
Chosen-Ciphertext Secure Proxy Re-Encryption Schemes

without Pairings

Jian Weng1,2,3, Robert H. Deng1, Shengli Liu3, Kefei Chen3, Junzuo Lai3, Xu An Wang4

1School of Information Systems, Singapore Management University, Singapore 178902
2 Department of Computer Science, Jinan University, Guangzhou 510632, P.R. China

3Dept. of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
4Key Laboratory of Information and Network Security, Engineering College of Chinese Armed Police Force.

cryptjweng@gmail.com

Abstract

Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss, allows a
semi-trusted proxy to convert a ciphertext originally intended for Alice into an en-
cryption of the same message intended for Bob. PRE systems can be categorized into
bidirectional PRE (in which the delegation from Alice to Bob also allows re-encryption
from Bob to Alice) and unidirectional PRE (in which the delegation does not apply
in the opposite direction). In their ACM CCS’07 paper, Canetti and Hohenberger
presented a bidirectional PRE scheme secure against chosen-ciphertext attack (CCA),
and left an important open problem to construct a CCA-secure PRE scheme without
pairings. In this paper, we solve this open problem by presenting two direct construc-
tions of CCA-secure PRE schemes without pairings: one is bidirectional and the other
is unidirectional. Both schemes are fairly efficient due to two distinguished features:
(i) they do not use the costly bilinear pairings; (ii) the computational cost and the
ciphertext length decrease with re-encryption. In contrast, the existing CCA-secure
PRE schemes do not share these desirable features.

Keywords: Proxy re-encryption, bilinear pairing, chosen-ciphertext security.

1 Introduction

1.1 Background

Imagine that one day you are on vacation and is inconvenient to access your email.
You would wish to have the mail server forward your encrypted email messages to your
colleague Bob, who can then read the them using his own secret key. A naive way is
to have the mail server store your secret key and act as follows: when an encrypted
email message for you arrives, the mail server decrypts it using the stored secret key
and re-encrypts the plaintext using Bob’s public key. However, such a solution is highly
undesirable, especially in the case that the email server is untrustworthy, since the server
learns both the plaintext and your secret key.

Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss [4], is a novel
solution to the above scenario. In a PRE system, a proxy is given a re-encryption key
rki,j so that it can convert a ciphertext under public key pki into a ciphertext of the
same plaintext under a different public key pkj . The proxy, however, learns nothing

1

about the plaintext under either key. Now, as to the aforementioned scenario, you can
have the email server act as a proxy, and give it the re-encryption key instead of your
secret key. Then the email server translates encrypted email messages intended to you
into those encrypted under Bob’s public key, without learning the content of the email
messages. Proxy re-encryptions find many other practical applications, such as distributed
file systems, outsourced filtering of encrypted spam, and access control over network
storage [1, 2, 23].

Blaze, Bleumer and Strauss [4] categorized two types of PRE schemes: bidirectional
PRE (in which the re-encryption key rki,j allows the proxy to convert ciphertexts under
pki into ciphertexts under pkj and vice versa) and unidirectional PRE (in which the rki,j

allows the proxy to convert only from pki to pkj). Blaze et al. [4] proposed the first bidirec-
tional PRE scheme in 1998. In 2005, Ateniese et al. [1,2] presented a unidirectional PRE
scheme based on bilinear pairings. Both schemes are only secure against chosen-plaintext
attack (CPA). However, applications often require security against chosen-ciphertext at-
tacks (CCA).

To fill this gap, Canetti and Hohenberger [10] presented an elegant construction of
CCA-secure bidirectional PRE scheme. Later, Libert and Vergnaud [20] presented a
unidirectional PRE scheme with replayable chosen-ciphertext (RCCA) security. Both of
these constructions rely on bilinear pairings. In spite of the recent advances in implemen-
tation technique, compared with standard operations such as modular exponentiation in
finite fields [8], the pairing computation is still considered as a very expensive operation.
It would be desirable for cryptosystems to be constructed without relying on pairings,
especially in computation resource limited settings. In view of this, Canetti and Hohen-
berger left an important open problem in [10], i.e., how to construct a CCA-secure proxy
re-encryption scheme without pairings.

1.2 Our Contributions

In this paper, we first circumvent several obstacles and construct a bidirectional PRE
scheme without pairings. Based on the modified computational Diffie-Hellman (mCDH)
problem, we prove its CCA security in the random oracle model. Compared with ex-
isting CCA-secure bidirectional proxy re-encryption schemes, our scheme is much more
efficient due to the following facts: (i) our scheme does not use the costly bilinear pair-
ing; (ii) the computational cost and the ciphertext length in our scheme decrease with
re-encryption. In contrast, the existing CCA-secure bidirectional PRE schemes cannot
share these desirable features.

Based on our bidirectional PRE scheme, we further propose a unidirectional PRE
scheme without pairings. The chosen-ciphertext security of this scheme can be proved
under the well-studied computational Diffie-Hellman (CDH) assumption. Again, the com-
putational cost and the ciphertext length in our scheme decrease with re-encryption,
whereas those in the existing unidirectional PRE schemes increase with re-encryption.

1.3 Related Works

Boneh, Goh and Matsuo [7] described a hybrid proxy re-encryption system based on
the ElGamal-type public key encryption system [13] and Boneh-Boyen’s identity-based
encryption system [3]. Recently, Libert and Vergnaud [22] proposed a traceable proxy
re-encryption system, in which a proxy that leaks its re-encryption key can be identified
by the delegator. Green and Ateniese [15] considered proxy re-encryption in identity-
based scenarios: based on Boneh and Franklin’s identity-based encryption system [6],

2

they presented the first CPA and CCA-secure identity-based proxy re-encryption (IB-
PRE) schemes in the random oracle model. Later, Chu and Tzeng [11] presented the
constructions of CPA and CCA-secure IB-PRE schemes without random oracles.

Another kind of cryptosystems related to proxy re-encryption is the proxy encryption
cryptosystem [12,17,24]. In NDSS’03, Dodis and Ivan [12] presented generic constructions
of proxy encryption schemes as well as several efficient concrete schemes. It should be
noted that, as argued in [10, 20], proxy re-encryption schemes are a (strict) subset of
proxy encryption schemes. In proxy encryption systems, a delegator allows a delegatee
to decrypt ciphertexts intended for her with the help of a proxy by providing them with
shares of her private key. This approach requires the delegatee to store an additional
secret for each delegation. In contrast, the delegatee in proxy re-encryption schemes only
needs to have its own decryption key.

Proxy re-encryption should not be confused with the universal re-encryption [16], in
which the ciphertexts are re-randomized instead of changing the underlying public key.

1.4 Outline

The rest of the paper is organized as follows. In Section 2, we review the model of PRE
systems and some complexity assumptions related to our proposed schemes. In Section 3,
we propose a bidirectional PRE scheme without pairings, and give a comparison between
our scheme and other existing bidirectional PRE schemes. We also prove the CCA-
security of our bidirectional PRE scheme. In Section 4, based on our bidirectional PRE
scheme, we further propose a unidirectional PRE scheme without parings, and then prove
its security. Finally, Section 5 lists some open problems and concludes the paper.

2 Preliminaries

2.1 Notations

We first present some notations used in the rest of this paper. For a prime q, let Zq

denote the set {0, 1, 2, · · · , q−1}, and Z∗q denote Zq\{0}. For a finite set S, x
$← S means

choosing an element x from S with a uniform distribution.

2.2 Model of Proxy Re-Encryption Systems

In this subsection, we review the definitions and security models for bidirectional and
unidirectional proxy re-encryption systems.

Formally, a bidirectional PRE scheme consists of the following six algorithms [10]:

GlobalSetup(κ): The global setup algorithm takes as input a security parameter κ. It
outputs the global parameters param.

For brevity, we assume that param is implicitly included in the input of the following
algorithms.

KeyGen(i): The key generation algorithm generates the public/secret key pair (pki, ski)
for user i.

ReKeyGen(ski, skj): The re-encryption key generation algorithm takes as input two se-
cret keys ski and skj . It outputs a re-encryption key rki,j .

Encrypt(pk, m): The encryption algorithm takes as input a public key pk and a message
m ∈M. It outputs a ciphertext CT under pk. Here M denotes the message space.

3

ReEncrypt(rki,j ,CTi): The re-encryption algorithm takes as input a re-encryption key
rki,j and a ciphertext CTi under public key pki. It outputs a ciphertext CTj under
public key pkj .

Decrypt(sk,CT): The decryption algorithm takes as input a secret key sk and a cipertext
CT. It outputs a message m ∈M or the error symbol ⊥.

Roughly speaking, the correctness requires that, for any m ∈ M and any couple of
public/secret key pair (pki, ski), (pkj , skj), the following conditions hold:

Decrypt(ski,Encrypt(pki,m)) = m,

Decrypt (skj ,ReEncrypt(ReKeyGen(ski, skj),Encrypt(pki,m))) = m.

Remark 1. The definition of unidirectional PRE scheme is the same as that of bidirec-
tional PRE scheme, with the exception that, the re-encryption key generation algorithm
ReKeyGen takes as input the secret key ski and the public key pkj instead of skj . We
write it as ReKeyGen(ski, pkj).

Remark 2. A proxy re-encryption scheme is said to be multi-hop, if a ciphertext can
be consecutively re-encrypted, i.e., it can be re-encrypted from pk1 to pk2 and then to
pk3 and so on. In contrast, a proxy re-encryption scheme is said to be single-hop, if a
re-encrypted ciphertext can not be further re-encrypted. In this paper, we concentrate on
single-hop proxy re-encryption schemes. Besides, for consistency and easy explanation, we
adopt a term as used in [20]: the original ciphertext is called the second-level ciphertext,
while the re-encrypted ciphertext is called the first-level ciphertext.

