) sets {Q1
1, . . . ,Q

1
m},

{Q2
1, . . . ,Q

2
m} where m = 2d−1 such that, for b ∈ {1, 2}, 1 ≤ i ≤ m, E[Qb

i |Qb
1, . . . ,Q

b
i−1] = 0 . Let us define

the random variables Sbi =
∑i

j=1 Qb
j for all b ∈ {1, 2}, 1 ≤ i ≤ m. Then (for b = 1, 2) the sequence Sb1, . . . , S

b
m

is a martingale. Now, going back to equation (27), we get

Pr[Q > ε] = Pr

[(
S1
m + S2

m

)
2k+d

> ε

]
≤ Pr[S1

m > ε2k+d−1] + Pr[S2
m > ε2k+d−1] (29)

≤ 2e−
1
16

2d+kε2 (30)

Where (30) follows from applying Azuma’s inequality to both terms on the right-hand side of (29), and noting that
|Sbi − Sbi−1| = Qb

i ≤ 2. We now use this analysis to prove Theorem 36.

Proof. (of Theorem 36) Thus far we have considered some fixed adversary A, distinguisher D and set W so
that (30) bounds the probability that these are bad (i.e. that (20) does not hold for these) for a random function R.
We now make this explicit by referring to the random variable Q as Q(W,A,D) and will now quantify over all
possible setsW and all functions A,D. In particular, let us define the eventR that, for a random function R← R,
there exists some setW , adversary A and distinguisher D for which Q(W,A,D) ≥ ε.

We will apply the union bound over all possible values ofW,A,D. For ease of exposition, let N = 2n,K =

2k, D = 2d, L = 2`. Then, there are
(
N
K

)
possible setsW ⊆ {0, 1}n of size |W| = 2k, there areDD adversaries

A : {0, 1}d → {0, 1}d and there are 2DL
2

distinguishers D : {0, 1}d × {0, 1}` × {0, 1}` → {0, 1}. Therefore

Pr[R] ≤ Pr
[⋃

Q(W,AD)
]
≤
∑

Pr[Q(W,A,D)] (31)

≤
(
N
K

)
DD2DM

2
2e−

1
16

2d+kε2 (32)

≤ eK(1+ln( N
K ))+D(lnD+ln(2)M2)+ln 2− 1

16
DKε2 (33)

Now the above is strictly less than 1 if the exponent is less than 0 and therefore it suffices to show that[
K

(
1 + ln

(
N

K

))
− 1

32
DKε2 < 0

]
and

[
D(lnD + ln(2)M2) + ln 2− 1

32
DKε2 < 0

]
(34)
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and it is easy to check that (34) is satisfied as long as as (18), (19) hold and hence Pr[R] < 1. This implies that
under conditions (18) and (19), there must exist some particular function R for which the event R does not occur
and hence this is a non-malleable (worst-case) extractor.

It is easy to see that, with slight degradation of the parameters in (18) and (19), we can in fact ensure that Pr[R]
is negligible and hence a uniformly random function is a non-malleable (worst-case) extractor with overwhelming
probability.
2

E.1.2 Worst Case Implies Average Case

Now we simply need to show that a non-malleable (worst-case) extractor is also a good non-malleable (average-
case) extractor.

Theorem 39. For any ρ > 0, if nmExt is a (n, k − log
(

1
ρ

)
, d, `, ε− ρ)-non-malleable worst-case extractor then

it is also a (n, k, d, `, ε)-non-malleable average case extractor.

Proof. Let (W |Z) be an arbitrary average-case (n, k)-source. Let Wz = (W | Z = z). We call a value z “bad”
if H̃∞(Wz) < k − log

(
1
ρ

)
and “good” otherwise. Then by Lemma 27, Pr[Z is bad ] ≤ ρ. Conditioning on the Z

being good,

SD((Z,X, nmExt(W ;A(X,Z)), nmExt(W ;X)) , (Z,X, nmExt(W ;A(X,Z)), U`))

≤
∑
z

Pr[Z = z] · SD((X, nmExt(Wz,A(X, z)), nmExt(W ;X)) , (X, nmExt(Wz,A(X, z)), U`))

≤ Pr[Z is bad] +
∑

good z

SD((X, nmExt(W ;Az(X)), nmExt(W ;X)) , (X, nmExt(W ;Az(X)), U`))

≤ ρ+ (ε− ρ) ≤ ε

2

E.1.3 Proof of Theorem 6.

