
Reconstructing RSA Private Keys from Random Key Bits

Nadia Heninger
nadiah@cs.princeton.edu

Hovav Shacham
hovav@cs.ucsd.edu

Abstract

We show that an RSA private key with small public exponent can be efficiently recovered
given a 0.27 fraction of its bits at random. An important application of this work is to the
“cold boot” attacks of Halderman et al. We make new observations about the structure of RSA
keys that allow our algorithm to make use of the redundant information in the typical storage
format of an RSA private key. Our algorithm itself is elementary and does not make use of the
lattice techniques used in other RSA key reconstruction problems. We give an analysis of the
running time behavior of our algorithm that matches the threshold phenomenon observed in
our experiments.

1 Introduction

In this paper, we present a new algorithm for the problem of reconstructing RSA private keys
given a random δ-fraction of their bits. For RSA keys with small public exponent, our algorithm
reconstructs the private key with high probability when δ ≥ 0.27. The runtime analysis of our
algorithm relies on an assumption (Conjecture 4.3) and is thus heuristic; but we have verified
experimentally that it succeeds with high probability.

Motivation: cold boot attacks. An important application of our algorithm is key recovery
from the randomly distributed unidirectional bit corruption observed in the recent work of Hal-
derman et al. [10], which demonstrated that DRAM remanence effects make possible practical,
nondestructive attacks that recover (a degraded version of) secret keys stored in a computer’s
memory. Using these “cold boot” attacks, attackers with physical access to a machine can break
popular disk encryption systems or recover an SSL server’s private key.

One consequence of the nature of the attack is that a perfect image of the contents of memory
may not be available to the attacker; instead, some bits may have been flipped. Halderman et al.
observe that, within a DRAM region, the decay is overwhelmingly either 0 → 1 or 1 → 0. The
decay direction for a region can be determined by comparing the number of 0s and 1s. (In an
uncorrupted key we expect these to be approximately equal.) For a region of 1→ 0 decay, a 1 bit
in the decayed version is known (with high probability) to correspond to a 1 bit in the original
key, whereas a 0 bit might correspond to either a 0 or 1 bit in the original key. If a ρ fraction of
bits decays and 0s and 1s were present in equal numbers in the key then we will know, given the
degraded representation, a δ = (1− ρ)/2 fraction of key bits.

Halderman et al. further showed that it is possible to exploit redundancy in key data to create
algorithms for reconstructing DES, AES, and cipher tweak keys from their degraded in-memory
representations. In addition, they experimented with reconstructing RSA keys by using the public

1

modulus N to correct its partly-known factors p and q. We extend this idea to take into account
other fields of an RSA private key and provide an analysis of the resulting algorithm’s runtime
behavior. Our improvement makes a significant difference in practice: their algorithm takes several
minutes to recover a 2048-bit RSA key from 12% unidirectional corruption; ours takes under a
second to recover a 2048-bit key from as much as 46% unidirectional corruption.

Our algorithm and its performance. Our two main results in this paper are: (1) an algorithm
for reconstructing RSA private keys given a random δ-fraction of their bits; and (2) an analysis
of the algorithm’s runtime behavior for random inputs that shows that it will succeed in expected
quadratic time when δ ≥ .27. The runtime analysis depends crucially on both a uniformly random
distribution of known bits and the assumption that the effect of a bit error during reconstruction
is propagated uniformly through subsequent bits of the key.

Our algorithm performs better than the algorithm given by Halderman et al. because it is able
to make use of five components of the RSA private key: p, q, d, dp, and dq. We can use known bits
in d, dp, and dq to make progress where bits in p and q are not known. To relate d to the rest of
the private key, we make use of techniques due to Boneh, Durfee, and Frankel [4]; to relate dp and
dq to the rest of the private key, we make new observations about the structure of RSA keys that
may be of independent interest. This is discussed in Section 2.