Next, we review the security notion for PRE systems. This security notions is derived
from [10, 20], with slight modifications to allow the adaptive corruptions of users. The
chosen-ciphertext security for a PRE scheme Π can be defined via the following game
between an adversary A and a challenger C:
Setup. C takes a security parameter κ and runs algorithm GlobalSetup. It gives A the

resulting global parameters param.

Phase 1. A adaptively issues queries q1, · · · , qm where query qi is one of the following:

• Uncorrupted key generation query 〈i〉: C first runs algorithm KeyGen to obtain
a public/secret key pair (pki, ski), and then sends pki to A.

• Corrupted key generation query 〈j〉: C first runs algorithm KeyGen to obtain a
public/secret key pair (pkj , skj), and then gives (pkj , skj) to A.

• Re-encryption key generation query 〈pki, pkj〉: C first runs ReKeyGen(ski, skj)
if Π is a bidirectional PRE scheme, or algorithm ReKeyGen(ski, pkj) if Π is
unidirectional, to generate a re-encryption key rki,j . Finally, C returns rki,j to
A. Here ski and skj are secret keys with respect to pki and pkj respectively. It
is required that pki and pkj were generated beforehand by algorithm KeyGen.
As argued in [10], for bidirectional PRE schemes, we require that either both
pki and pkj are corrupted, or alternately both are uncorrupted.

• Re-encryption query 〈pki, pkj ,CTi〉: C first runs algorithm ReKeyGen to gen-
erate the re-encryption key rki,j . Then it runs ReEncrypt(rki,j ,CTi) to obtain
the resulting ciphertext CTj , which is returned to A. It is required that pki

and pkj were generated beforehand by KeyGen.
• Decryption query 〈pk, CT〉: Challenger C returns the result of Decrypt(sk,CT)

to A, where sk is the secret key with respect to pk. It is required that pk was
generated beforehand by KeyGen.

4

Challenge. Once A decides that Phase 1 is over, it outputs two equal-length plaintexts
m0,m1 ∈M and a target public key pki∗ which is generated by the uncorrupted key
generation query 〈i∗〉. For a unidirectional PRE scheme Π, it is also required that,
for any public key pkj , A has never simultaneously issued the re-encryption key
generation query 〈pki∗ , pkj〉 and the corrupted key generation query 〈j〉. Challenger
C flips a random coin δ ∈ {0, 1}, and sets the challenge ciphertext to be CT∗ =
Encrypt(pki∗ ,mδ), which is sent to A.

Phase 2. A issues additional queries qm+1, · · · , qmax where each of the queries is one of
the following:

• Uncorrupted key generation query 〈i〉: C responds as in Phase 1.
• Corrupted key generation query 〈j〉: C responds as in Phase 1. Here it is

required that pkj 6= pki∗ . Besides, if A has obtained a derivative1 (pk′,CT′) of
(pki∗ ,CT∗), it is required that pkj 6= pk′.

• Re-encryption key generation query 〈pki, pkj〉: Challenger C responds as in
Phase 1. Here it is required that, if A has obtained the secret key skj with
respect to pkj , A is disallowed to issue the re-encryption key generation query
〈pki∗ , pkj〉 (and 〈pkj , pki∗〉 if Π is bidirectional).

• Re-encryption query 〈pki, pkj ,CTi〉: Challenger C responds as in Phase 1. Here
it is required that, if A has obtained the secret key skj with respect to pkj ,
then (pki,CTi) can not be a derivative of (pki∗ ,CT∗).

• Decryption query 〈pk, CT〉: Challenger C responds as in Phase 1. Here it is
required that, (pk, CT) can not be a derivative of (pki∗ ,CT∗).

Guess. Finally, A outputs a guess δ′ ∈ {0, 1}.
We refer to adversary A as an IND-PRE-CCA adversary, and we define his advantage

in attacking scheme Π as

AdvIND-PRE-CCA
Π,A =

∣∣Pr[δ′ = δ]− 1
2

∣∣,
where the probability is taken over the random coins consumed by the challenger and
the adversary. Note that the chosen plaintext security for a PRE scheme can be similarly
defined as the above game except that the adversary is not allowed to issue any decryption
queries.

Definition 1 A PRE scheme Π is said to be (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-CCA se-
cure, if for any t-time IND-PRE-CCA adversary A who makes at most qu uncorrupted key
generation queries, at most qc corrupted key generation queries, at most qrk re-encryption
key generation queries, at most qre re-encryption queries and at most qd decryption
queries, we have AdvIND-PRE-CCA

Π,A ≤ ε.

1Derivative of (pki∗ , CT∗) is inductively defined in [10] as below:
1. (pki∗ , CT∗) is a derivative of itself;
2. If (pk, CT) is a derivative of (pki∗ , CT∗) and (pk′, CT′) is a derivative of (pk, CT), then (pk′, CT′) is

a derivative of (pki∗ , CT∗).
3. IfA has issued a re-encryption query 〈pk, pk′, CT〉 and obtained the resulting re-encryption ciphertext

CT′, then (pk′, CT′) is a derivative of (pk, CT).
4. If A has issued a re-encryption key generation query 〈pk, pk′〉 (or 〈pk′, pk〉 if Π is bidirectional PRE

scheme) to obtain the re-encryption key rk, and CT ′ = ReEncrypt(rk, CT), then (pk′, CT′) is a
derivative of (pk, CT).

5

Master Secret Security. In [1], Ateniese et al. defined another security notion, named
master secret security, for unidirectional PRE schemes. This security notion catches the
intuition that, even if the dishonest proxy colludes with the delegatee, it is still impossible
for them to derive the delegator’s secret key. Similarly, we can define this security notion
for a C-PRE scheme Π via the following game:

Setup. Challenger C runs algorithm GlobalSetup(1κ) and gives the global parameters
param to A.

Queries. A adaptively issues queries q1, · · · , qm where query qi is one of the following:

• Uncorrupted key generation query 〈i〉: C first runs algorithm KeyGen(i) to
obtain a public/secret key pair (pki, ski), and then sends pki to A.

• Corrupted key generation query 〈j〉: C first runs algorithm KeyGen(j) to obtain
a public/secret key pair (pkj , skj), and then gives (pkj , skj) to A.

• Re-encryption key query 〈pki, pkj〉: C runs algorithm ReKeyGen(ski, pkj) to
generate a re-encryption key rki,j and returns it to A. Here ski is the secret key
with respect to pki. It is required that pki and pkj were generated beforehand
by algorithm KeyGen.

Output. Finally, A outputs a secret key ski∗ with respect to the public key pki∗ . A wins
the game if ski∗ is indeed a valid secret key and A has never issue the corrupted
key generation query on 〈i∗〉 (i.e., A issue the uncorrupted key generation query on
〈i∗〉).

We refer to the above adversary A as a MSK-PRE adversary, and define his advan-
tage in attacking Π’s master secret security as AdvMSK-PRE

Π,A = Pr[A wins], where the
probability is taken over the random coins consumed by the challenger and the adversary.

Definition 2 We say that a C-PRE scheme Π is (t, qu, qc, qrk, ε)-MSK-PRE secure, if
for any t-time MSK-PRE adversary A that makes at most qu uncorrupted key generation
queries, at most qc corrupted key generation queries and at most qrk re-encryption key
queries, we have AdvMSK-PRE

Π,A ≤ ε.

2.3 Complexity Assumptions

In this subsection, we review some related complexity assumptions which are used in the
security proofs for our schemes.

The security of our bidirectional scheme is based on a variant of the CDH problem
named modified computational Diffie-Hellman (mCDH) problem, which has been recently
used to construct multi-use unidirectional proxy re-signatures [21].

Definition 3 Let G be a cyclic multiplicative group with prime order q. The mCDH
problem in group G is, given a tuple (g, g

1
a , ga, gb) ∈ G4 with unknown a, b

$← Z∗q, to
compute gab.

Definition 4 For a polynomial-time adversary B, we define his advantage in solving the
mCDH problem in group G as

AdvmCDH
B , Pr

[
B(g, g

1
a , ga, gb) = gab

]
,

where the probability is taken over the randomly choices of a, b and the random bits con-
sumed by B. We say that the (t, ε)-mCDH assumption holds in group G if no t-time
adversary B has advantage at least ε in solving the mCDH problem in group G.

6

The chosen-ciphertext security of our unidirectional PRE scheme is based on the CDH
assumption.

Definition 5 Let G be a cyclic multiplicative group with prime order q. The CDH prob-
lem in group G is, given a tuple (g, ga, gb) ∈ G3 with unknown a, b

$← Z∗q, to compute
gab.

Definition 6 For a polynomial-time adversary B, we define his advantage in solving the
CDH problem in group G as

AdvCDH
B , Pr

[
B(g, ga, gb) = gab

]
,

where the probability is taken over the randomly choices of a, b and the random bits con-
sumed by B. We say that the (t, ε)-CDH assumption holds in group G if no t-time adver-
sary B has advantage at least ε in solving the CDH problem in group G.

Bao et al. [5] introduced a variant of the CDH problem named divisible computation
Diifie-Hellman (DCDH) problem. The DCDH problem in group G is, given (g, g

1
a , gb) ∈

G3 with unknown a, b
$← Z∗q , to compute gab. In [5], Bao et al. presented the relation

between CDH problem and DCDH problem in the following lemma:

Lemma 1 The DCDH problem in group G is equivalent to the CDH problem in the same
group.

The master secret security of our scheme is based on the discrete logarithm (DL)
problem.

Definition 7 The DL problem in group G is, given a tuple (g, ga) ∈ G2 with unknown a,
to compute a.