Proof. By Theorem 36, we see that (n, k − log
(

1
ε/2

)
, d, `, ε/2)-non-malleable worst-case extractors exist if

d > log(n− k + 1) + 2 log
(

1
ε

)
+ 7

k > 2`+ 3 log
(

1
ε

)
+ log(d) + 9

By Theorem 39, setting ρ = ε/2, these conditions also guarantee the existence of (n, k, d, `, ε)-non-malleable
average-case extractors. 2

E.2 Proof of Theorem 7

Proof. Let us fix a value µA ∈ {0, 1}m and some adversarial strategy used by Eve. Let E1 be the event that Eve
succeeds (i.e. µB 6= µA and MACR(µB) = σ̃) and let E2 be the event that Eve is active during the initial flow (i.e.
X ′ 6= X). Then

Pr[E1 ∩ E2] = Pr

MACR(µB) = σ̃

∣∣∣∣∣∣
R′ = nmExt(W ;A1(X,Z)), σ′ ← MACR′(µA),

R = nmExt(W ;X)
(µB, σ̃)← A2(X,Z, σ)


≤ ε+ Pr

[
MACU`

(µB) = σ̃

∣∣∣∣ R′ = nmExt(W ;A1(X,Z)), σ′ ← MACR′(µA),
(µB, σ̃)← A2(X,Z, σ)

]
(35)

≤ ε+ δ (36)
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where A1 is some function such that A1(X,Z) 6= X . Then (35) follows from the definition of a non-malleable
extractor and (36) from that of a MAC.

Also

Pr[E1 ∩ ¬E2] = Pr
[
MACR(µB) = σ̃

∣∣∣∣ R = nmExt(W ;X), σ ← MACR(µA)
(µB, σ̃)← A2(X,Z, σ)

]
≤ ε+ Pr

[
MACU`

(µB) = σ̃

∣∣∣∣ σ ← MACU`
(µA)

(µB, σ̃)← A2(X,Z, σ)

]
(37)

≤ ε+ δ (38)

where, again, (37) follows from the definition of a non-malleable extractor and (38) from that of a MAC. Putting
the two inequalities together we get Pr[E1] ≤ 2(ε+ δ) as we wanted to show. 2

E.3 Proof of Corollary Corollary 1

Proof. We apply Theorem 7 to the achievable parameters of non-malleable extractors from Theorem 6 and those
of MACs from Lemma 24. 2

F Proofs for Authentication Based on Look-Ahead Extractors

Quentin: Q,S1 Wendy W

S1

S1
−−−−−−−−−−→

R1
←−−−−−−−−−− R1 = Extw(W ;S1)

S2 = Extq(Q;R1)
S2

−−−−−−−−−−→
R2

←−−−−−−−−−− R2 = Extw(W ;S2)

. . .

St = Extq(Q;Rt−1)
St

−−−−−−−−−−→
Rt = Extw(W ;St)

Figure 3: Alternating Extraction

F.1 Proof of the Alternating Extraction Theorem

The main part of Theorem 9 is proved in the following slightly simpler lemma.

Lemma 40. Let everything be as in Theorem 9, but only assume that Extw be an (nw, kw−(sw)t, `, `, εw)-extractor
and Extq be an (nq, kq − (sq)t, `, `, εq)-extractor. Then(

V i
w, Si+1

)
≈ρw(i)

(
V i
w, U`

)
(39)(

V i
q , Ri+1

)
≈ρq(i)

(
V i
q , U`

)
(40)

where ρw(i) def= i(εw + εq), ρq(i)
def= ρw(i) + εw.