If the algorithm has access to fewer components of the RSA private key, the algorithm will still
perform well given a sufficiently large fraction of the bits. For example, it can efficiently recover a
key given

δ = .27 fraction of the bits of p, q, d, dp, and dq.

δ = .42 fraction of the bits of p, q, and d.

δ = .57 fraction of the bits of p and q.

The reconstruction algorithm itself, described in Section 3, is elementary and does not make use
of the lattice basis reduction or integer programming techniques that have been applied to other
kinds of RSA key reconstruction problems. At each step, it branches to explore all possible keys,
and prunes these possibilities using our understanding of the structure of RSA keys and the partial
information we are given about key bits. We give an analysis of the algorithm for random inputs
in Section 4. We obtain a sharp threshold around 2 − 2(4/5) ≈ 27% of known key bits. Below
this threshold, the expected number of keys examined is exponential in the number of bits of the
key, and above this threshold, the expected number of keys examined is close to linear. Note that
this threshold applies only to our particular approach. We suspect these results could be improved
using more sophisticated methods.

Finally, we have implemented our algorithm and performed extensive experiments using it.
The results are described in Section 5. The algorithm’s observed behavior matches our analytically
derived bounds and validates the heuristic assumptions made in the analysis.

Small public-exponent RSA. Our algorithm is specialized to the case where the public expo-
nent e is small. The small-e case is, for historical reasons, the overwhelmingly common one in
deployed RSA applications such as SSL/TLS. For example, until recently Internet Explorer would
reject TLS server certificates with an RSA public exponent longer than 32 bits [5, p. 8]. The
choice e = 65537 = 216 + 1 is especially widespread. Of the certificates observed in the UCSD TLS

2

Corpus [22] (which was obtained by surveying frequently-used TLS servers), 99.5% had e = 65537,
and all had e at most 32 bits.

Related work. Inspired by cold boot attacks, Akavia, Goldwasser, and Vaikuntanathan [1] for-
mally introduced memory attacks, a class of side-channel attacks in which the adversary is leaked
a (shrinking) function of the secret key. One research direction, pursued by Akavia, Goldwasser,
and Vaikuntanathan and, in followup work, Naor and Segev [17], is constructing cryptosystems
provably secure against memory attacks.1 Another research direction is to evaluate the security of
existing cryptosystems against memory attacks. Our work is along this latter direction.

There is a great deal of work on both factoring and reconstructing RSA private keys given a
fraction of the bits.

Maurer [13] shows that integers can be factored in polynomial time given oracle access to an ε
fraction of the bits of a factor.

In a slightly stricter model, the algorithm has access to a fixed subset of consecutive bits of
the integer factors or RSA private keys. Rivest and Shamir [20] first solved the problem for a
2/3-fraction of the least significant bits of a factor using integer programming. This was improved
to 1/2 of the least or most significant bits of a factor using lattice-reduction techniques pioneered
by Coppersmith [6]; we refer the reader surveys by Boneh [3] and May [15] as well as May’s
Ph. D. thesis [14] for bibliographies. More recently, Herrmann and May extended these techniques
to efficiently factor given at most log logN known blocks of bits [11].

The problem we seek to solve can be viewed as a further relaxation of the conditions on access to
the key bits to a fully random subset. These lattice-reduction techniques are not directly applicable
to our problem because they rely on recovering consecutive bits of the key (expressed as small integer
solutions to modular equations), whereas the missing bits we seek to find are randomly distributed
throughout the degraded keys. It is possible to express our reconstruction problem as a knapsack,
and there are lattice techniques for solving knapsack problems (see, e.g., Nguyen and Stern [18]),
but we have not managed to improve on our solution by this approach.

2 RSA Private Keys

The PKCS#1 standard specifies [21, Sect. A.1.2] that an RSA private key include at least the
following information:

• the (n-bit) modulus N and public exponent e;
• the private exponent d;
• the prime factors p and q of N ;
• d modulo p− 1 and q − 1, respectively denoted dp and dq; and
• the inverse of q modulo p, denoted q−1

p .

