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Abstract. Proxy re-encryption (PRE), introduced by Blaze, Bleumer
and Strauss, allows a semi-trusted proxy to convert a ciphertext orig-
inally intended for Alice into an encryption of the same message in-
tended for Bob. PRE systems can be categorized into bidirectional PRE
(in which the delegation from Alice to Bob also allows re-encryption
from Bob to Alice) and unidirectional PRE (in which the delegation
can not be used in the opposite direction). In ACM CCS’07, Canetti
and Hohenberger presented a bidirectional PRE scheme secure against
chosen-ciphertext attack (CCA), and left an important open problem to
construct a CCA-secure PRE scheme without pairings. To resolve this
problem, in this paper, we present two direct constructions of CCA-
secure PRE schemes without pairings: one is bidirectional and the other
is unidirectional. Both schemes are fairly efficient, since they have two
distinguished features: (i) they do not use the costly bilinear pairings;
(ii) the computational cost and the ciphertext length decrease with re-
encryption. In contrast, existing CCA-secure PRE schemes do not share
these desirable features.

Keywords: Proxy re-encryption, bilinear pairing, chosen-ciphertext se-
curity.

1 Introduction

1.1 Background

Imagine that one day you are going on vacation and will be inconvenient to
read your email. You wish to have the mail server forward all of your encrypted
email to your colleague Bob, who can then read the email by only using his own
secret key. A naive way is to have the mail server store your secret key and act
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as follows: when an email encrypted for you arrives, the mail server decrypts it
using the stored secret key and re-encrypts the plaintext using Bob’s public key.
However, such a solution is highly undesirable, especially in the case that the
email server is untrustworthy, since the email server learns both the plaintext
and your secret key.

Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss [4], is
a novel solution to the above situation. In a PRE system, a proxy is given a re-
encryption key rki,j so that it can convert a ciphertext under public key pki into
a ciphertext of the same message under a different public key pkj . The proxy,
however, learns nothing about the messages under either key. Now, as to the
aforementioned situation, you can have the mail server act as a proxy, and give
him the re-encryption key instead of your secret key. Then he can translate your
encrypted emails into those encrypted under Bob’s public key, without learning
the content of the emails. Proxy re-encryptions have found many other practical
applications, such as distributed file systems, outsourced filtering of encrypted
spam, and access control over network storage [1, 2, 23].

Blaze, Bleumer and Strauss [4] categorized two types of PRE schemes. If the
re-encryption key rki,j allows the proxy to convert ciphertexts under pki into
ciphertexts under pkj and vice versa, then the scheme is called bidirectional.
If rki,j allows the proxy to convert only from pki to pkj , then the scheme is
called unidirectional. Blaze et al. [4] proposed the first bidirectional PRE scheme
in 1998. In 2005, Ateniese et al. [1, 2] presented a unidirectional PRE scheme
based on bilinear pairings. Both of these schemes are only secure against chosen-
plaintext attack (CPA). However, applications often require security against
chosen-ciphertext attacks (CCA).

To fill this gap, Canetti and Hohenberger [10] presented an elegant con-
struction of CCA-secure bidirectional PRE scheme. Later, Libert and Vergnaud
[20] presented a unidirectional PRE scheme with CCA security. Both of these
constructions rely on bilinear pairings. In spite of the recent advances in im-
plementation technique, compared with standard operations such as modular
exponentiation in finite fields [8], the pairing computation is still considered as
a very expensive operation. It would be desirable for cryptosystems to be con-
structed without relying on pairings, especially in computation-limited settings.
In view of this, Canetti and Hohenberger [10] left an important open problem in
ACM CCS’07, i.e., how to construct a CCA-secure proxy re-encryption scheme
without pairings.

1.2 Our Contributions

In this paper, we first circumvent several obstacles and construct a bidirectional
PRE scheme without pairings. Based on the modified computational Diffie-
Hellman (mCDH) problem, we prove its CCA security in the random oracle
model. Compared with existing CCA-secure bidirectional proxy re-encryption
schemes, our scheme is much more efficient due to the following facts: (i) our
scheme does not use the costly bilinear pairing; (ii) the computational cost and
the ciphertext length in our scheme decrease with re-encryption. In contrast,



existing CCA-secure bidirectional PRE schemes cannot share these desirable
features.

Based on our bidirectional PRE scheme, we further propose a unidirectional
PRE scheme without pairings. The chosen-ciphertext security of this scheme can
be proved under the well-studied computational Diffie-Hellman (CDH) assump-
tion. Again, the computational cost and the ciphertext length in our scheme de-
crease with re-encryption, whereas those in existing unidirectional PRE schemes
increase with re-encryption.

1.3 Related Works

Boneh, Goh and Matsuo [7] described a hybrid proxy re-encryption system based
on the ElGamal-type public key encryption system [13] and Boneh-Boyen’s
identity-based encryption system [3]. Recently, Libert and Vergnaud [22] pro-
posed a traceable proxy re-encryption system, in which the proxies that leak
their re-encryption key can be identified by the delegator. Green and Ateniese
[15] considered proxy re-encryption in identity-based scenarios: based on Boneh
and Franklin’s identity-based encryption system [6], they presented the first
CPA and CCA-secure identity-based proxy re-encryption (IB-PRE) schemes in
the random oracle model. Later, Chu and Tzeng [11] presented the constructions
of CPA and CCA-secure IB-PRE schemes without random oracles.

Another kind of cryptosystems related to proxy re-encryption is the proxy
encryption cryptosystem [24, 17, 12]. In NDSS’03, Dodis and Ivan [12] notably
presented generic constructions of proxy encryption schemes as well as several
efficient concrete schemes. It should be noted that, as argued in [10, 20], proxy re-
encryption schemes are a (strict) subset of proxy encryption schemes. In proxy
encryption systems, a delegator allows a delegatee to decrypt ciphertexts in-
tended for her with the help of a proxy by providing them with shares of her
private key. This approach requires the delegatee to store an additional secret
for each delegation. In contrast, the delegatee in proxy re-encryption schemes
only needs to have its own decryption key.

Proxy re-encryption should not be confused with the universal re-encryption
[16], in which the ciphertexts are re-randomized instead of the underlying public
key being changed.

1.4 Outline

The rest of the paper is organized as follows. In Section 2, we review the model of
PRE systems and some complexity assumptions related to our proposed schemes.
In Section 3, we propose a bidirectional PRE scheme without pairings, and gives
a comparison between our scheme and other existing bidirectional PRE schemes.
In this section, we also prove the CCA-security for our bidirectional PRE scheme.
In Section 4, based on our bidirectional PRE scheme, we further propose a
unidirectional PRE scheme without parings, and then prove its security. Finally,
Section 5 lists some open problems and concludes this paper.