Proof. Our proof proceeds by induction. For i = 0, S1 is uniform and independent of V 0
w = (W,Z) and hence

(V 0
w , S1) = (V 0

w , U`). On the other had, V 0
q = (Z,Q, S1) and therefore(

V 0
q , R1 = Extw(W ;S1)

)
≈εw

(
V 0
q , U`

)
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since H̃∞(W |(Q,Z)) ≥ kw ≥ kw − (sw)t. Hence, the lemma holds for i = 0.
Assume that the lemma holds for i− 1. We proceed in two steps. First we show that (V i

w, Si+1) ≈ (V i
w, U`) i.e.

no matter what message Aq sends in the ith round to Aw, the value Si+1 still looks random. For our analysis we
introduce several new variables: let msgiq be the message sent by Aq in round i, and let T iq = (msg1

q , . . . ,msgiq).
We define msgiw and T iw analogously. Then(

V i−1
q , Ri

)
≈ρq(i−1)

(
V i−1
q , U`

)
(41)

⇒
(
V i−1
q ,msgiq, Ri,Extq(Q;Ri)

)
≈ρq(i−1)

(
V i−1
q ,msgiq, U`,Ext(Q;U`)

)
(42)

⇒
(
T iq , Ri,Extq(Q;Ri)

)
≈ρq(i−1)

(
T iq , U`,Extq(Q;U`)

)
(43)

⇒
(
T iq , Ri,Extq(Q;Ri)

)
≈ρq(i−1)+εq

(
T iq , Ri, U`

)
(44)

⇒
(
W,T iq , Ri,Extq(Q;Ri)

)
≈ρw(i)

(
W,T iq , Ri, U`

)
(45)

⇒
(
V i
w, Si+1

)
≈ρw(i)

(
V i
w, U`

)
(46)

Equation (41) is given by the inductive hypothesis. Equation (42) follows by Lemma 25 where we apply the
function used by Aq to compute the next message along with the Extq function. Equation (43) follows by another
application of Lemma 25 where we delete Q from V i−1

q ,msgiq to get T iq . Equation (44) follows from Lemma 29
and the fact that |T iq | ≤ (sq)t. Equation (45) follows from Lemma 28. Lastly, (46) follows from another application
of Lemma 25.

Now, we re-use essentially the same analysis to show (V i
q , Ri+1) ≈ (V i

q , U`)(
V i
w, Si+1

)
≈ρw(i)

(
V i
w, U`

)
(47)

⇒
(
V i
w,msgiw, Si+1,Extw(W ;Si+1)

)
≈ρw(i)

(
V i
w,msgiw, U`,Extw(W ;U`)

)
(48)

⇒
(
T iw, Si+1,Extw(W ;Si+1)

)
≈ρw(i)

(
T iw, U`,Extw(W ;U`)

)
(49)

⇒
(
T iw, Si+1,Extw(W ;Si+1)

)
≈ρw(i)+εw

(
T iw, Si+1, U`

)
(50)

⇒
(
Q,T iw, Si+1,Extw(W ;Si+1)

)
≈ρq(i)

(
Q,T iw, Si+1, U`)

)
(51)

⇒
(
V i
q , Ri+1

)
≈ρq(i)

(
V i
q , U`)

)
(52)

Where equations (47) - (52) follow the same reasoning as (41) - (46). 2

F.1.1 Proof of Theorem 9

Proof. Given Aw,Aq which are restricted to communicating sw, sq bits respectively, we construct the machines
A′w,A′q which, on each round, run Aw,Aq but also, in parallel, run the honest alternating-extraction procedure for
Quentin and Wendy. ThenA′w,A′q have communication s′w = sw+`, s′q = sq+`. Applying Lemma 40 toA′w,A′q,
we get (

V i
q , Ri+1, Ri+2, . . . , Rt−1, Rt

)
≈ρq(t−1)

(
V i
q , Ri+1, Ri+2, . . . , Rt−2, Rt−1, U`

)
(53)(

V i
q , Ri+1, Ri+2, . . . , Rt−1, U`

)
≈ρq(t−2)

(
V i
q , Ri+1, Ri+2, . . . , Rt−2, U2`

)
(54)

. . .(
V i
q , Ri+1, U`(t−i+1)

)
≈ρq(i)

(
V i
q , U`(t−i)

)
(55)
(56)

Therefore, by the hybrid argument,

SD
((
V i
q , Ri+1, . . . , Rt

)
,
(
V i
q , U`(t−i)

))
≤ tρq(t− 1) ≤ t2(εw + εq) (57)

We can use the exact same argument to show that

SD
((
V i
w, Si+1, . . . , St

)
,
(
V i
q , U`(t−i)

))
≤ tρw(t− 1) ≤ t2(εw + εq) (58)

2

23



F.2 Proof of Theorem 11.