In practice, an RSA key in exactly this format can be recovered from the RAM of a machine
running Apache with OpenSSL [10]. The first items —N and e— make up the public key and
are already known to the attacker. A näıve RSA implementation would use d to perform the
private-key operation c 7→ cd mod N , but there is a more efficient approach, used by real-world
implementations such as OpenSSL, that is enabled by the remaining private-key entries. In this

1There has been substantial other recent work on designing cryptosystems secure in related key-leakage models
(e.g., [19, 8, 2]); for a survey, see Goldwasser’s invited talk at Eurocrypt 2009 [9] and the references therein.

3

approach, one computes the answer modulo p and q as (c mod p)dp and (c mod q)dq , respectively;
then combines these two partial answers by means of q−1

p and the Chinese Remainder Theorem
(CRT). This approach requires two exponentiations but of smaller numbers, and is approximately
four times as fast as the näıve method [16, p. 613].

Observe that the information included in PKCS#1 private keys is highly redundant. In fact,
knowledge of any single one of p, q, d, dp, and dq is sufficient to reveal the factorization of N .2 It
is this redundancy that we will use in reconstructing a corrupted RSA key.

We now derive relations between p, q, d, dp, and dq that will be useful in mounting the attack.
The first such relation is obvious:

N = pq . (1)

Next, since d is the inverse of e modulo ϕ(N) = (p− 1)(q − 1) = N − p− q + 1, we have

ed ≡ 1 (mod ϕ(N))

and, modulo p− 1 and q − 1,

edp ≡ 1 (mod p− 1) and edq ≡ 1 (mod q − 1) .

As it happens, it is more convenient for us to write explicitly the terms hidden in the three con-
gruences above, obtaining

ed = k(N − p− q + 1) + 1 (2)
edp = kp(p− 1) + 1 (3)
edq = kq(q − 1) + 1 . (4)

It may appear that we have thereby introduced three new unknowns: k, kp, and kq. But in fact
for small e we can compute each of these three variables given even a badly-degraded version of d.

Computing k. The following argument, due to Boneh, Durfee, and Frankel [4], shows that k must
be in the range 0 < k < e. We know d < ϕ(N). Assume e ≤ k; then ed < kϕ(N) + 1, which
contradicts (2). The case k = 0 is also impossible, as can be seen by reducing (2) modulo e. This
shows that we can enumerate all possible values of k, having assumed that e is small.

For each such choice k′, define

d̃(k′) def=
⌊
k′(N + 1) + 1

e

⌋
.

As Boneh, Durfee, and Frankel observe, when k′ equals k, this gives an excellent approximation
for d:

0 ≤ d̃(k)− d ≤ k(p+ q)/e < p+ q .

In particular, when p and q are balanced, we have p + q < 3
√
N , which means that d̃(k) agrees

with d on their bn/2c − 2 most significant bits. (Our analysis applies also in the less common case

2This is obvious for p and q and well known for d (cf. [7]); dp reveals p as gcd(aedp−1 − 1, N) with high probability
for random a provided dp 6= dq, and similarly for dq; if dp and dq are equal to each other then they are also equal
to d.

4

when p and q are unbalanced, but we omit the details.) This means that small-public-exponent
RSA leaks half the bits of the private exponent in one of the candidate values d̃(1), . . . , d̃(e− 1).

The same fact allows us to go in the other direction, using information about d to determine k,
as again noted by Boneh, Durfee, and Frankel. We are given d̃, a corrupted version of d. We
enumerate d̃(1), . . . , d̃(e − 1) and check which of these agrees, in its more significant half, with
the known bits of d̃. Provided that δn/2 � lg e, there will be just one value of k′ for which
d̃(k′) matches; that value is k. Even for 1024-bit N and 32-bit e, there is, with overwhelming
probability, enough information to compute k for any δ we consider in this paper. This observation
has two implications:

1. we learn the correct k used in (2); and

2. we correct the more significant half of the bits of d̃, by copying from d̃(k).