2 Preliminaries

2.1 Notations

We first present some notations used in the rest of this paper. For a prime q, let
Zq denote the set {0, 1, 2, · · · , q − 1}, and Z∗q denote Zq\{0}. For a finite set S,

x
$← S means choosing an element x from S with a uniform distribution.

2.2 Model of Proxy Re-Encryption Systems

In this subsection, we will review the definition and security model for bidirec-
tional and unidirectional proxy re-encryption systems.

Formally, a bidirectional PRE scheme consists of the following six algorithms
[10]:

GlobalSetup(κ): The global setup algorithm takes as input a security parameter
κ. It outputs the global parameters param.

KeyGen(i): The key generation algorithm generates the public/secret key pair
(pki, ski) for user i.

ReKeyGen(ski, skj): The re-encryption key generation algorithm takes as input
two secret keys ski and skj . It outputs a re-encryption key rki,j .

Encrypt(param, pk, m): The encryption algorithm takes as input the global pa-
rameters param, a public key pk and a message m ∈ M. It outputs a
ciphertext CT under pk. Here M denotes the message space.

ReEncrypt(rki,j ,CTi): The re-encryption algorithm takes as input a re-encryption
key rki,j and a ciphertext CTi under public key pki. It outputs a ciphertext
CTj under public key pkj .

Decrypt(sk,CT): The decryption algorithm takes as input a secret key sk and
a cipertext CT. It outputs a message m ∈M or the error symbol ⊥.

Roughly speaking, the correctness requires that, for any m ∈ M and any
couple of public/secret key pair (pki, ski), (pkj , skj), the following conditions
should hold:

Decrypt(ski,Encrypt(param, pki,m)) = m,

Decrypt (skj ,ReEncrypt(ReKeyGen(ski, skj),Encrypt(param, pki,m))) = m.

Remark 1. The definition of unidirectional PRE scheme is the same as that
of bidirectional PRE scheme, with the exception that, the re-encryption key
generation algorithm ReKeyGen takes as input the secret key ski and the public
key pkj instead of skj . We write it ReKeyGen(ski, pkj).

Remark 2. A proxy re-encryption scheme is said to be multi-hop, if a ciphertext
can be consecutively re-encrypted, i.e., it can be re-encrypted from pk1 to pk2

and then to pk3 and so on. In contrast, a proxy re-encryption scheme is said to be
single-hop, if a re-encrypted ciphertext can not be further re-encrypted. In this
paper, we concentrate on single-hop proxy re-encryption schemes. Besides, for



consistency and easy explanation, we adopt a term as used in [20]: the original
ciphertext is called second-level ciphertext, while the re-encrypted ciphertext is
called first-level ciphertext.

Next, we review the security notion for PRE systems [10, 20]. The chosen-
ciphertext security for a PRE scheme Π can be defined via the following game
between an adversary A and a challenger C:
Setup. C takes a security parameter κ and runs algorithm GlobalSetup. It gives

A the resulting global parameters param.
Phase 1. A adaptively issues queries q1, · · · , qm where query qi is one of the

following:
– Uncorrupted key generation query 〈i〉: C first runs algorithm KeyGen to

obtain a public/secret key pair (pki, ski), and then sends pki to A.
– Corrupted key generation query 〈j〉: C first runs algorithm KeyGen to

obtain a public/secret key pair (pkj , skj), and then gives (pkj , skj) to A.
– Re-encryption key generation query 〈pki, pkj〉: C first runs algorithm

ReKeyGen(ski, skj) if Π is a bidirectional PRE scheme, or algorithm
ReKeyGen(ski, pkj) if Π is unidirectional, to generate a re-encryption
key rki,j . Finally, C returns rki,j to A. Here ski and skj are secret keys
with respect to pki and pkj respectively. It is required that pki and pkj

were generated beforehand by algorithm KeyGen. As argued in [10], for
bidirectional PRE schemes, we require that either both pki and pkj are
corrupted, or alternately both are uncorrupted.

– Re-encryption query 〈pki, pkj ,CTi〉: C first runs algorithm ReKeyGen to
generate the re-encryption key rki,j . Then it runs ReEncrypt(rki,j ,CTi)
to obtain the resulting ciphertext CTj , which is returned to A. It is
required that pki and pkj were generated beforehand by KeyGen.

– Decryption query 〈pk, CT〉: Challenger C returns the result of Decrypt(sk,CT)
to A, where sk is the secret key with respect to pk. It is required that
pk was generated beforehand by KeyGen.

Challenge. Once A decides that Phase 1 is over, it outputs a target public key
pk∗ and two equal-length plaintexts m0,m1 ∈ M on which it wishes to be
challenged. Here it is required that A did not previously corrupt the secret
key corresponding to pk∗. Challenger C flips a random coin δ ∈ {0, 1}, and
sets the challenge ciphertext to be CT∗ = Encrypt(param, pk∗,mδ), which is
sent to A.

Phase 2. A issues additional queries qm+1, · · · , qmax where each of the queries
is one of the following:
– Uncorrupted key generation query 〈i〉: C responds as in Phase 1.
– Corrupted key generation query 〈j〉: C responds as in Phase 1. Here it

is required that pkj 6= pk∗. Besides, if A has obtained a derivative1

(pk′,CT′) of (pk∗,CT∗), it is required that pkj 6= pk′.

1 Derivative of (pk∗, CT∗) is inductively defined in [10] as below:

1. (pk∗, CT∗) is a derivative of itself;



– Re-encryption key generation query 〈pki, pkj〉: Challenger C responds as
in Phase 1. Here it is required that, if A has obtained the secret key
skj with respect to pkj , A is disallowed to issue the re-encryption key
generation query 〈pki∗ , pkj〉 (and 〈pkj , pki∗〉 if Π is bidirectional.)

– Re-encryption query 〈pki, pkj ,CTi〉: Challenger C responds as in Phase
1. Here it is required that, if A has obtained the secret key skj with
respect to pkj , then (pki,CTi) can not be a derivative of (pk∗,CT∗).

– Decryption query 〈pk, CT〉: Challenger C responds as in Phase 1. Here
it is required that, (pk, CT) can not be a derivative of (pk∗,CT∗).

Guess. Finally, A outputs a guess δ′ ∈ {0, 1}.
We refer to adversary A as an IND-PRE-CCA adversary, and we define his

advantage in attacking scheme Π as

AdvIND-PRE-CCA
Π,A =

∣∣Pr[δ′ = δ]− 1
2

∣∣,

where the probability is taken over the random coins consumed by the challenger
and the adversary. Note that the chosen plaintext security for a PRE scheme can
be similarly defined as the above game except that the adversary is not allowed
to issue any decryption queries.