Definition 8 For a polynomial-time algorithm B, we define his advantage in solving the
DL problem in group G as Pr[B(g, ga) = a], where the probability is taken over the random
choices of a in Zq, the random choice of g in G, and the random bits consumed by B.
We say that the (t, ε)-DL assumption holds in group G, if no t-time adversary B has
advantage at least ε in solving the DL problem in group G.

3 Proposed Bidirectional Proxy Re-Encryption Scheme

In this section, we first describe the main idea of our bidirectional PRE scheme, and
then propose the concrete construction. A comparison between our scheme and other
bidirectional PRE schemes is also given in this section.

3.1 Main Idea

The idea behind our construction begins with the CCA-secure “hashed” ElGamal encryp-
tion scheme [8, 13, 14] given in Figure 1. It is important to note that, in the ciphertext
component F = H2(pkr)⊕ (m‖ω), the public key pk is embedded in the hash function H2

and masked by (m‖ω). This frustrates the proxy to re-encrypt the ciphertext, and hence
this original scheme can not be directly used for our PRE scheme. To circumvent this
obstacle, we slightly modify the scheme as shown in Figure 2 (see the bolded parts). Now,

7

Setup(κ): Encrypt(pk, m): Decrypt((E, F), sk):

x
$← Z∗q ; pk = gx; sk = x ω

$← {0, 1}l1 ; r = H1(m,ω) m‖ω = F ⊕H2(Esk)
Return (pk, sk) E = gr;F = H2(pkr)⊕ (m‖ω) If E = gH1(m,ω) return m

Return CT = (E, F) Else return ⊥
Note: H1 and H2 are hash functions such that H1 : {0, 1}l0 × {0, 1}l1 → Z∗q ,H2 : G→ {0, 1}l0+l1 .

The massage space is M = {0, 1}l0 .

Figure 1: CCA-secure “hashed” ElGamal encryption scheme

Setup(κ): Encrypt(pk, m): Decrypt((E, F), sk):

x
$← Z∗q ; pk = gx; sk = x ω

$← {0, 1}l1 ; r = H1(m,ω) m‖ω = F ⊕H2(E
1

sk)
Return (pk, sk) E = pkr;F = H2(gr)⊕ (m‖ω) If E = pkH1(m,ω) return m

Return CT = (E, F) Else return ⊥

Figure 2: Modified CCA-secure “hashed” ElGamal encryption scheme

the ciphertext component F does not involve the public key, and the ciphertext compo-
nent E = pkr = gxr can be successfully re-encrypted into another ciphertext component
E′ = E

y
x = gyr(under the public key pk′ = gy) using the re-encryption key rkx,y = y

x .
Indeed, the modified scheme can achieve the chosen-ciphertext security as a tradi-

tional public key encryption. However, it does not satisfy the chosen-ciphertext security
for proxy re-encryptions. To explain more clearly, let’s take the following attack as an
example:

Suppose A is given a challenged ciphertext under a target public key pki∗ = gx,
say CT∗ = (E∗, F ∗) =

(
gxr∗ ,H2(gr∗)⊕ (mδ‖ω∗)

)
. Then adversary A can win the IND-

PRE-CCA game as follows: He first picks z
$← {0, 1}l0+l1 , and modifies the challenged

ciphertext to get a new, although invalid, ciphertext CT′ = (E′, F ′) = (E∗, F ∗ ⊕ z) =
(gxr∗ ,H2(gr∗)⊕(mδ‖ω∗)⊕z). Next, he issues a corrupted key generation query to obtain a
public/secret key pair (pk′, sk′) = (gy, y), and then issues a re-encryption query to obtain
a re-encrypt ciphertext, say CT′′ = (E′′, F ′′) = (gyr∗ ,H2(gr∗)⊕ (mδ‖ω∗)⊕ z), under the
public key pk′ = gy. Finally, using the secret key sk′ = y, A can recover (mδ‖ω∗) as
(mδ‖ω∗) = F ′′ ⊕H2((E′′)

1
y)⊕ z, and eventually obtain the bit δ. Note that according to

the constraints described in the IND-PRE-CCA game, it is legal for A to issue the above
queries. As a consequence, he wins the IND-PRE-CCA game.

The above attack succeeds due to the fact that, the validity of second-level ciphertexts
can only be checked by the decryptor, not any other parties including the proxy. So, to
achieve the IND-PRE-CCA security for a PRE scheme, the proxy must be able to check
the validity of second-level ciphertexts. Furthermore, since a PRE scheme requires the
proxy to re-encrypt ciphertexts without seeing the plaintexts, the validity of second-level
ciphertexts must be publicly verifiable. It is worth noting that, it is not an easy job to
construct a CCA-secure PRE scheme with public verifiability and yet without pairings,
e.g., the existing CCA-secure PRE schemes achieve the public verifiability by resorting
to bilinear pairings.

In this paper, we achieve this goal by resorting to the Schnorr signature scheme [25],
which is given in Figure 3. Note that it is non-trivial to incorporate the Schnorr signature
scheme into the modified ElGamal encryption scheme to obtain a secure PRE scheme.
One may think that, it can be done by choosing a signing/verification key pair (vks, sks),
signing the ciphertext CT to obtain a signature σ, and publishing (vks,CT, σ) as the final
ciphertext. Unfortunately, this does not work, since the adversary can still harmfully maul

8

the above ciphertext. Namely, he can choose another signing/verification key pair to sign
the ciphertext component CT, and then obtain another valid ciphertext. The problem
lies in the loose integration between the ciphertext component CT and the signature σ.

Setup(κ): Sign(sk, m): Verify(pk, (e, s),m):

x
$← Z∗q ; pk = gx; sk = x u

$← Z∗q ;D = gu Dv = gspk−e; ev = H(m,Dv)
Return (pk, sk) e = H(m,D); s = (u + sk · e) mod q If e = ev return 1

Return σ = (e, s) Else return 0
Note: H is a hash function such that H : {0, 1}∗ → Z∗q .

Figure 3: Schnorr signature scheme

We here briefly explain how to tightly integrate the Schnorr signature scheme with
the modified ElGamal encryption scheme to obtain our PRE scheme. To do so, we
first slightly modify the Schnorr signature scheme as shown in Figure 4 (see the bolded
parts). Next, given the ciphertext components (E, F) = (pkr,H2(gr)⊕ (m‖ω)), to tightly
integrate (E, F) with the Schnorr signature, we generate the Schnorr signature as follows:
Viewing F as the message to be signed, and (E, r) = (pkr, r) as the verification/signing

key pair (here the base pk in pkr is similarly viewed as the base g in gx), we pick u
$← Z∗q

and output the signature as (D, s) = (pku, u + rH3(D, E, F)). The final ciphertext is
(D, E, F, s).

Setup(κ): Sign(sk, m): Verify(pk, (D, s),m):

x
$← Z∗q ; pk = gx; sk = x u

$← Z∗q ;D = gu If gs = D · pkH(m,D) return 1
Return (pk, sk) e = H(m,D); s = (u + sk · e) mod q Else return 0

Return σ = (D, s)

Figure 4: Modified Schnorr signature scheme

Next, we explain how to realize our re-encryption algorithm. We first present an un-
successful solution: Suppose the proxy wants to re-encrypt a ciphertext CT = (D, E, F, s)
under public key pki = gxi into another one under public key pkj = gxj . The proxy first

checks pks
i

?= D · EH3(D,E,F) to ensure the validity of the ciphertext, and then out-
puts CTj = (E′, F) = (Exj/xi , F) as the re-encrypted ciphertext (here xj/xi is the
re-encryption key). At first glance, this solution appears to be successful. Unfortu-
nately, this is not true, since there exists a simple attack: given a challenged ciphertext
CTi = (D, E, F, s) under a target public key pki, the adversary A simply views (E, F) as
a re-encrypted ciphertext under pki, and issues a decryption query on 〈pki, (E, F)〉. Note
that according to the IND-PRE-CCA game, it is legal for A to issue such a query. So,
the adversary will be given the plaintext mδ, and hence breaks the challenge δ. The prob-
lem behind the above solution is that, the re-encrypted ciphertext has the same form as
some components of the original ciphertext, and the decryption policies for them are also
identical. Therefore, given an original ciphertext under a public key, the adversary can
simply take some components from the original ciphertext and obtain a legal re-encrypted
ciphertext under the same public key, and then easily break the chosen-ciphertext security
of the scheme.

To resist the above attack, a trivial solution is defining the re-encrypted ciphertext
to be CTj = (D, E, F, s, E′) instead of CTj = (E′, F). However, such a solution is not
desirable, since it introduces big ciphertext overhead. Below, we give an efficient solution
with short re-encrypted ciphertext.

To re-encrypt a ciphertext CT = (D, E, F, s) from public key pki = gxi to pkj = gxj ,

9

the proxy first checks pks
i

?= D · EH3(D,E,F) to ensure the validity of the ciphertext, and

then outputs CTj = (E′, F ′) = (E
xj
xi , F ⊕ H4(E′, g

xi
xj)) as the re-encrypted ciphertext.

The decryption algorithm for re-encrypted ciphertexts should be accordingly modified.
To decrypt the re-encrypted ciphertext CTj = (E′, F ′), the decryptor with secret key

xj works as follows: compute m‖ω = F ′ ⊕ H2(E
′ 1
xj) ⊕ H4(E′, (gxi)

1
xj)), and returns

m if E′ = (gxj)H1(m,ω) holds and ⊥ otherwise. Now, the re-encrypted ciphertext (i.e.,
(E′, F ′)) and the components (i.e., (E, F)) in the original ciphertext have different forms,
and the decryption policies for them are also distinct. However, there still exists an
attack mounted by the proxy: given a challenged ciphertext CTi = (D, E, F, s) under
public key pki = xi, a proxy with a re-encrypted key rki,j = xj

xi
first computes (E, F ′) =

(E, F ⊕ H4(E, g
xj
xi)). It can be seen that the resulting (E, F ′) can be viewed as a valid

re-encrypted ciphertext encrypted from pkj to pki. Then, the proxy issues a decryption
query on 〈pki, (E, F ′)〉 and then breaks the challenge. To resist this attack, we modify
the computation of r in the encryption algorithm as r = H1(m,ω, pk), and the original
public key will be implicitly embedded in the re-encrypted ciphertext. We will present
the detailed construction of our PRE scheme in the next subsection, and give a formal
security proof for the scheme in Section 3.4.