Computing kp and kq. Once we have determined k, we can compute kp and kq. First, observe
that by an analysis like that above, we can show that 0 < kp, kq < e. This, of course, means
that kp = (kp mod e) and kq = (kq mod e); when we solve for kp and kq modulo e, this will reveal
the actual values used in (3) and (4). Now, reducing equations (1)–(4) modulo e, we obtain the
following congruences:

N ≡ pq (5)
0 ≡ k(N − p− q + 1) + 1 (6)
0 ≡ kp(p− 1) + 1 (7)
0 ≡ kq(q − 1) + 1 . (8)

These are four congruences in four unknowns: p, q, kp, and kq; we solve them as follows. From
(7) and (8) we write (p − 1) ≡ −1/kp and (q − 1) ≡ −1/kq; we substitute these into the equation
obtained from using (5) to reexpress ϕ(N) in (6): 0 ≡ k(N − p− q+ 1) + 1 ≡ k(p− 1)(q− 1) + 1 ≡
k(−1/kp)(−1/kq) + 1 ≡ k/(kpkq) + 1, or

k + kpkq ≡ 0 . (9)

Next, we return to (6), substituting in (7), (8), and (9):

0 ≡ k(N − p− q + 1) + 1
≡ k(N − 1)− k(p− 1 + q − 1) + 1
≡ k(N − 1)− (−kpkq)(−1/kp − 1/kq) + 1
≡ k(N − 1)− (kq + kp) + 1 ;

we solve for kp by substituting kq = −k/kp, obtaining

0 ≡ k(N − 1)− (kp − k/kp) + 1 ,

or, multiplying both sides by kp and rearranging,

k2
p −

[
k(N − 1) + 1

]
kp − k ≡ 0 . (10)

5

This congruence is easy to solve modulo e and, in the common case where e is prime, has two
solutions, just as it would over C. One of the two solutions is the correct value of kp; and it is easy
to see, by symmetry, that the other must be the correct value of kq. We need therefore try just two
possible assignments to kp and kq in reconstructing the RSA key. When e has m distinct prime
factors, there may be up to 2m roots [4].

Note that we also learn the values of p and q modulo e. If we then use the procedure outlined
below to decode the r least significant bits of p (up to a list of possibilities), we will know p mod
e2r; we can then factor N , provided r + lg e > n/4, by applying Boneh, Durfee, and Frankel’s
Corollary 2.2 ([4]; a generalization of Coppersmith’s attack on RSA with known low-order bits [6,
Theorem 5] that removes the restriction that the partial knowledge of p must be modulo a power
of 2).

3 The Reconstruction Algorithm

Once we have the above relationships between key data, the remainder of the attack consists of
enumerating all possible partial keys and pruning those that do not satisfy these constraints. More
precisely, given bits 1 through i− 1 of a potential key, generate all combinations of values for bit i
of p, q, d, dp, dq, and keep a candidate combination if it satisfies (1), (2), (3), and (4) mod 2i.

The remainder of this section details how to generate and prune these partial solutions.
In what follows, we assume that we know the values of kp and kq. When equation (10) has two

distinct solutions, we must run the algorithm twice, once for each of the possible assignments to
kp and kq.

Let p [i] denote the ith bit of p, where the least significant bit is bit 0, and similarly index the
bits of q, d, dp and dq. Let τ(x) denote the exponent of the largest power of 2 that divides x.

As p and q are large primes, we know they are odd, so we can correct p [0] = q [0] = 1. It follows
that 2 | p− 1, so 21+τ(kp) | kp(p− 1). Thus, reducing (3) modulo 21+τ(kp), we have

edp ≡ 1 (mod 21+τ(kp)) .