Definition 1. A PRE scheme Π is said to be (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-
CCA secure, if for any t-time IND-PRE-CCA adversary A who makes at most qu

uncorrupted key generation queries, at most qc corrupted key generation queries,
at most qrk re-encryption key generation queries, at most qre re-encryption
queries and at most qd decryption queries, we have AdvIND-PRE-CCA

Π,A ≤ ε.

2.3 Complexity Assumptions

In this subsection, we review some related complexity assumptions which are
used in the security proofs for our schemes.

The security of our unidirectional PRE scheme is based on the computational
Diffie-Hellman (CDH) assumption.

Definition 2. Let G be a cyclic multiplicative group with prime order q. The
CDH problem in group G is, given a tuple (g, ga, gb) ∈ G3 with unknown a, b

$←
Z∗q , to compute gab.

2. If (pk, CT) is a derivative of (pk∗, CT∗) and (pk′, CT′) is a derivative of (pk, CT),
then (pk′, CT′) is a derivative of (pk∗, CT∗).

3. If A has issued a re-encryption query 〈pk, pk′, CT〉 and obtained the resulting
re-encryption ciphertext CT′, then (pk′, CT′) is a derivative of (pk, CT).

4. If A has issued a re-encryption key generation query 〈pk, pk′〉 (or 〈pk′, pk〉 if Π
is bidirectional PRE scheme), and Decrypt(sk′, CT′) ∈ {m0, m1} (here sk′ is the
secret key with respect to pk′), then (pk′, CT′) is a derivative of (pk, CT).



Definition 3. For a polynomial-time adversary B, we define his advantage in
solving the CDH problem in group G as

AdvCDH
B , Pr

[B(g, ga, gb) = gab
]
,

where the probability is taken over the randomly choices of a, b and the random
bits consumed by B. We say that the (t, ε)-CDH assumption holds in group G if
no t-time adversary B has advantage at least ε in solving the CDH problem in
group G.

Bao et al. [5] introduced a variant of the CDH problem named divisible
computation Diifie-Hellman (DCDH) problem. The DCDH problem in group G
is, given (g, g

1
a , gb) ∈ G3 with unknown a, b

$← Z∗q , to compute gab. In [5], Bao
et al. presented the relation between CDH problem and DCDH problem in the
following lemma:

Lemma 1. The DCDH problem in group G is equivalent to the CDH problem
in the same group.

The security of our bidirectional scheme is based on a variant of the CDH
problem named modified computational Diffie-Hellman (mCDH) problem, which
has been recently used to construct a multi-use unidirectional proxy re-signatures
[21].

Definition 4. Let G be a cyclic multiplicative group with prime order q. The
mCDH problem in group G is, given a tuple (g, g

1
a , ga, gb) ∈ G4 with unknown

a, b
$← Z∗q , to compute gab.

Definition 5. For a polynomial-time adversary B, we define his advantage in
solving the mCDH problem in group G as

AdvmCDH
B , Pr

[
B(g, g

1
a , ga, gb) = gab

]
,

where the probability is taken over the randomly choices of a, b and the random
bits consumed by B. We say that the (t, ε)-mCDH assumption holds in group G
if no t-time adversary B has advantage at least ε in solving the mCDH problem
in group G.

3 Proposed Bidirectional Proxy Re-Encryption Scheme

In this section, we first propose our bidirectional PRE scheme, and then give a
comparison between our scheme and other bidirectional PRE schemes.



3.1 Proposed Scheme: ΠBi

We now present the detailed construction of our bidirectional PRE scheme. For
notational simplicity, we denoted this bidirectional PRE scheme by ΠBi. The
proposed scheme consists of the following algorithms:

GlobalSetup(κ): Given a security parameter κ, choose two big primes p and
q such that q|p − 1 and the bit-length of q is κ. Let g be a generator of
group G, which is a subgroup of Z∗q with order q. Besides, choose four hash
functions H1,H2,H3 and H4 such that H1 : {0, 1}l0×{0, 1}l1×G→ Z∗q ,H2 :
G → {0, 1}l0+l1 ,H3 : {0, 1}∗ → Z∗q and H4 : G × G → {0, 1}l0+l1 . Here l0
and l1 are security parameters, and the message space is {0, 1}l0 . The global
parameters are

param = (q,G, g, H1,H2,H3,H4, l0, l1).

KeyGen(i): To generate the public/secret key pairs for user i, this key generation

algorithm picks a random xi
$← Z∗q , and then sets pki = gxi and ski = xi.

ReKeyGen(ski, skj): On input two secret keys ski = xi and skj = xj , this
algorithm outputs the bidirectional re-encryption key rki,j = xj/xi mod q.

Encrypt(param, pk, m): On input the public parameters param, a public key
pk and a plaintext m ∈ {0, 1}l0 , this algorithm works as below:

1. Pick u
$← Z∗q , ω

$← {0, 1}l1 , and compute r = H1(m,ω, pk).
2. Compute D = pku, E = pkr, F = H2(gr)⊕(m‖ω), s = u+r·H3(D, E, F )

mod q.
3. Output the ciphertext CT = (D, E, F, s).

ReEncrypt(rki,j ,CTi, pkj): On input a re-encryption key rki,j = xj

xi
, a second-

level ciphertext CTi under public key pki, this algorithm re-encrypt this
ciphertext under public key pkj as follows:

1. Parse CTi as CTi = (D, E, F, s).
2. Check whether pks

i = D · EH3(D,E,F ) holds. If not, output ⊥.
3. Otherwise, compute E′ = Erki,j = g(r·xi)·xj/xi = gr·xj , F ′ = F ⊕

H4(E′, gxi/xj ), and output the first-level ciphertext CTj = (pki, E
′, F ′).

Decrypt(CT, sk): On input a secret key sk = x and ciphertext CT, this algo-
rithm works according to two cases:
– CT is a second-level ciphertext CT = (D, E, F, s): If (gx)s = D·EH3(D,E,F )

does not hold, output ⊥, else compute m‖ω = F ⊕H2(E
1
x ), and return

m if E = (gx)H1(m,ω,gx) holds and ⊥ otherwise.
– CT is a first-level ciphertext CT = (pki, E

′, F ′): Recall that we only
concentrate on the single-hop scheme, hence pki should be different from
the original public key gx. To decrypt this ciphertext, first compute
m‖ω = F ⊕ H2(E′ 1x ) ⊕ H4(E′, pk

1/x
i ). If E′ = (gx)H1(m,ω,pki) holds

return m; otherwise return ⊥.