Proof. By Theorem 10, we need to construct an (n, k − 2`′t, `′, d′, ε′ = ε/2t2)-extractor Extw where and a
(n′, n′ − 2`′t, `′, d′, ε′ε/2t2)-extractor Extq where `′ = max(`, d′). By Lemma 22, such extractors Extw can be
explicitly constructed for

`′ ≤ (k − 2`′t)/2− d′ ⇐ k ≥ 2(`′ + d′) + 2`′t ⇐ k ≥ 2(t+ 2) max(`, d′)

where d′ = O(log(n) + log(1/ε′)) = O(log(n) + log(1/ε) + log(t)). Setting n′ = 2(t+ 2) max(`, d′) we can get
the same parameters for Extq. The last part follows since d = d′ + n′. 2

F.3 Proof of Lemma 15

Proof. Let V,R′, R be random variables satisfying the look-ahead property of equation (5), and let µA ∈ {0, 1}m
be an arbitrary message and A an arbitrary adversarial function. Then we need to find a bound for:

Pr
[
µB 6= µA,MACR(µB) = σ̃

∣∣∣∣ σ′ ← MACR′(µA)
(µB, σ̃)← A(V, σ′)

]
(59)

Let us split A into two functions A1,A2 where A1 computes the first argument µB and A2 computes the second
argument σ̃. Without loss of generality, we may assume thatA2 never outputs µB = µA. We also define φ(µB, µA)
for any µA 6= µB to be the (first) value of j ∈ {1, . . . , t} such that |S≥jµB | > |S

≥j
µA | (which is well defined since Ψ is

pairwise top-heavy).
Then we can rewrite (59) as

Pr
[
µB 6= µA,MACR(µB) = σ̃

∣∣∣∣ σ′ ← MACR′(µA)
(µB, σ̃)← A(V, σ′)

]
= Pr

[
[Ri | i ∈ SµB ] = A2(V, [R′i | i ∈ SµA ])

∣∣ µB ← A(V,MACR′(µA))
]

≤ Pr
[
∃µB 6= µA s.t. [Ri | i ∈ SµB ] = A2(V, [R′i | i ∈ SµA ])

]
≤

∑
µB

Pr
[
[Ri | i ∈ SµB ] = A2(V, [R′i | i ∈ SµA ])

]
≤

∑
µB

Pr
[
[Ri | i ∈ S≥jµB

] = A2(V, [R′i | i ∈ S≥jµA
], [R′i | i ∈ S<jµA

])
]

where j = φ(µB, µA)

≤
∑
µB

(
2−` + ε

)
(60)

≤
(

2m−` + 2mε
)

where (60) follows from Lemma 30 by setting A =
(
V, [R′i | i ∈ S

<j
µA ]
)

, B = [R′i | i ∈ S
≥j
µA ], C = [Ri | i ∈ S≥jµB ].

Then (A,C) ≈ε (A,Uq) by look-ahead (for some q which depends on µA, µB) and B takes values in {0, 1}λ for
some λ such that q − λ ≥ `. 2

F.4 Proof of Lemma 16

Proof. Assume that µA 6= µB and let SA, SB be the corresponding sets in Ψ. Let i be the first index for which the
bits of µA and µB disagree: i.e. bAi 6= bBi where bAi , b

B
i is the ith bits of µA, µB respectively. If bAi = 0 then, letting

j = 4i, |S≥jA | = 1 + 2(m− i) and |S≥jB | = 2(m− i) so (SA, SB) is top-heavy. If bAi = 1 then, letting j = 4i− 2,
|S≥jA | = 2 + 2(m− i) and |S≥jB | = 1 + 2(m− i) so again (SA, SB) is top-heavy. 2
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F.5 Proof of Theorem 17.