3.2 Proposed Scheme: ΠBi

We now present the detailed construction of our bidirectional PRE scheme. For notational
simplicity, we denote this bidirectional PRE scheme by ΠBi. The proposed scheme consists
of the following algorithms:

GlobalSetup(κ): Given a security parameter κ, choose two big primes p and q such that
q|p − 1 and the bit-length of q is κ. Let g be a generator of group G, which is a
subgroup of Z∗q with order q. Besides, choose four hash functions H1,H2,H3 and H4

such that H1 : {0, 1}l0 × {0, 1}l1 ×G → Z∗q ,H2 : G → {0, 1}l0+l1 ,H3 : {0, 1}∗ → Z∗q
and H4 : G × G → {0, 1}l0+l1 . Here l0 and l1 are security parameters, and the
message space is {0, 1}l0 . The global parameters are

param = (q,G, g, H1,H2,H3,H4, l0, l1).

KeyGen(i): To generate the public/secret key pair for user i, this key generation algo-

rithm picks a random xi
$← Z∗q , and then sets pki = gxi and ski = xi.

ReKeyGen(ski, skj): On input two secret keys ski = xi and skj = xj , this algorithm
outputs the bidirectional re-encryption key rki,j = xj/xi mod q.

Encrypt(pk, m): On input a public key pk and a plaintext m ∈ {0, 1}l0 , this algorithm
works as below:

1. Pick u
$← Z∗q , ω

$← {0, 1}l1 , and compute r = H1(m,ω, pk).
2. Compute D = pku, E = pkr, F = H2(gr) ⊕ (m‖ω), s = u + r · H3(D, E, F)

mod q.
3. Output the ciphertext CT = (D, E, F, s).

ReEncrypt(rki,j ,CTi, pkj): On input a re-encryption key rki,j = xj

xi
, a second-level ci-

phertext CTi under public key pki, this algorithm re-encrypts this ciphertext under
public key pkj as follows:

1. Parse CTi as CTi = (D, E, F, s).

10

2. Check whether pks
i = D · EH3(D,E,F) holds. If not, output ⊥.

3. Otherwise, compute E′ = Erki,j = g(r·xi)·xj/xi = gr·xj , F ′ = F ⊕H4(E′, gxi/xj),
and output the first-level ciphertext CTj = (pki, E

′, F ′).

Decrypt(CT, sk): On input a secret key sk = x and ciphertext CT, this algorithm works
according to two cases:

• CT is a second-level ciphertext CT = (D, E, F, s): If (gx)s = D · EH3(D,E,F)

does not hold, output ⊥, else compute m‖ω = F ⊕H2(E
1
x), and return m if

E = (gx)H1(m,ω,gx) holds and ⊥ otherwise.
• CT is a first-level ciphertext CT = (pki, E

′, F ′): Recall that we only con-
centrate on the single-hop scheme, hence pki should be different from the
original public key gx. To decrypt this ciphertext, first compute m‖ω =
F ′ ⊕ H2(E′ 1

x) ⊕ H4(E′, pk
1/x
i). If E′ = (gx)H1(m,ω,pki) holds return m; oth-

erwise return ⊥.

3.3 Comparison

In this subsection, we provide a comparison of our scheme ΠBi with other existing bidirec-
tional PRE schemes. To conduct a fair comparison, we choose Canetti and Hohenberger’s
PRE schemes [10], which are also bidirectional and achieve chosen-ciphertext security.
Two PRE schemes are presented in [10], including one secure in the random oracle model
(refereed to as CH Scheme I) and another one secure in the standard model (refereed to
as CH Scheme II). Table 1 gives a comparison between our scheme ΠBi and these two
schemes. The comparison results indicate that our scheme is much more efficient than
the other two schemes. For example, the encryption in CH Scheme I needs 4 exponentia-
tions, 1 pairing and 1 one-time signature signing, while the encryption in our scheme ΠBi

involves only 3 exponentiations. It’s worth pointing out that, the computational cost and
the ciphertext size in our scheme decrease with re-encryption, while those in CH Schemes
I and II remain unchanged. Note that the computational cost and the ciphertext in some
schemes such as [1, 2, 11, 20] increase with re-encryption. Although the ciphertext in our
scheme involves less group elements than that in CH Schemes I and II, we do not claim
that our ciphertext is shorter than theirs, since their schemes are implemented in the
bilinear group which enables shorter representation of a group element. However, the
pairings in bilinear group in turn add heavy computational overhead to their schemes.
Both our scheme and CH Scheme I are provably secure in the random oracle model, while
CH Scheme II is proved secure without random oracles.

3.4 Security Analysis

In this subsection, we prove the IND-PRE-CCA security for our scheme ΠBi in the random
oracle model.

Theorem 1 Our PRE scheme ΠBi is IND-PRE-CCA secure in the random oracle model,
assuming the mCDH assumption holds in group G and the Schnorr signature is existential
unforgeable against chosen message attack (EUF-CMA). Concretely, if there exists an
adversary A, who asks at most qHi random oracle quires to Hi with i ∈ {1, · · · , 4}, and

3In Table 1, we neglect some operations such as hash function evaluation, modular multiplication and
XOR, since the computational cost of these operations is far less than that of exponentiations or pairings.
Note that, using the technique in [9,18,19], both the re-encryption and decryption in CH scheme I and II
can further save two pairings, at the cost of several exponentiation operations.

11

Schemes CH Scheme I CH Scheme II Our ΠBi

Encrypt 1tp + 4te + 1ts 1tp + 3te + 1tme + 1ts 3te
Comput. Re-Encrypt 4tp + 1te + 1tv 4tp + 2te + 1tv 4te

Cost 2nd-level CiphTxt 5tp + 1te + 1tv 5tp + 2te + 1tv 4teDecrypt
1st-level CiphTxt 5tp + 1te + 1tv 5tp + 2te + 1tv 3te

CiphTxt 2nd-level CiphTxt 1|pks|+3|Ge|+1|GT |+1|σs| 1|pks|+3|Ge|+1|GT |+1|σs| 3|G|+1|Zq|
Length 1st-level CiphTxt 1|pks|+3|Ge|+1|GT |+1|σs| 1|pks|+3|Ge|+1|GT |+1|σs| 3|G|

Without Random Oracles? × X ×
Underlying Assumptions DBDH DBDH mCDH

Note: tp, te and tme represent the computational cost of a bilinear pairing, an exponentiation and a multi-
exponentiation respectively, while ts and tv represent the computational cost of a one-time signature
signing and verification respectively. |G|, |Zq|, |Ge| and |GT | denote the bit-length of an element in
groups G, Zq, Ge and GT respectively. Here G and Zq denote the groups used in our scheme, while
Ge and GT are the bilinear groups used in CH scheme I and II, i.e., the bilinear pairing is e : Ge×
Ge → GT . Finally, |pks| and |σs| denote the bit length of the one-time signature’s public key and a
one-time signature respectively.

Table 1: Efficiency Comparison between Canetti-Hohenberger PRE Schemes and Our
Scheme ΠBi

3

breaks the (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-CCA security of our scheme ΠBi, then, for
any 0 < ν < ε, there exists

• either an algorithm B which can solve the (t′, ε′)-mCDH problem in G with

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 4qre + 3qd + (2qd + qre)qH1)te,

ε′ ≥ 1
qH2

(
2(ε− ν)− qH1 + (qH1 + qH2)qd

2l0+l1
− qre + 2qd

q

)
,

where te denotes the running time of an exponentiation in G;

• or an attacher who breaks the EUF-CMA security of the Schnorr signature with
advantage ν within time t′.

Proof. Without loss of generality, we assume that the Schnorr signature is (t′, ν)-EUF-
CMA secure for some probability 0 < ν < ε. Suppose there exists a t-time adversary A
who can break the IND-PRE-CCA security of scheme ΠBi with advantage ε − ν. Then
we show how to construct an algorithm B which can solve the (t′, ε′)-mCDH problem in
group G.

Suppose B is given as input an mCDH challenge tuple (g, g
1
a , ga, gb) ∈ G4 with un-

known a, b
$← Z∗q . Algorithm B’s goal is to output gab. Algorithm B acts as the challenger

and plays the IND-PRE-CCA game with adversary A in the following way.

Setup. Algorithm B gives (q,G, g, H1,H2,H3,H4, l0, l1) to A. Here H1,H2,H3 and H4

are random oracles controlled by B.

Hash Oracle Queries. At any time adversary A can issue the random oracle queries
H1,H2, H3 and H4. Algorithm B maintains four hash lists H list

1 ,H list
2 , H list

3 and H list
4

which are initially empty, and responds as below:

• H1 queries: On receipt of an H1 queries on (m,ω, pk), if this query has appeared
on the H list

1 in a tuple (m,ω, pk, r), return the predefined value r as the result of

the query. Otherwise, choose r
$← Z∗q , add the tuple (m,ω, pk, r) to the list H list

1

and respond with H1(m,ω, pk) = r.

12

• H2 queries: On receipt of an H2 query R ∈ G, if this query has appeared on the
H list

2 in a tuple (R, β), return the predefined value β as the result of the query.

Otherwise, choose β
$← {0, 1}l0+l1 , add the tuple (R, β) to the list H list

2 and respond
with H2(R) = β.