3.2 Comparison

In this subsection, we provide a comparison of our scheme ΠBi with other exist-
ing bidirectional PRE schemes. To conduct a fair comparison, we choose Canetti
and Hohenberger’s PRE schemes [10], which are also bidirectional and achieve
chosen-ciphertext security. Two PRE schemes are presented in [10], including one
secure in the random oracle model (refereed to as CH Scheme I) and another one
secure in the standard model (refereed to as CH Scheme II). Table 1 gives a com-
parison between our scheme ΠBi and these two schemes. The comparison results
indicate that our scheme is much more efficient than the other two schemes. For
example, the encryption in CH Scheme I needs 4 exponentiations, 1 pairing and
1 one-time signature signing, while the encryption in our scheme ΠBi involves
only 3 exponentiations. It’s worth pointing out that, the computational cost and
the ciphertext size in our scheme decrease with re-encryption, while those in
CH Schemes I and II remain unchanged. Note that the computational cost and
the ciphertext in some schemes such as [1, 2, 11, 20] increase with re-encryption.
Although the ciphertext in our scheme involves less group elements than that in
CH Schemes I and II, we do not claim that our ciphertext is shorter than theirs,
since their schemes are implemented in the bilinear group which enables shorter
representation of a group element. However, the pairings in bilinear group in
turn add heavy computational overhead to their schemes. Both our scheme and
CH Scheme I are provably secure in the random oracle model, while CH Scheme
II can be proved without random oracles.

Schemes CH Scheme I CH Scheme II Our ΠBi

Encrypt 1tp + 4te + 1ts 1tp + 3te + 1tme + 1ts 3te
Comput. Re-Encrypt 4tp + 1te + 1tv 4tp + 2te + 1tv 4te

Cost 2nd-level CiphTxt 5tp + 1te + 1tv 5tp + 2te + 1tv 4teDecrypt
1st-level CiphTxt 5tp + 1te + 1tv 5tp + 2te + 1tv 3te

CiphTxt 2nd-level CiphTxt 1|pks|+3|Ge|+1|GT |+1|σs| 1|pks|+3|Ge|+1|GT |+1|σs| 3|G|+1|Zq|
Length 1st-level CiphTxt 1|pks|+3|Ge|+1|GT |+1|σs| 1|pks|+3|Ge|+1|GT |+1|σs| 3|G|
Without Random Oracles? × X ×
Underlying Assumptions DBDH DBDH mCDH

Note: tp, te and tme represent the computational cost of a bilinear pairing, an exponentiation and a multi-

exponentiation respectively, while ts and tv represent the computational cost of a one-time signature
signing and verification respectively. |G|, |Zq|, |Ge| and |GT | denote the bit-length of an element in
groups G, Zq, Ge and GT respectively. Here G and Zq denote the groups used in our scheme, while
Ge and GT are the bilinear groups used in CH scheme I and II, i.e., the bilinear pairing is e : Ge×
Ge → GT . Finally, |pks| and |σs| denote the bit length of the one-time signature’s public key and a
one-time signature respectively.

Table 1. Efficiency Comparison between Canetti-Hohenberger PRE Schemes and Our
Scheme ΠBi

3

3 In Table 1, we neglect some operations such as hash function evaluation, modular
multiplication and XOR, since the computational cost of these operations is far less
than that of exponentiations or pairings. Note that, using the technique in [9, 18,



3.3 Security Analysis

In this subsection, we prove the IND-PRE-CCA security for our scheme ΠBi in
the random oracle model.

Theorem 1. Our PRE scheme ΠBi is IND-PRE-CCA secure in the random
oracle model, assuming the mCDH assumption holds in group G and the Schnorr
signature is existential unforgeable against chosen message attack (EUF-CMA).
Concretely, if there exists an adversary A, who asks at most qHi

random oracle
quires to Hi with i ∈ {1, · · · , 4}, and breaks the (t, qu, qc, qrk, qre, qd, ε)-IND-
PRE-CCA security of our scheme ΠBi, then, for any 0 < ν < ε, there exists

– either an algorithm B which can solve the (t′, ε′)-mCDH problem in G with

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 4qre + 3qd + (2qd + qre)qH1)te,

ε′ ≥ 1
qH2

(
2(ε− ν)− qH1 + (qH1 + qH2)qd

2l0+l1
− qre + 2qd

q

)
,

where te denotes the running time of an exponentiation in G;
– or an attacher who breaks the EUF-CMA security of the Schnorr signature

with advantage ν within time t′.

Proof. Without loss of generality, we assume that the Schnorr signature is (t′, ν)-
EUF-CMA secure for some probability 0 < ν < ε. Suppose there exists a t-time
adversary A who can break the IND-PRE-CCA security of scheme ΠBi with
advantage ε−ν. Then we show how to construct an algorithm B which can solve
the (t′, ε′)-mCDH problem in group G.

Suppose B is given as input an mCDH challenge tuple (g, g
1
a , ga, gb) ∈ G4

with unknown a, b
$← Z∗q . Algorithm B’s goal is to output gab. Algorithm B acts

as the challenger and plays the IND-PRE-CCA game with adversary A in the
following way.

Setup. Algorithm B gives (q,G, g, H1,H2,H3,H4, l0, l1) to A. Here H1,H2,H3

and H4 are random oracles controlled by B.

Hash Oracle Queries. At any time adversary A can issue the random oracle
queries H1,H2, H3 and H4. Algorithm B maintains four hash lists H list

1 ,H list
2 ,

H list
3 and H list

4 which are initially empty, and responds as below:

– H1 queries: On receipt of an H1 queries on (m,ω, pk), if this query has
appeared on the H list

1 in a tuple (m,ω, pk, r), return the predefined value r as

the result of the query. Otherwise, choose r
$← Z∗q , add the tuple (m,ω, pk, r)

to the list H list
1 and respond with H1(m,ω, pk) = r.

19], both the re-encryption and decryption in CH scheme I and II can further save
two pairings, at the cost of several exponentiation operations.



– H2 queries: On receipt of an H2 query R ∈ G, if this query has appeared
on the H list

2 in a tuple (R, β), return the predefined value β as the result of

the query. Otherwise, choose β
$← {0, 1}l0+l1 , add the tuple (R, β) to the list

H list
2 and respond with H2(R) = β.

– H3 queries: On receipt of an H3 query (D, E, F ), if this query has appeared
on the H list

3 in a tuple (D, E, F, γ), return the predefined value γ as the

result of the query. Otherwise, choose γ
$← Z∗q , add the tuple (D, E, F, γ) to

the list H list
3 and respond with H3(D, E, F ) = γ.

– H4 queries: On receipt of an H4 query (E′, U), if this query has appeared
on the H list

4 in a tuple (E′, U, λ), return the predefined value λ as the result

of the query. Otherwise, choose λ
$← {0, 1}l0+l1 , add the tuple (E′, U, λ) to

the list H list
4 and respond with H4(E′, U) = λ.