Proof. By Theorem 13, we need to plug in a (n, k, d, `, t, ε)-look-ahead extractor and a (m, s, `, t, ε, δ)-MAC with
look-ahead security to get an AUTH protocol. By Corollary 2, we can get such a MAC with message size m and
security δ by setting

` = m+ log(1/δ) + 1, ε = δ/2m+1, t = 4m, s = t` = 4m(m+ log(1/δ) + 1) (61)

By Theorem 11, we can construct a look-ahead extractor for any n ≥ k and the values `, ε, t above as long as
k, d ≥ O(m(m+ log(n) + log(1/δ))). 2

G Proofs for Authenticated Key Agreement

G.1 Proof of Theorem 20

Proof. The correctness property is obvious. For pre-application authenticity, we are analyzing the following
(equivalent) experiment. First, a value µA ← Xkey is chosen by Alice (we won’t carte that it is random). Then
Alice and Bob run an authentication protocol where Alice uses the value µA and, if Bob outputs µB 6= µA then the
adversary wins. By the security of the authentication protocol this occurs with probability at most δ, proving pre-
application authenticity. For post-application authenticity, we must analyze the game where Alice picks µA ← Xkey

and the adversary also gets RA = Extkey(W ;µA). But this just means that we need to analyze the security of
the authentication protocol where the adversary has side information Z ′ = (Z,RA). Since |RA| = `, we have
H̃∞(W |Z ′) ≥ H̃∞(W |Z) − ` ≥ k − `. Hence security follows if our authentication protocol is (n, k − `,m, δ)
secure.

For privacy:

SD
(

(Z,Xauth,MACR′auth
(Xkey), Xkey, RA) , (Z,Xauth,MACR′auth

(Xkey), Xkey, U`)
)

≤ SD
(

(Z,Xauth, R
′
auth, Xkey, RA) , (Z,Xauth, R

′
auth, Xkey, U`)

)
≤ SD

(
(Z ′, Xkey,Extkey(W ;Xkey)) , (Z ′, Xkey, U`)

)
(62)

≤ ε (63)

Where, in (62), Z ′ = (Z,Xauth, R
′
auth) and so Xkey is random and independent of Z ′. Moreover

H̃∞(W |Z ′) ≥ H̃∞(W |Z,Xauth)− τ ≥ k − τ

since |Rauth| = τ and Xauth is independent from W . Therefore (63) follows since Extkey is an (n, k − τ,m, `, ε)
extractor. 2

G.2 Proof of Corollary 3

Proof. By Theorem 20 we need to plug in an (n, k − τ, d, `, ε)-extractor and a (n, k − `,m = d, δ)-authentication
protocol. Existentially, such extractors are known to exist as long as

k > `+ τ +O(log(1/ε)) (64)

and have seeds of length d = O(log(n) + log(1/ε)). Furthermore, in Corollary 1, we showed that (n, k − `, d, δ)-
authentication protocols exist where the MAC key is τ = O(log(m) + log(1/δ)) = O(log(log(n)) + log(1/δ) +
log(1/ε)), and require

k > `+O(log(n) + log(d) + log(1/δ)) = O(log(n) + log(1/δ) + log(1/ε)). (65)

Therefore, our bound on ` satisfies both (64) and (65). 2
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G.3 Proof of Corollary 4

Proof. By Theorem 20 we need to plug in an (n, k − τ, d, `, ε)-extractor and a (n, k − `,m = d, δ)-authentication
protocol. By Lemma 22, such extractors exist for any constant α > 0 with d = O(log(n) + log(1/ε)). By
Theorem 17, for m = d we can get an authentication protocol with τ = 4d(d + log(1/δ)). Therefore we can
extract at most ` = (1 − α)k − τ which gets us the bound for `. Lastly, the authentication protocol requires
k > `+O(d(d+ log(1/δ))) but that’s already implied by our bound on `. 2

G.4 Proof of Theorem 21

Proof. We need to argue the security of the scenario where Alice and Bob run a (n, k, `, ε, δ1)-key agreement
protocol for a key rA of size ` to a (standard) δ2-secure one-time MAC, and Alice then uses this key to authenticate
her message (sending the tag σ = MACrA(µA) in the second phase of the key agreement protocol, immediately
after reaching KeyDerived). Correctness is obvious. If Eve breaks security, then either she causes Bob to distill a
key rB 6= rA or else she forges a tag for the MAC under the key rA. The first event occurs with probability at most
δ1 (even if Eve was given all of rA and not just σ). The second event occurs with probability at most ε+ δ2 by the
privacy of rA and the security of the MAC. Therefore our protocol is δ1 +δ2 +ε secure. Setting ε = δ1 = δ2 = δ/3
we get the desired security and parameters. 2
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