• H3 queries: On receipt of an H3 query (D, E, F), if this query has appeared on the
H list

3 in a tuple (D, E, F, γ), return the predefined value γ as the result of the query.

Otherwise, choose γ
$← Z∗q , add the tuple (D, E, F, γ) to the list H list

3 and respond
with H3(D, E, F) = γ.

• H4 queries: On receipt of an H4 query (E′, U), if this query has appeared on the
H list

4 in a tuple (E′, U, λ), return the predefined value λ as the result of the query.

Otherwise, choose λ
$← {0, 1}l0+l1 , add the tuple (E′, U, λ) to the list H list

4 and
respond with H4(E′, U) = λ.

Phase 1. In this phase, adversary A issues a series of queries as in the definition of the
IND-PRE-CCA game. B maintains a list K list which is initially empty, and answers these
queries for A as follows:

• Uncorrupted key generation query 〈i〉. Algorithm B first picks xi
$← Z∗q and defines

pki =
(
g1/a

)xi
, ci = 0. Next, it adds the tuple (pki, xi, ci) to K list and returns pki to

adversary A. Here the bit ci is used to denote whether the secret key with respect
to pki is corrupted, i.e., ci = 0 indicates uncorrupted and ci = 1 means corrupted.

• Corrupted key generation query 〈j〉. Algorithm B first picks xj
$← Z∗q and defines

pkj = gxj , cj = 1. Next, it adds the tuple (pkj , xj , cj) to K list and returns (pkj , xj)
to adversary A.

• Re-encryption key generation query 〈pki, pkj〉: Recall that according to the defini-
tion of IND-PRE-CCA game, it is required that pki and pkj were generated before-
hand, and either both of them are corrupted or alternately both are uncorrupted.
Algorithm B first recovers tuples (pki, xi, ci) and (pkj , xj , cj) from K list, and then
returns the re-encryption key xj/xi to A.

• Re-encryption query 〈pki, pkj ,CTi(= (D, E, F, s))〉: If pks
i 6= D · EH3(D,E,F), then

output ⊥. Otherwise, algorithm B responds to this query as follows:

1. Recover tuples (pki, xi, ci) and (pkj , xj , cj) from K list.
2. If ci = cj , compute E′ = Exj/xi , F ′ = F ⊕ H4(E′, gxi/xj) and return (E′, F ′)

as the first-level ciphertext to A.
3. Else, search whether there exists a tuple (m,ω, pki, r) ∈ H list

1 such that pkr
i =

E. If there exists no such tuple, return ⊥. Otherwise, first compute E′ = pkr
j .

Next, if ci = 1 ∧ cj = 0, define F ′ = F ⊕ H4(E′, g
xia

xj); else if ci = 0 ∧ cj =

1, define F ′ = F ⊕ H4(E′, g
xi

axj). Finally, return (E′, F ′) as the first-level
ciphertext to A.

• Decryption query 〈pk, CT〉: Algorithm B first recovers tuple (pk, x, c) from list K list.
If c = 1, algorithm B runs Decrypt(CT, x) and returns the result to A. Otherwise,
algorithm B works according to the following two cases:

13

– CT is a second-level ciphertext CT = (D, E, F, s): If pks 6= D · EH3(D,E,F),
return ⊥ to A. Otherwise, search lists H list

1 and H list
2 to see whether there

exist (m,ω, pk, r) ∈ H list
1 and (R, β) ∈ H list

2 such that

pkr = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A. Otherwise, return ⊥.
– CT is a first-level ciphertext CT = (pk′′, E′, F ′): Algorithm B acts as follows:

1. Recover tuples (pk, x, c) and (pk′′, x′′, c′′) from K list.
2. Define U according to the following three cases:

∗ If c = c′′: Define U = g
x′′
x ;

∗ If c = 0 ∧ c′′ = 1: Define U = g
x′′a

x ;
∗ If c = 1 ∧ c′′ = 0: Define U = g

x′′
ax .

3. search lists H list
1 and H list

2 to see whether there exist (m,ω, pk, r) ∈ H list
1

and (R, β) ∈ H list
2 such that

pkr = E′, β ⊕ (m‖ω)⊕H4(E′, U) = F ′ and R = gr.

If yes, return m to A. Otherwise, return ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a target public key pki∗

and two equal-length messages m0,m1 ∈ {0, 1}l0 . Algorithm B responds as follows:

1. Recover tuple (pki∗ , x
∗, c∗) from K list. Recall that according to the constraints

described in IND-PRE-CCA game, K list should contain this tuple, and c∗ is equal
to 0 (indicating that pki∗ = g

x∗
a).

2. Pick e∗, s∗ $← Z∗q , and compute D∗ =
(
gb

)−e∗x∗
(
g

1
a

)x∗s∗
and E∗ =

(
gb

)x∗ .

3. Pick F ∗ $← {0, 1}l0+l1 and define H3(D∗, E∗, F ∗) = e∗.

4. Pick δ
$← {0, 1}, ω∗ $← {0, 1}l1 , and implicitly define H2(gab) = (mδ‖ω∗) ⊕ F ∗ and

H1(mδ, ω
∗, pki∗) = ab (Note that algorithm B knows neither ab nor gab).

5. Return CT∗ = (D∗, E∗, F ∗, s∗) as the challenged ciphertext to adversary A.

Note that by the construction given above, by letting u∗ , s∗ − abe∗ and r∗ , ab,
we can see that the challenged ciphertext CT∗ has the same distribution as the real one,
since H2 acts as a random oracle, and

D∗ =
(
gb

)−e∗x∗ (
g

1
a

)x∗s∗
=

(
g

x∗
a

)s∗−abe∗

= (pki∗)
s∗−abe∗ = (pki∗)

u∗ ,

E∗ =
(
gb

)x∗
=

(
g

x∗
a

)ab
= (pki∗)

ab = (pki∗)
r∗ ,

F ∗ = H2(gab)⊕ (mδ‖ω∗) = H2(gr∗)⊕ (mδ‖ω∗),
s∗ = (s∗ − abe∗) + abe∗ = u∗ + ab ·H3(D∗, E∗, F ∗) = u∗ + r∗ ·H3(D∗, E∗, F ∗).

Phase 2. Adversary A continues to issue the rest of queries as in Phase 1, with the
restrictions described in the IND-PRE-CCA game. Algorithm B responds to these queries
for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} to B. Algorithm B randomly
picks a tuple (R, β) from the list H list

2 and outputs R as the solution to the given mCDH
instance.

14

Analysis: Now let’s analyze the simulation. The main idea of the analysis is borrowed
from [8]. We first evaluate the simulations of the random oracles. From the constructions
of H3 and H4, it is clear that the simulations of H3 and H4 are perfect. As long as
adversary A does not query (mδ, ω

∗, pki∗) to H1 nor gab to H2, where δ and ω∗ are chosen
by B in the Challenge phase, the simulations of H1 and H2 are perfect. By AskH∗1 we
denote the event that (mδ, ω

∗) has been queried to H1. Also, by AskH∗2 we denote the
event that gab has been queried to H2.

As argued before, the challenged ciphertext provided for A is identically distributed
as the real one from the construction. From the description of the simulation, it can be
seen that the responses to A’s re-encryption key queries are also perfect.

Next, we analyze the simulation of the re-encryption oracle. The responses to ad-
versary A’s re-encryption queries are perfect, unless A can submit valid second-level
ciphertexts without querying hash function H1(denote this event by ReEncErr). However,
since H1 acts as a random oracle and adversary A issues at most qre re-encryption queries,
we have

Pr[ReEncErr] ≤ qre

q
.

Now, we evaluate the simulation of the decryption oracle. The simulation of the de-
cryption oracle is perfect, with the exception that simulation errors may occur in rejecting
some valid ciphertexts. Fortunately, these errors are not significant as shown below: Sup-
pose that (pk, CT), where CT = (D, E, F, s) or CT = (E, F), has been issued as a valid
ciphertext. Even CT is valid, there is a possibility that CT can be produced without
querying gr to H2, where r = H1(m,ω, pk). Let Valid be an event that CT is valid,
and let AskH2 and AskH1 respectively be events that gr has been queried to H2 and
(m,ω, pk) has been queried to H1 with respect to (E, F) = (pkr,H2(gr)⊕ (m‖ω)), where
r = H1(m,ω, pk). We then have

Pr[Valid|¬AskH2] = Pr[Valid ∧ AskH1|¬AskH2] + Pr[Valid ∧ ¬AskH1|¬AskH2]
≤ Pr[AskH1|¬AskH2] + Pr[Valid|¬AskH1 ∧ ¬AskH2]

≤ qH1

2l0+l1
+

1
q
,

and similarly Pr[Valid|¬AskH1] ≤ qH2

2l0+l1
+

1
q
. Thus we have

Pr[Valid|(¬AskH1 ∨ ¬AskH2)] ≤ Pr[Valid|¬AskH1] + Pr[Valid|¬AskH2] ≤ qH1 + qH2

2l0+l1
+

2
q
.

Let DecErr be the event that Valid|(¬AskH1 ∨ ¬AskH2) happens during the entire
simulation. Then, since qd decryption oracles are issued, we have

Pr[DecErr] ≤ (qH1 + qH2)qd

2l0+l1
+

2qd

q
.