Phase 1. In this phase, adversary A issues a series of queries as in the definition
of the IND-PRE-CCA game. B maintains a list K list which is initially empty,
and answers these queries for A as follows:

– Uncorrupted key generation query 〈i〉. Algorithm B first picks xi
$← Z∗q and

defines pki =
(
g1/a

)xi
, ci = 0. Next, it adds the tuple (pki, xi, ci) to K list

and returns pki to adversary A. Here the bit ci is used to denote whether the
secret key with respect to pki is corrupted, i.e., ci = 0 indicates uncorrupted
and ci = 1 means corrupted.

– Corrupted key generation query 〈j〉. Algorithm B first picks xj
$← Z∗q and

defines pkj = gxj , cj = 1. Next, it adds the tuple (pkj , xj , cj) to K list and
returns (pkj , xj) to adversary A.

– Re-encryption key generation query 〈pki, pkj〉: Recall that according to the
definition of IND-PRE-CCA game, it is required that pki and pkj were gen-
erated beforehand, and either both of them are corrupted or alternately
both are uncorrupted. Algorithm B first recovers tuples (pki, xi, ci) and
(pkj , xj , cj) from K list, and then returns the re-encryption key xj/xi to A.

– Re-encryption query 〈pki, pkj ,CTi(= (D, E, F, s))〉: If pks
i 6= D ·EH3(D,E,F ),

then output ⊥. Otherwise, algorithm B responds to this query as follows:
1. Recover tuples (pki, xi, ci) and (pkj , xj , cj) from K list.
2. If ci = cj , compute E′ = Exj/xi , F ′ = F ⊕ H4(E′, gxi/xj ) and return

(E′, F ′) as the first-level ciphertext to A.
3. Else, search whether there exists a tuple (m,ω, pki, r) ∈ H list

1 such that
pkr

i = E. If there exists no such tuple, return ⊥. Otherwise, first compute

E′ = pkr
j . Next, if ci = 1 ∧ cj = 0, define F ′ = F ⊕H4(E′, g

xia

xj ); else if

ci = 0∧ cj = 1, define F ′ = F ⊕H4(E′, g
xi

axj ). Finally, return (E′, F ′) as
the first-level ciphertext to A.

– Decryption query 〈pk, CT〉: Algorithm B first recovers tuple (pk, x, c) from
list K list. If c = 1, algorithm B runs Decrypt(CT, x) and returns the result
to A. Otherwise, algorithm B works according to the following two cases:



• CT is a second-level ciphertext CT = (D, E, F, s): If pks 6= D·EH3(D,E,F ),
return ⊥ to A. Otherwise, search lists H list

1 and H list
2 to see whether there

exist (m,ω, pk, r) ∈ H list
1 and (R, β) ∈ H list

2 such that

pkr = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A. Otherwise, return ⊥.
• CT is a first-level ciphertext CT = (pk′′, E′, F ′): Algorithm B acts as

follows:
1. Recover tuples (pk, x, c) and (pk′′, x′′, c′′) from K list.
2. Define U according to the following three cases:

∗ If c = c′′: Define U = g
x′′
x ;

∗ If c = 0 ∧ c′′ = 1: Define U = g
x′′a

x ;
∗ If c = 1 ∧ c′′ = 0: Define U = g

x′′
ax .

3. search lists H list
1 and H list

2 to see whether there exist (m,ω, pk, r) ∈
H list

1 and (R, β) ∈ H list
2 such that

pkr = E′, β ⊕ (m‖ω)⊕H4(E′, U) = F ′ and R = gr.

If yes, return m to A. Otherwise, return ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a target public key
pk∗ and two equal-length messages m0,m1 ∈ {0, 1}l0 . Algorithm B responds as
follows:

1. Recover tuple (pk∗, x∗, c∗) from K list. Recall that according to the con-
straints described in IND-PRE-CCA game, K list should contain this tuple,
and c∗ is equal to 0 (indicating that pk∗ = g

x∗
a ).

2. Pick e∗, s∗ $← Z∗q , and compute D∗ =
(
gb

)−e∗x∗
(
g

1
a

)x∗s∗

and E∗ =
(
gb

)x∗ .

3. Pick F ∗ $← {0, 1}l0+l1 and define H3(D∗, E∗, F ∗) = e∗.

4. Pick δ
$← {0, 1}, ω∗ $← {0, 1}l1 , and implicitly define H2(gab) = (mδ‖ω∗)⊕F ∗

and H1(mδ, ω
∗, pk∗) = ab (Note that algorithm B knows neither ab nor gab).

5. Return CT∗ = (D∗, E∗, F ∗, s∗) as the challenged ciphertext to adversary A.

Note that by the construction given above, by letting u∗ , s∗ − abe∗ and
r∗ , ab, we can see that the challenged ciphertext CT∗ has the same distribution
as the real one, since H2 acts as a random oracle, and

D∗ =
(
gb

)−e∗x∗
(
g

1
a

)x∗s∗

=
(
g

x∗
a

)s∗−abe∗

= (pk∗)s∗−abe∗ = (pk∗)u∗
,

E∗ =
(
gb

)x∗
=

(
g

x∗
a

)ab

= (pk∗)ab = (pk∗)r∗
,

F ∗ = H2(gab)⊕ (mδ‖ω∗) = H2(gr∗)⊕ (mδ‖ω∗),
s∗ = (s∗ − abe∗) + abe∗ = u∗ + ab ·H3(D∗, E∗, F ∗) = u∗ + r∗ ·H3(D∗, E∗, F ∗).



Phase 2. Adversary A continues to issue the rest of queries as in Phase 1, with
the restrictions described in the IND-PRE-CCA game. Algorithm B responds to
these queries for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} to B. Algorithm B
randomly picks a tuple (R, β) from the list H list

2 and outputs R as the solution
to the given mCDH instance.

Analysis: Now let’s analyze the simulation. The main idea of the analysis is
borrowed from [8]. We first evaluate the simulations of the random oracles. From
the constructions of H3 and H4, it is clear that the simulations of H3 and H4

are perfect. As long as adversary A does not query (mδ, ω
∗, pk∗) to H1 nor gab

to H2, where δ and ω∗ are chosen by B in the Challenge phase, the simulations
of H1 and H2 are perfect. By AskH∗1 we denote the event that (mδ, ω

∗) has been
queried to H1. Also, by AskH∗2 we denote the event that gab has been queried to
H2.

As argued before, the challenged ciphertext provided for A is identically
distributed as the real one from the construction. From the description of the
simulation, it can be seen that the responses to A’s re-encryption key queries
are also perfect.

Next, we analyze the simulation of the re-encryption oracle. The responses
to adversary A’s re-encryption queries are perfect, unless A can submit valid
second-level ciphertexts without querying hash function H1(denote this event by
ReEncErr). However, since H1 acts as a random oracle and adversary A issues
at most qre re-encryption queries, we have

Pr[ReEncErr] ≤ qre

q
.

Now, we evaluate the simulation of the decryption oracle. The simulation
of the decryption oracle is perfect, with the exception that simulation errors
may occur in rejecting some valid ciphertexts. Fortunately, these errors are not
significant as shown below: Suppose that (pk, CT), where CT = (D, E, F, s) or
CT = (E, F ), has been issued as a valid ciphertext. Even CT is valid, there
is a possibility that CT can be produced without querying gr to H2, where
r = H1(m,ω, pk). Let Valid be an event that CT is valid, and let AskH2 and
AskH1 respectively be events that gr has been queried to H2 and (m,ω, pk)
has been queried to H1 with respect to (E, F ) = (pkr,H2(gr)⊕ (m‖ω)), where
r = H1(m,ω, pk). We then have

Pr[Valid|¬AskH2] = Pr[Valid ∧ AskH1|¬AskH2] + Pr[Valid ∧ ¬AskH1|¬AskH2]
≤ Pr[AskH1|¬AskH2] + Pr[Valid|¬AskH1 ∧ ¬AskH2]

≤ qH1

2l0+l1
+

1
q
,

and similarly Pr[Valid|¬AskH1] ≤ qH2

2l0+l1
+

1
q
. Thus we have



Pr[Valid|(¬AskH1∨¬AskH2)] ≤ Pr[Valid|¬AskH1]+Pr[Valid|¬AskH2] ≤ qH1 + qH2

2l0+l1
+

2
q
.

Let DecErr be the event that Valid|(¬AskH1 ∨ ¬AskH2) happens during the
entire simulation. Then, since qd decryption oracles are issued, we have

Pr[DecErr] ≤ (qH1 + qH2)qd

2l0+l1
+

2qd

q
.

Now let Good denote the event AskH∗2∨ (AskH∗1|¬AskH∗2)∨ReEncErr∨DecErr.
If event Good does not happen, it is clear that adversary A can not gain any
advantage in guessing δ due to the randomness of the output of the random oracle
H2. Namely, we have Pr[δ = δ′|¬Good] = 1

2 . Hence, by splitting Pr[δ′ = δ], we
have

Pr[δ′ = δ] = Pr[δ′ = δ|¬Good]Pr[¬Good] + Pr[δ′ = δ|Good]Pr[Good]

≤ 1
2
Pr[¬Good] + Pr[Good]

=
1
2
(1− Pr[Good]) + Pr[Good]

=
1
2

+
1
2
Pr[Good]

and

Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Good]Pr[¬Good] =
1
2
(1− Pr[Good]) =

1
2
− 1

2
Pr[Good].

Then we have ∣∣Pr[δ′ = δ]− 1
2

∣∣ ≤ 1
2
Pr[Good].

By definition of the advantage (ε− ν) for the IND-PRE-CCA adversary, we
then have

ε− ν =
∣∣Pr[δ′ = δ]− 1

2

∣∣

≤ 1
2
Pr[Good] =

1
2

(Pr[AskH∗2 ∨ (AskH∗1|¬AskH∗2) ∨ ReEncErr ∨ DecErr])

≤ 1
2

(Pr[AskH∗2] + Pr[AskH∗1|¬AskH∗2] + Pr[ReEncErr] + Pr[DecErr]) .

Since Pr[ReEncErr] ≤ qre

q , Pr[DecErr] ≤ (qH1+qH2 )qd

2l0+l1
+ 2qd

q and Pr[AskH∗1|¬AskH∗2] ≤
qH1

2l0+l1
, we obtain

Pr[AskH∗2] ≥ 2(ε− ν)− Pr[AskH∗1|¬AskH∗2]− Pr[DecErr]− Pr[ReEncErr]

≥ 2(ε− ν)− qH1

2l0+l1
− (qH1 + qH2)qd

2l0+l1
− 2qd

q
− qre

q

= 2(ε− ν)− qH1 + (qH1 + qH2)qd

2l0+l1
− qre + 2qd

q
.



Meanwhile, if event AskH∗2 happens, algorithm B will be able to solve the
mCDH instance, and consequently, we obtain

ε′ ≥ 1
qH2

(
2(ε− ν)− qH1 + (qH1 + qH2)qd

2l0+l1
− qre + 2qd

q

)
.

From the description of the simulation, the running time of algorithm B can
be bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 4qre + 3qd + (2qd + qre)qH1)te.

This completes the proof of Theorem 1.

4 Proposed Unidirectional Proxy Re-Encryption Scheme

In this section, based on our bidirectional PRE scheme, we present a CCA-
secure unidirectional PRE scheme without parings. For notational convenience,
we denoted this scheme by ΠUni.

4.1 Proposed Scheme: ΠUni

The proposed scheme ΠBi consists of the following algorithms:

GlobalSetup(κ): The global setup algorithm is similar to that of scheme ΠBi,
with the exceptions that, H1 and H4 are defined as H1 : {0, 1}l0×{0, 1}l1 →
Z∗q and H4 : Z∗q×G→ Z∗q , and another hash function H5 is chosen such that
H5 : G3 → Z∗q . The global parameters are

param = (q,G, g, H1,H2,H3,H4,H5, l0, l1).

KeyGen(i): To generate the public/secret key pair for user i, this key generation

algorithm picks a random xi
$← Z∗q , and then sets pki = gxi and ski = xi.

ReKeyGen(ski, pkj): On input user i’s secret key ski = xi and user j’s public
key pkj , this algorithm generates the re-encryption key rki,j from user i to
j as below:
1. Pick v′ $← Z∗q . Compute v = H4(v′, pkj).
2. Compute V = gv, and hj = H5(V, pkj , pkv

j ).

3. Define rk
〈1〉
i,j = hj

xi
. Return rki,j = (rk〈1〉i,j , V ).

Encrypt(param, pk, m): On input the public parameters param, a public key
pk and a plaintext m ∈ {0, 1}l0 , this algorithm works as below:

1. Pick u
$← Z∗q , ω

$← {0, 1}l1 , and compute r = H1(m,ω).
2. Compute D = pku, E = pkr, F = H2(gr)⊕(m‖ω), s = u+r·H3(D, E, F )

mod q.
3. Output the ciphertext CT = (D, E, F, s).



ReEncrypt(rki,j ,CTi, pkj): On input a re-encryption key rki,j , a second-level
ciphertext CTi under public key pki, this algorithm re-encrypt this cipher-
text under public key pkj as follows:

1. Parse CTi as CTi = (D, E, F, s) and rki,j as rki,j = (rk〈1〉i,j , V ).
2. Check whether pks

i = D · EH3(D,E,F ) holds. If not, output ⊥.