Now let Good denote the event AskH∗2 ∨ (AskH∗1|¬AskH∗2) ∨ ReEncErr ∨ DecErr. If
event Good does not happen, it is clear that adversary A can not gain any advantage in
guessing δ due to the randomness of the output of the random oracle H2. Namely, we

15

have Pr[δ = δ′|¬Good] = 1
2 . Hence, by splitting Pr[δ′ = δ], we have

Pr[δ′ = δ] = Pr[δ′ = δ|¬Good]Pr[¬Good] + Pr[δ′ = δ|Good]Pr[Good]

≤ 1
2
Pr[¬Good] + Pr[Good]

=
1
2
(1− Pr[Good]) + Pr[Good]

=
1
2

+
1
2
Pr[Good]

and

Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Good]Pr[¬Good] =
1
2
(1− Pr[Good]) =

1
2
− 1

2
Pr[Good].

Then we have
∣∣Pr[δ′ = δ]− 1

2

∣∣ ≤ 1
2
Pr[Good].

By definition of the advantage (ε−ν) for the IND-PRE-CCA adversary, we then have

ε− ν =
∣∣Pr[δ′ = δ]− 1

2

∣∣

≤ 1
2
Pr[Good] =

1
2

(Pr[AskH∗2 ∨ (AskH∗1|¬AskH∗2) ∨ ReEncErr ∨ DecErr])

≤ 1
2

(Pr[AskH∗2] + Pr[AskH∗1|¬AskH∗2] + Pr[ReEncErr] + Pr[DecErr]) .

Since Pr[ReEncErr] ≤ qre

q , Pr[DecErr] ≤ (qH1
+qH2

)qd

2l0+l1
+ 2qd

q and Pr[AskH∗1|¬AskH∗2] ≤
qH1

2l0+l1
, we obtain

Pr[AskH∗2] ≥ 2(ε− ν)− Pr[AskH∗1|¬AskH∗2]− Pr[DecErr]− Pr[ReEncErr]

≥ 2(ε− ν)− qH1

2l0+l1
− (qH1 + qH2)qd

2l0+l1
− 2qd

q
− qre

q

= 2(ε− ν)− qH1 + (qH1 + qH2)qd

2l0+l1
− qre + 2qd

q
.

Meanwhile, if event AskH∗2 happens, algorithm B will be able to solve the mCDH
instance, and consequently, we obtain

ε′ ≥ 1
qH2

(
2(ε− ν)− qH1 + (qH1 + qH2)qd

2l0+l1
− qre + 2qd

q

)
.

From the description of the simulation, the running time of algorithm B can be
bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 4qre + 3qd + (2qd + qre)qH1)te.

This completes the proof of Theorem 1. tu

4 Proposed Unidirectional Proxy Re-Encryption Scheme

In this section, based on our bidirectional PRE scheme, we present a CCA-secure uni-
directional PRE scheme without parings. For notational convenience, we denote this
scheme by ΠUni. We stress that a previous version of our unidirectional PRE scheme can
not satisfy the master secret security, and left it as an open question in the last version.

16

Fortunately, in this version, we can improve our scheme to satisfy this security.

4.1 Proposed Scheme: ΠUni

The proposed scheme ΠBi consists of the following algorithms:

GlobalSetup(κ): The global setup algorithm is similar to that of scheme ΠBi, with the
exceptions that, H1 and H4 are defined as H1 : {0, 1}l0 × {0, 1}l1 → Z∗q and H4 :
Z∗q×G→ Z∗q , and another hash function H5 is chosen such that H5 : G3 → Z∗q . The
global parameters are

param = (q,G, g, H1,H2,H3,H4,H5, l0, l1).

KeyGen(i): To generate the public/secret key pair for user i, this key generation algo-

rithm picks a random xi,1, xi,2
$← Z∗q , and then sets pki = (pki,1, pki,2) = (gxi,1 , gxi,2)

and ski = (xi,1, xi,2).

ReKeyGen(ski, pkj): On input user i’s secret key ski = (xi,1, xi,2) and user j’s public key
pkj = (pkj,1, pkj,2), this algorithm generates the re-encryption key rki,j from user i
to j as below:

1. Pick v′ $← Z∗q . Compute v = H4(v′, pkj).
2. Compute V = gv, and hj = H5(V, pkj , pkv

j,2).

3. Define rk
〈1〉
i,j = hj

xi,1+xi,2
. Return rki,j = (rk〈1〉i,j , V).

Encrypt(pki,m): On input a public key pki = (pki,1, pki,2) and a plaintext m ∈ {0, 1}l0 ,
this algorithm works as below:

1. Pick u
$← Z∗q , ω

$← {0, 1}l1 , and compute r = H1(m,ω).
2. Compute D = (pki,1pki,2)u, E = (pki,1pki,2)r, F = H2(gr)⊕ (m‖ω), s = u + r ·

H3(D, E, F) mod q.
3. Output the ciphertext CT = (D, E, F, s).

ReEncrypt(rki,j ,CTi, pkj): On input a re-encryption key rki,j , a second-level ciphertext
CTi under public key pki = (pki,1, pki,2), this algorithm re-encrypts this ciphertext
under public key pkj = (pkj,1, pkj,2) as follows:

1. Parse CTi as CTi = (D, E, F, s) and rki,j as rki,j = (rk〈1〉i,j , V).

2. Check whether (pki,1pki,2)s = D · EH3(D,E,F) holds. If not, output ⊥.

3. Otherwise, compute E′ = Erk
〈1〉
i,j = g

r·(xi,1+xi,2)· hj
xi,1+xi,2 = gr·hj , and output the

first-level ciphertext CTj = (E′, F, V).

Decrypt(CTi, ski): On input a secret key ski = (xi,1, xi,2) and ciphertext CTi, this algo-
rithm works according to two cases:

• CT is a second-level ciphertext CT = (D, E, F, s): Check whether (gxi,1+xi,2)s =
D · EH3(D,E,F) holds. If not, output ⊥. Otherwise, compute (m‖ω) = F ⊕
H2(E

1
xi,1+xi,2), and return m if E = (gxi,1+xi,2)H1(m,ω) holds; else return ⊥.

• CT is a first-level ciphertext CT = (E′, F, V): Compute h = H5(V, pk, V xi,2)
and (m‖ω) = F ⊕H2(E′ 1

h), and check whether E′ = gH1(m,ω)·h holds. If yes,
return m; else return ⊥.

17

It can be verified that, given the re-encryption key rki,j = (
H5(V,pkj ,pkv

j,2)

xi,1+xi,2
, gv), the

proxy is unable to generate the re-encryption key rkj,i for the opposite direction, and
hence it is impossible for him to convert a ciphertext intended for user j into a ciphertext
intended for user j. Therefore, our scheme is unidirectional.

4.2 Security Analysis

In this subsection, we prove the chosen-ciphertext security for scheme ΠUni under the
CDH assumption.

Theorem 2 Our scheme ΠUni is IND-PRE-CCA secure in the random oracle model,
assuming the CDH assumption holds in group G and the Schnorr signature is EUF-CMA
secure. Concretely, if there exists an adversary A, who asks at most qHi random oracle
quires to Hi with i ∈ {1, · · · , 5}, and breaks the (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-CCA of
our scheme ΠUni, then, for any 0 < ν < ε, there exists

• either an algorithm B which can solve the (t′, ε′)-CDH problem in G with

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 2qrk + 5qre + qd + qH1qre + (qH4 + 2qH1)qd)te,

ε′ ≥ 1
qH2

(
2(ε− ν)

e(1 + qrk)
− qH1 + (qH1 + qH2 + qH4)qd

2l0+l1
− qre + 3qd

q

)
,

where te denotes the running time of an exponentiation in group G.

• or an attacker who breaks the EUF-CMA security of the Schnorr signature with
advantage ν within time t′.

Proof. Without loss of generality, we assume that the Schnorr signature is (t′, ν)-EUF-
CMA secure for some probability 0 < ν < ε. Since the CDH problem is equivalent to the
DCDH problem, for convenience, we here prove this theorem under the DCDH problem.
Suppose there exists a t-time adversary A who can break the IND-PRE-CCA security of
scheme ΠUni with advantage ε− ν. Then we show how to construct an algorithm B which
can solve the (t′, ε′)-DCDH problem in group G.

Suppose B is given as input a DCDH challenge tuple (g, g
1
a , gb) with unknown a, b

$←
Z∗q . Algorithm B’s goal is to output gab. Algorithm B acts as the challenger and plays
the IND-PRE-CCA game with adversary A in the following way.

Setup. Algorithm B gives (q,G, g, H1,H2,H3,H4,H5, l0, l1) to A. Here H1,H2,H3, H4

and H5 are random oracles controlled by B.

Hash Oracle Queries. At any time adversary A can issue the random oracle queries
Hi with i ∈ {1 · · · , 5}. Algorithm B maintains five hash lists H list

i with i ∈ {1 · · · , 5},
which are initially empty. B responds H2 and H3 queries in the same way as in Theorem
1, and responds the other hash queries as below:

• H1 queries: On receipt of an H1 queries on (m,ω), if this query has appeared on
the H list

1 in a tuple (m,ω, r), return the predefined value r as the result of the query.

Otherwise, choose r
$← Z∗q , add the tuple (m,ω, r) to the list H list

1 and respond with
H1(m,ω) = r.

18

• H4 queries: On receipt of an H4 query (v′, pk) ∈ Z∗q×G2, if this query has appeared
on the H list

4 in a tuple (v′, pk, v), return the predefined value v as the result of the

query. Otherwise, choose v
$← Z∗q , add the tuple (v′, pk, v) to the list H list

4 and
respond with H4(v′, pk) = v.

• H5 queries: On receipt of an H5 query (V, pk, S) ∈ G4, if this query has appeared
on the H list

5 in a tuple (V, pk, S, µ), return the predefined value µ as the result of

the query. Otherwise, choose µ
$← Z∗q , add the tuple (V, pk, S, µ) to the list H list

5

and respond with H5(V, pk, S) = µ.