3. Otherwise, compute E′ = Erk
〈1〉
i,j = g

(r·xi)·hj
xi = gr·hj , and output the

first-level ciphertext CTj = (E′, F, V ).
Decrypt(CT, sk): On input a secret key sk = x and ciphertext CT, this algo-

rithm works according to two cases:
– CT is a second-level ciphertext CT = (D, E, F, s): If (gx)s = D·EH3(D,E,F )

does not hold, output ⊥. Otherwise, compute (m‖ω) = F⊕H2(E
1
x ), and

return m if E = (gx)H1(m,ω) holds; else return ⊥.
– CT is a first-level ciphertext CT = (E′, F, V ): Compute h = H5(V, pk, V x)

and (m‖ω) = F ⊕ H2(E′ 1h ), and check whether E′ = gH1(m,ω)·h holds.
If yes, return m; otherwise, return ⊥.

It can be verified that, given the re-encryption key rki,j = (H5(V,pkj ,pkv
j )

xi
, V ),

the proxy is unable to generate the re-encryption key rkj,i for the opposite direc-
tion, and hence it is impossible for him to convert a ciphertext intended for uses
j into a ciphertext intended for user j. Therefore, our scheme is unidirectional.

Next, we compare our scheme ΠUni with existing CCA-secure unidirectional
PRE schemes. Till now, there exist two such schemes: one is in public key scenar-
ios [20] and the other is in identity-based settings [1, 2]. To conduct a fair com-
parison, we give a comparison between our scheme ΠUni and Libert-Vergnaud’s
scheme [20] (denoted by LV Scheme), since both are in public key scenarios. The
comparison results indicate that our scheme ΠUni is much more efficient than
LV Scheme. It is worth noting that the computational cost and the ciphertext
length in our scheme decrease with re-encryption, while those in LV Scheme in-
crease with re-encryption. The security of our scheme is related to the standard
and well-studied CDH assumption, while LV Scheme is proved under a stronger
and less-studied assumption named 3-quotient decision bilinear Diffie-Hellman
(3-QDBDH) assumption. A limitation of our scheme is that it is proved in the
random oracle model, while LV Scheme can be proved in the standard model.

4.2 Security Analysis

In this subsection, we prove the chosen-ciphertext security for scheme ΠUni under
the CDH assumption.

Theorem 2. Our scheme ΠUni is IND-PRE-CCA secure in the random ora-
cle model, assuming the CDH assumption holds in group G and the Schnorr
signature is EUF-CMA secure. Concretely, if there exists an adversary A, who
asks at most qHi

random oracle quires to Hi with i ∈ {1, · · · , 5}, and breaks
the (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-CCA of our scheme ΠUni, then, for any
0 < ν < ε, there exists



Schemes Libert-Vergnaud’s Scheme Our ΠBi

Encrypt 2te + 1tme + 1ts 3te
Comput. Re-Encrypt 2tp + 4te + 1tv 3te

Cost 2nd-level CiphTxt 3tp + 2te + 1tv 4teDecrypt
1st-level CiphTxt 5tp + 2te + 1tv 3te

CiphTxt 2nd-level CiphTxt 1|pks|+2|Ge|+1|GT |+1|σs| 3|G|+1|Zq|
Length 1st-level CiphTxt 1|pks|+4|Ge|+1|GT |+1|σs| 3|G|
Without Random Oracles? X ×
Underlying Assumptions 3-QDBDH CDH

Table 2. Efficiency Comparison between Scheme ΠUni and Libert-Vergnaud’s Scheme

– either an algorithm B which can solve the (t′, ε′)-CDH problem in G with

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 2qrk + 5qre + qd + qH1qre + (qH4 + 2qH1)qd)te,

ε′ ≥ 1
qH2

(
2(ε− ν)

e(1 + qrk)
− qH1 + (qH1 + qH2 + qH4)qd

2l0+l1
− qre + 3qd

q

)
,

where te denotes the running time of an exponentiation in group G.
– or an attacher who breaks the EUF-CMA security of the Schnorr signature

with advantage ν within time t′.

Proof. Without loss of generality, we assume that the Schnorr signature is (t′, ν)-
EUF-CMA secure for some probability 0 < ν < ε. Since the CDH problem is
equivalent to the DCDH problem, for convenience, we here prove this theorem
under the DCDH problem. Suppose there exists a t-time adversary A who can
break the IND-PRE-CCA security of scheme ΠUni with advantage ε − ν. Then
we show how to construct an algorithm B which can solve the (t′, ε′)-DCDH
problem in group G.

Suppose B is given as input a DCDH challenge tuple (g, g
1
a , gb) with unknown

a, b
$← Z∗q . Algorithm B’s goal is to output gab. Algorithm B acts as the challenger

and plays the IND-PRE-CCA game with adversary A in the following way.

Setup. Algorithm B gives (q,G, g, H1,H2,H3,H4,H5, l0, l1) toA. Here H1,H2,H3,
H4 and H5 are random oracles controlled by B.

Hash Oracle Queries. At any time adversary A can issue the random oracle
queries Hi with i ∈ {1 · · · , 5}. Algorithm B maintains five hash lists H list

i with
i ∈ {1 · · · , 5}, which are initially empty. B responds H2 and H3 queries in the
same way as in Theorem 1, and responds the other hash queries as below:

– H1 queries: On receipt of an H1 queries on (m,ω), if this query has appeared
on the H list

1 in a tuple (m,ω, r), return the predefined value r as the result

of the query. Otherwise, choose r
$← Z∗q , add the tuple (m,ω, r) to the list

H list
1 and respond with H1(m,ω) = r.



– H4 queries: On receipt of an H4 query (v′, pk) ∈ Z∗q × G, if this query has
appeared on the H list

4 in a tuple (v′, pk, v), return the predefined value v as

the result of the query. Otherwise, choose v
$← Z∗q , add the tuple (v′, pk, v)

to the list H list
4 and respond with H4(v′, pk) = v.

– H5 queries: On receipt of an H5 query (V, pk, S) ∈ G3, if this query has
appeared on the H list

5 in a tuple (V, pk, S, µ), return the predefined value µ as

the result of the query. Otherwise, choose µ
$← Z∗q , add the tuple (V, pk, S, µ)

to the list H list
5 and respond with H5(V, pk, S) = µ.

Phase 1. In this phase, adversary A issues a series of queries as in the definition
of the IND-PRE-CCA game. B maintains two lists K list and Rlist which are
initially empty, and answers these queries for A as follows:

– Uncorrupted key generation query 〈i〉. Algorithm B first picks xi
$← Z∗q and

flips a biased coin ci ∈ {0, 1} that yields 0 with probability θ and 1 with
probability 1− θ. If ci = 0, it defines pki =

(
g1/a

)xi ; else defines pki = gxi .
Next, it adds the tuple (pki, xi, ci) to K list and returns pki to adversary A.

– Corrupted key generation query 〈j〉. Algorithm B first picks xj
$← Z∗q and

defines pkj = gxj , cj = ‘−’. Next, it adds the tuple (pkj , xj , cj) to K list and
returns (pkj , xj) to adversary A.

– Re-encryption key generation query 〈pki, pkj〉: If Rlist has contains a tuple for
this entry (pki, pkj), return the predefined re-encryption key toA. Otherwise,
algorithm B acts as follows:
1. Recover tuples (pki, xi, ci) and (pkj , xj , cj) from K list.

2. Pick v′ $← Z∗q . Compute v = H4(v′, pkj), V = gv and hj = H5(V, pkj , pkv
j ).

3. Construct the first component rk
〈1〉
i,j according to the following cases:

• ci = 1 or ci = ‘−’: define rk
〈1〉
i,j = hj

xi
, and add (pki, pkj , (rk

〈1〉
i,j , V ), hj , 1)

into list Rlist.
• (ci = 0 ∧ cj = 1) or (ci = 0 ∧ cj = 0): pick rk

〈1〉
i,j

$← Z∗q , and add

(pki, pkj , (rk
〈1〉
i,j , V ), hj , 0) into list Rlist.

• (ci = 0 ∧ cj = ‘−’): output “failure” and abort.
4. Finally, return rki,j = (rk〈1〉i,j , V ) to A.

– Re-encryption query 〈pki, pkj ,CTi(= (D, E, F, s))〉: If pks
i 6= D ·EH3(D,E,F ),

then output ⊥. Otherwise, algorithm B responds to this query as follows:
1. Recover tuples (pki, xi, ci) and (pkj , xj , cj) from K list.
2. If (ci = 0∧ cj = ‘−’) does not hold, issue a re-encryption key generation

query 〈pki, pkj〉 to obtain rki,j , and then return ReEncrypt(rki,j ,CTi, pkj)
to A.

3. Else, search whether there exists a tuple (m,ω, pki, r) ∈ H list
1 such

that pkr
i = E. If there exists no such tuple, return ⊥. Otherwise, first

choose v′ $← Z∗q . Next, compute v = H4(v′, pkj), V = gv and hj =
H5(V, pkj , pkv

j ). Finally, define E′ = ghjr, and return (E′, F, V ) to A.



– Decryption query 〈pk, CT〉: B first recovers tuple (pk, x, c) from K list. If c = 1
or c = ‘−’, algorithm B runs Decrypt(CT, x) and returns the result to A.
Otherwise, algorithm B works according to the following two cases:
• CT is a second-level ciphertext CT = (D, E, F, s): If pks 6= D·EH3(D,E,F ),

return ⊥ to A indicating that CT is an invalid ciphertext. Otherwise,
search lists H list

1 and H list
2 to see whether there exist (m,ω, pk, r) ∈ H list

1

and (R, β) ∈ H list
2 such that

pkr = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A. Otherwise, return ⊥.
• CT is a first-level ciphertext CT = (E′, F, V ) re-encrypted from pk′:

Algorithm B first recovers tuples (pk, x, c) and (pk′, x′, c′) from K list,
and then responds according to the following three cases:
∗ If there exist a tuple (pk′, pk, (rk〈1〉, V ), h, 1) in Rlist: Compute (m‖ω) =

F ⊕H2(E′ 1h ). If E′ = gH1(m,ω)·h holds, return m, else return ⊥.
∗ If there exist a tuple (pk′, pk, (rk〈1〉, V ), h, 0) in Rlist: First, compute

E = E
′ 1

rk〈1〉 . Next, search lists H list
1 and H list

2 to see whether there
exist (m,ω, r) ∈ H list

1 and (R, β) ∈ H list
2 such that

pk′r = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A, else return ⊥.
∗ Otherwise: First search list H list

4 to see whether there exist a tuple
(v′, pk, v) ∈ H list

4 such that gv = V . If no such tuple exists, return ⊥.
Otherwise, compute h = H5(V, pk, pkv), and then search lists H list

1

and H list
2 to see whether there exist (m,ω, r) ∈ H list

1 and (R, β) ∈
H list

2 such that

pkh = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A, else return ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a target public key
pk∗ and two equal-length messages m0,m1 ∈ {0, 1}l0 . Algorithm B responds as
follows:

1. Recover tuple (pk∗, x∗, c∗) from K list. Note that according to the constraints
described in IND-PRE-CCA game, c∗ must be equal to 1 or 0. If c∗ = 1,
B outputs “failure” and abort. Otherwise, it means that c∗ = 0, and B
proceeds to execute the rest steps.

2. Pick e∗, s∗ $← Z∗q , and compute D∗ =
(
gb

)−e∗x∗
(
g

1
a

)x∗s∗

and E∗ =
(
gb

)x∗ .

3. Pick F ∗ $← {0, 1}l0+l1 and define H3(D∗, E∗, F ∗) = e∗.

4. Pick δ
$← {0, 1}, ω∗ $← {0, 1}l1 , and implicitly define H2(gab) = (mδ‖ω∗)⊕F ∗

and H1(mδ, ω
∗) = ab (Note that algorithm B knows neither ab nor gab).

5. Return CT∗ = (D∗, E∗, F ∗, s∗) as the challenged ciphertext to adversary A.



Again, let u∗ , s∗ − abe∗ and r∗ , ab, it can be easily verified that the
challenged ciphertext CT∗ has the same distribution as the real one.

Phase 2. Adversary A continues to issue the rest of queries as in Phase 1, with
the restrictions described in the IND-PRE-CCA game. Algorithm B responds to
these queries for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} to B. Algorithm B
randomly picks a tuple (R, β) from the list H list

2 and outputs R as the solution
to the given DCDH instance.

Analysis: Similarly to the analysis in Theorem 1, we can have that algorithm
B’s advantage against the DCDH challenge is at least

ε′ ≤ 1
qH2

(
2(ε− ν)

e(1 + qrk)
− qH1 + (qH1 + qH2 + qH4)qd

2l0+l1
− qre + 3qd

q

)
,

and its time complexity is bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 2qrk + 5qre + qd + qH1qre + (qH4 + 2qH1)qd)te.

This completes the proof of Theorem 2.

5 Conclusions

We presented two direct constructions of CCA-secure proxy re-encryption schemes,
including one bidirectional scheme and one unidirectional scheme. Both schemes
shares the following distinguished features: (i) no bilinear pairing computation
is involved; (ii) the ciphertext size and the computational cost decrease with
re-encryption. Thus, compared with existing CCA-secure proxy re-encryption
schemes, our scheme is highly efficient.

We notice that our schemes is only single-hop and can only be proved in
the random oracle model. It would be interesting to construct a PRE scheme
which is multi-hop, CCA-secure in the standard model, and yet without pairings.
Another interesting question is to present a unidirectional CCA-secure PRE
scheme without parings, and yet is collusion-safe [1, 2], i.e., the proxy and the
delegatee cannot recover the delegator’s secret key.
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