Phase 1. In this phase, adversary A issues a series of queries as in the definition of the
IND-PRE-CCA game. B maintains two lists K list and Rlist which are initially empty, and
answers these queries for A as follows:

• Uncorrupted key generation query 〈i〉. Algorithm B first picks xi,1, xi,2
$← Z∗q and

flips a biased coin ci ∈ {0, 1} that yields 0 with probability θ and 1 with probability
1 − θ. If ci = 0, it defines pki = (pki,1, pki,2) =

((
g1/a

)xi,1
,
(
g1/a

)xi,2
)
; else defines

pki = (pki,1, pki,2) = (gxi,1 , gxi,2). Next, it adds the tuple (pki, xi,1, xi,2, ci) to K list

and returns pki to adversary A.

• Corrupted key generation query 〈j〉. Algorithm B first picks xj,1, xj,2
$← Z∗q and de-

fines pkj = (pkj,1, pkj,2) = (gxj,1 , gxj,2) , cj = ‘−’. Next, it adds the tuple (pkj , xj,1, xj,2, cj)
to K list and returns (pkj , (xj,1, xj,2)) to adversary A.

• Re-encryption key generation query 〈pki, pkj〉: If Rlist has contains a tuple for this
entry (pki, pkj), return the predefined re-encryption key to A. Otherwise, algorithm
B acts as follows:

1. Recover tuples (pki, xi,1, ci) and (pkj , xj,1, cj) from K list.

2. Pick v′ $← Z∗q . Compute v = H4(v′, pkj), V = gv and hj = H5(V, pkj , pkv
j,2).

3. Construct the first component rk
〈1〉
i,j according to the following cases:

– ci = 1 or ci = ‘−’: define rk
〈1〉
i,j = hj

xi,1+xi,2
, and add (pki, pkj , (rk

〈1〉
i,j , V), hj , 1)

into list Rlist.
– (ci = 0 ∧ cj = 1) or (ci = 0 ∧ cj = 0): pick rk

〈1〉
i,j

$← Z∗q , and add

(pki, pkj , (rk
〈1〉
i,j , V), hj , 0) into list Rlist.

– (ci = 0 ∧ cj = ‘−’): output “failure” and abort.

4. Finally, return rki,j = (rk〈1〉i,j , V) to A.

• Re-encryption query 〈pki, pkj ,CTi(= (D, E, F, s))〉: Parse pki as pki = (pki,1, pki,2)
and pkj as pkj = (pkj,1, pkj,2). If (pki,1pki,2)s 6= D · EH3(D,E,F), then output ⊥.
Otherwise, algorithm B responds to this query as follows:

1. Recover tuples (pki, xi,1, xi,2, ci) and (pkj , xj,1, xj,2, cj) from K list.
2. If (ci = 0∧ cj = ‘−’) does not hold, issue a re-encryption key generation query
〈pki, pkj〉 to obtain rki,j , and then return ReEncrypt(rki,j ,CTi, pkj) to A.

3. Else, search whether there exists a tuple (m,ω, pki, r) ∈ H list
1 such that pkr

i =

E. If there exists no such tuple, return ⊥. Otherwise, first choose v′ $← Z∗q .
Next, compute v = H4(v′, pkj), V = gv and hj = H5(V, pkj , pkv

j). Finally,
define E′ = ghjr, and return (E′, F, V) to A.

19

• Decryption query 〈pki,CTi〉: B first parse pki = (pki,1, pki,2) and recovers tuple
(pki, xi,1, xi,2, c) from K list. If c = 1 or c = ‘−’, algorithm B runs Decrypt(CTi, (xi,1, xi,2))
and returns the result toA. Otherwise, algorithm B works according to the following
two cases:

– CTi is a second-level ciphertext CTi = (D, E, F, s): If (pki,1pki,2)s 6= D ·
EH3(D,E,F), return ⊥ to A indicating that CTi is an invalid ciphertext. Other-
wise, search lists H list

1 and H list
2 to see whether there exist (m,ω, pki, r) ∈ H list

1

and (R, β) ∈ H list
2 such that

(pki,1pki,2)r = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A. Otherwise, return ⊥.
– CTi is a first-level ciphertext CTi = (E′, F, V) re-encrypted from pkj =

(pkj,1, pkj,2): Algorithm B first recovers tuples (pki, xi,1, xi,2, c) and (pkj , xj,1, xj,2, c
′)

from K list, and then responds according to the following three cases:
∗ If there exist a tuple (pkj , pki, (rk〈1〉, V), h, 1) in Rlist: Compute (m‖ω) =

F ⊕H2(E′ 1
h). If E′ = gH1(m,ω)·h holds, return m, else return ⊥.

∗ If there exist a tuple (pkj , pki, (rk〈1〉, V), h, 0) in Rlist: First, compute

E = E
′ 1

rk〈1〉 . Next, search lists H list
1 and H list

2 to see whether there ex-
ist (m,ω, r) ∈ H list

1 and (R, β) ∈ H list
2 such that

(pkj,1pkj,2)r = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A, else return ⊥.
∗ Otherwise: First search list H list

4 to see whether there exist a tuple (v′, pki, v) ∈
H list

4 such that gv = V . If no such tuple exists, return ⊥. Otherwise,
compute h = H5(V, pk, pkv

i,2), and then search lists H list
1 and H list

2 to see
whether there exist (m,ω, r) ∈ H list

1 and (R, β) ∈ H list
2 such that

pkh
i,2 = E′, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A, else return ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a target public key pki∗ =
(pki∗,1, pki∗,2) and two equal-length messages m0,m1 ∈ {0, 1}l0 . Algorithm B responds as
follows:

1. Recover tuple (pki∗ , xi∗,1, xi∗,2, c
∗) from K list. Note that according to the constraints

described in IND-PRE-CCA game, c∗ must be equal to 1 or 0. If c∗ = 1, B outputs
“failure” and abort. Otherwise, it means that c∗ = 0, and B proceeds to execute
the rest steps.

2. Pick e∗, s∗ $← Z∗q , and compute D∗ =
(
gb

)−(xi∗,1+xi∗,2)e∗
(
g

1
a

)(xi∗,1+xi∗,2)s∗
and E∗ =

(
gb

)(xi∗,1+xi∗,2).

3. Pick F ∗ $← {0, 1}l0+l1 and define H3(D∗, E∗, F ∗) = e∗.

4. Pick δ
$← {0, 1}, ω∗ $← {0, 1}l1 , and implicitly define H2(gab) = (mδ‖ω∗) ⊕ F ∗ and

H1(mδ, ω
∗) = ab (Note that algorithm B knows neither ab nor gab).

5. Return CT∗ = (D∗, E∗, F ∗, s∗) as the challenged ciphertext to adversary A.

Again, let u∗ , s∗ − abe∗ and r∗ , ab, it can be easily verified that the challenged
ciphertext CT∗ has the same distribution as the real one.

20

Phase 2. Adversary A continues to issue the rest of queries as in Phase 1, with the
restrictions described in the IND-PRE-CCA game. Algorithm B responds to these queries
for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} to B. Algorithm B randomly
picks a tuple (R, β) from the list H list

2 and outputs R as the solution to the given DCDH
instance.

Analysis: Similar to the analysis in Theorem 1, we can have that algorithm B’s advantage
against the DCDH challenge is at least

ε′ ≤ 1
qH2

(
2(ε− ν)

e(1 + qrk)
− qH1 + (qH1 + qH2 + qH4)qd

2l0+l1
− qre + 3qd

q

)
,

and its time complexity is bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 2qrk + 5qre + qd + qH1qre + (qH4 + 2qH1)qd)te.

This completes the proof of Theorem 2. tu
Next, we prove the master secret security for our proposed C-PRE scheme.

Theorem 3 Our scheme ΠUni has master secret security in the random oracle model,
assuming the DL assumption holds in group G. Concretely, if there exists an MSK-PRE
adversary A, who asks at most qHi random oracle queries to Hi with i ∈ {1, · · · , 4}, and
breaks the (t, qu, qc, qrk, ε)-MSK-PRE security of our scheme, then there exists an algorithm
B which can solve the (t′, ε)-DL problem in group G with t′ ≤ t + O(qH1 + qH2 + qH3 +
qH4 + qH5 + 2qute + 2qcte + qrkte).

Proof. Suppose B is given as input a DL challenge tuple (g, ga) ∈ G2×GT with unknown

a
$← Z∗q . Algorithm B’s goal is to output a. Algorithm B acts as a challenger and plays

the MSK-PRE game with adversary A in the following way:

Setup. Algorithm B gives (q,G, g, H1,H2,H3,H4,H5, l0, l1) to A. Here H1,H2,H3, H4

and H5 are random oracles controlled by B, and they are conducted in the same way as
in Theorem 2.

Queries. In this phase, adversary A issues a series of queries as defined in the MSK-PRE
game. B maintains a list K list, which is initially empty, and answers these queries for A
as follows:

• Uncorrupted key generation query 〈i〉: Algorithm B first picks xi,1, xi,2
$← Z∗q , and

define pki = (pki,1, pki,2) = (gagxi,1 , g−agxi,2). Next, set ci = 0 and add the tuple
(pki, xi,1, xi,2, ci) to the K list. Finally, it returns pki to adversary A. Note that the
secret key with respect to pki is ski = (a + xi,1,−a + xi,2), which is unknown to
both B and A.

• Corrupted key generation query 〈j〉: B first picks xj,1, xj,2
$← Z∗q and defines pkj =

(pkj,1, pkj,2) = (gxj,1 , gxj,2) and cj = 1. Next, it adds the tuple (pkj , xj,1, xj,2, cj) to
the K list and returns (pkj , (xj,1, xj,2)) to adversary A.

• Re-encryption key query 〈pki, pkj〉: B first parses pki as pki = (pki,1, pki,2) and
pkj = (pkj,1, pkj,2). Next, it recovers tuples (pki, xi,1, xi,2, ci) and (pkj , xj,1, xj,2, cj)
from the K list. Then, it constructs the re-encryption key rki,j for adversary A
according to the following situations:

21

– If ci = 1, it means that ski = (xi,1, xi,2), which is known to B. So, B can
certainly run algorithm ReKeyGen(ski, pkj) to generate the re-encryption key,
which is then returned to A.

– If ci = 0, it means that ski = (a + xi,1,−a + xi,2). B first picks v′ $← Z∗q ,
and computes v = H4(v′, pkj), V = gv and hj = H5(V, pkj , pkv

j,2). Next, it

defines rk
〈1〉
i,j = hj

xi,1+xi,2
, and returns rki,j = (rk〈1〉i,j , V) to A. Observe that this

is indeed a valid re-encryption key, since rk
〈1〉
i,j = hj

xi,1+xi,2
= hj

(a+xi,1)+(−a+xi,2) .

Output. Eventually, A outputs the secret key ski∗ = (ski∗,1, ski∗,2) with respect to the
public key pki∗ . B first recovers the tuple (pki∗ , xi∗,1, xi∗,2, ci∗) from the K list (Note that
according to the restriction specified in the MSK-PRE game, we have ci∗ = 0), and then
outputs ski∗,1−xi∗,1 as the solution to the DL challenge. Note that, if ski∗ = (ski∗,1, ski∗,2)
is a valid secret key with respect to pki∗ , then we have ski∗,1 = a + xi∗,1 and ski∗,2 =
−a + xi∗,2. Therefore, ski∗,1 − xi∗,1 is indeed equal to a, and hence it is the solution to
the DL instance.

This completes the description of the simulation. It is clear that the simulations
of the random oracles, say H1,H2,H2,H4, are perfect. Also, it can be verified that
the responses for the uncorrupted key generation queries, the corrupted key generation
queries and the re-encryption key query are all perfect. Thus, when adversary A
outputs the valid secret key ski∗ with advantage ε, B can resolve the DL problem
with the same advantage. It can be easily seen that B’s running time is bounded by
t′ ≤ t+O(qH1 + qH2 + qH3 + qH4 + qH5 +2qute +2qcte + qrkte). Thus the proof of Theorem
3 is concluded. tu

4.3 Comparisons

In this subsection, we compare our scheme ΠUni with Libert-Vergnaud’s PRE scheme [20]
(denoted by LV Scheme), which is RCCA secure in public key scenarios. The comparison
results indicate that our scheme ΠUni is much more efficient than LV Scheme. It is worth
noting that the computational cost and the ciphertext length in our scheme decrease with
re-encryption, while those in LV Scheme increase with re-encryption. The security of our
scheme is related to the standard and well-studied CDH assumption, while LV Scheme is
proved under a stronger and less-studied assumption, named 3-quotient decision bilinear
Diffie-Hellman (3-QDBDH) assumption. A limitation of our scheme is that it is proved
in the random oracle model, while LV Scheme is proved in the standard model.

Schemes Libert-Vergnaud’s Scheme Our ΠBi

Encrypt 2te + 1tme + 1ts 3te
Comput. Re-Encrypt 2tp + 4te + 1tv 3te

Cost 2nd-level CiphTxt 3tp + 2te + 1tv 4teDecrypt
1st-level CiphTxt 5tp + 2te + 1tv 3te

CiphTxt 2nd-level CiphTxt 1|pks|+2|Ge|+1|GT |+1|σs| 3|G|+1|Zq|
Length 1st-level CiphTxt 1|pks|+4|Ge|+1|GT |+1|σs| 3|G|

Without Random Oracles? X ×
Master secret security X X

Underlying Assumptions 3-QDBDH CDH

Table 2: Efficiency Comparison between Scheme ΠUni and Libert-Vergnaud’s Scheme

22

5 Conclusions

We presented two direct constructions of CCA-secure proxy re-encryption schemes, in-
cluding one bidirectional scheme and one unidirectional scheme. Both schemes share the
following distinguished features: (i) no bilinear pairing computation is involved; (ii) the
ciphertext size and the computational cost decrease with re-encryption. Thus, compared
with existing CCA-secure proxy re-encryption schemes, our scheme is highly efficient. We
remark that our schemes are single-hop and can only be proved CCA-secure in the ran-
dom oracle model. It would be interesting to construct a PRE scheme which is multi-hop,
CCA-secure in the standard model, and yet without pairings. .

6 Acknowledgements

We would like to thank the anonymous referees for their helpful comments. This work is
supported by the Office of Research, Singapore Management University. It is also par-
tially supported by the National Science Foundation of China under Grant Nos. 90704004,
60873229, 60673077, and the National High Technology Research and Development Pro-
gram of China (863 Program) under Grants No 2008AA01Z403 and 2007AA01Z456.

References

[1] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Re-encryption
Schemes with Applications to Secure Distributed Storage. In Proc. of NDSS 2005,
pp. 29-43, 2005.

[2] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Re-encryption
Schemes with Applications to Secure Distributed Storage. ACM Transactions on
Information and System Security (TISSEC), 9(1):1-30, February 2006.

[3] D. Boneh, and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. In advances in Cryptology-Eurocrypt’04, LNCS 3027, pp.
223-238, Springer-Verlag, 2004.

[4] M. Blaze, G. Bleumer, and M. Strauss. Divertible Protocols and Atomic Proxy
Cryptography. In advances in Cryptology-Eurocrypt’98, LNCS 1403, pp. 127-144,
Springer-Verlag, 1998.

[5] F. Bao, R. H. Deng, H. Zhu. Variations of Diffie-Hellman Problem. In Proc. of
ICICS’03, LNCS 2836, pp. 301-312, Springer-Verlag, 2003.

[6] D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In
Advanecs in Cryptology-Crypto’01, LNCS 2139, pp. 213-229. Springer-Verlag, 2001.

[7] D. Boneh, E.-J. Goh, and T. Matsuo. Proposal for P1363.3 Proxy Re-encryption.
http://grouper.ieee.org/groups/1363/IBC/submissions/NTTDataProposal-for-
P1363.3-2006-09-01.pdf.

[8] J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless Public Key Encryption with-
out Pairing. In Proc. of ISC’05. LNCS 3650, pp. 134-148, Springer-Verlag, 2005.

23

[9] R. Canetti, S. Goldwasser. An Efficient Threshold Public Key Cryptosystem Se-
cure against Adaptive Chosen Ciphertext Attack. In advances in Cryptology-
Eurocrypt’99, LNCS 1592, pp.90-106. Springer-Verlag, 1999.

[10] R. Caneti and S. Hohenberger. Chosen-Ciphertext Secure Proxy Re-Encryption. In
Proceeding of ACM CCS 2007.

[11] C. Chu and W. Tzeng. Identity-Based Proxy Re-Encryption without Random Ora-
cles. In Proc. of ISC’07, LNCS 4779, pp. 189-202, Springer-Verlag, 2007.

[12] Y. Dodis, and A.-A. Ivan. Proxy Cryptography Revisited. In Proc. of NDSS’03, 2003.

[13] T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In Advances in Cryptology-Crypto’84, LNCS 196, pp.10-18, Springer-
Verlag, 1984.

[14] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric En-
cryption Schemes, In Advances in Cryptology-Crypto’99, LNCS 1666, pp. 537-554,
Springer-Verlag, 1999.

[15] M. Green and G. Ateniese. Identity-Based Proxy Re-Encryption. In Proc. of
ACNS’07, LNCS 4521, pp. 288-306, Springer-Verlag, 2007.

[16] P. Golle, M. Jakobsson, A. Juels, and P. F. Syverson. Universal Re-Encryption for
Mixnets. In Proc. of CT-RSA’04, LNCS 2964, pp. 163-178, Springer-Verlag, 2004.

[17] M. Jakobsson. On Quorum Controlled Asummetric Proxy Re-Encryption. In Proc.
of PKC’99, LNCS 1560, pp. 112-121, Springer-Verlag, 1999.

[18] E. Kiltz and D. Galindo. Direct Chosen-Ciphertext Secure Identity-Based Key En-
capsulation without Random Oracles. Cryptology ePrint Archive, Report 2006/034,
2006. http://eprint.iacr.org/.

[19] Eike Kiltz. Chosen-Ciphertext Secure Identity-Based Encryption in the Standard
Model with Short Ciphertexts. Cryptology ePrint Archive, Report 2006/122, 2006.
http://eprint.iacr.org/.

[20] B. Libert and D. Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy Re-
encryption. In Proc. of PKC’08, LNCS 4929, pp. 360-379, Springer-Verlag, 2008.

[21] B. Libert and D. Vergnaud. Multi-Use Unidirectional Proxy Re-Signatures. In P.
Syverson and S. Jha, editor(s), 15th ACM Conference on Computer and Communi-
cations Security (ACM CCS 2008), ACM Press, October 2008, To appear.

[22] B. Libert and D. Vergnaud. Tracing Malicious Proxies in Proxy Re-Encryption. In
Proc. of Pairing’2008, LNCS 5209, pp. 332-353. Springer-Verlag, 2008.

[23] T. Matsuo. Proxy Re-Encryption Systems for Identity-Based Encryption. In Proc.
of Paring’07, LNCS 4575, pp. 247-267, Springer-Verlag, 2007.

[24] Masahiro Mambo and Eiji Okamoto. Proxy Cryptosystems: Delegation of the Power
to Decrypt Ciphertexts. IEICE Trans. Fund. Electronics Communications and Com-
puter Science, E80-A/1:54-63, 1997.

[25] C. P. Schnorr. Efficient Identifications and Signatures for Smart Cards. In advances
in Cryptology-Crypto’89, LNCS 435, pp. 239-251, Springer-Verlag, 1990.

24