Since we know e, this allows us immediately to correct the 1 + τ(kp) least significant bits of dp.
Similar arguments using (4) and (2) allow us to correct the 1 + τ(kq) and 2 + τ(k) bits of dq and
d, respectively.

What is more, we can easily see that, having fixed bits < i of p, a change in p [i] affects dp not
in bit i but in bit i + τ(kp); and, similarly, a change in q [i] affects dq

[
i+ τ(kq)

]
, and a change in

p [i] or q [i] affects d
[
i+ τ(k)

]
. When any of k, kp, or kq is odd, this is just the trivial statement

that changing bit i of the right-hand side of an equation changes bit i of the left-hand side. Powers
of 2 in kp shift left the bit affected by p [i], and similarly for the other variables.

Having recovered the least-significant bits of each of our five variables, we now attempt to
recover the remaining bits. For each bit index i, we consider a slice of bits:

p [i] q [i] d
[
i+ τ(k)

]
dp
[
i+ τ(kp)

]
dq
[
i+ τ(kq)

]
.

For each possible solution up to bit slice i − 1, generate all possible solutions up to bit slice i
that agree with that solution at all but the ith position. If we do this for all possible solutions up
to bit slice i− 1, we will have enumerated all possible solutions up to bit slice i. Above, we already
described how to obtain the only possible solution up to i = 0; this is the solution we use to start

6

the algorithm. The factorization of N will be revealed in one or more of the possible solutions once
we have reached i = bn/2c.3

All that remains is how to lift a possible solution (p′, q′, d′, d′p, d
′
q) for slice i − 1 to possible

solutions for slice i. Näıvely there are 25 = 32 such possibilities, but in fact there are at most 2
and, for large enough δ, almost always fewer.

First, observe that we have four constraints on the five variables: equations (1), (2), (3), and
(4). By plugging in the values up to slice i− 1, we obtain from each of these a constraint on slice i,
namely values c1, . . . , c4 such that the following congruences hold modulo 2:

p [i] + q [i] ≡ c1 (mod 2)
d
[
i+ τ(k)

]
+ p [i] + q [i] ≡ c2 (mod 2)

dp
[
i+ τ(kp)

]
+ p [i] ≡ c3 (mod 2)

dq
[
i+ τ(kq)

]
+ q [i] ≡ c4 (mod 2) .

(11)

For example, if N and p′q′ agree at bit i, c1 = 0; if not, c1 = 1. Four constraints on five unknowns
means that there are exactly two possible choices for bit slice i satisfying these four constraints.
(Expressions for the cis are given in (13).)

Next, it may happen that we know the correct value of one or more of the bits in the slice,
through our partial knowledge of the private key. These known bits might agree with neither, one,
or both of the possibilities derived from the constraints above. If neither possible extension of a
solution up to i − 1 agrees with the known bits, that solution is pruned. If δ is sufficiently large,
the number of possibilities at each i will be kept small.

4 Algorithm Runtime Analysis

The main result of this section is summarized in the following informal theorem.

Theorem 4.1. Given the values of a δ = .27 fraction of the bits of p, q, d, d mod p, and d mod q,
the algorithm will correctly recover an n-bit RSA key in expected O(n2) time with probability 1− 1

n2 .

The running time of the algorithm is determined by the number of partial keys examined. To
bound the total number of keys seen by the program, we will first understand how the structure of
the constraints on the RSA key data determines the number of partial solutions generated at each
step of the algorithm. Then we will use this understanding to calculate some of the distribution of
the number of solutions generated at each step over the randomness of p and q and the missing bits.
Finally we characterize the global behavior of the program and provide a bound on the probability
that the total number of branches examined over the entire run of the program is too large.

Lifting solutions mod 2i. The process of generating bit i of a partial solution given bits 0
through i− 1 can be seen as lifting a solution to the constraint equations mod 2i to a solution mod
2i+1. Hensel’s lemma characterizes the conditions when this is possible.

3In fact, as we discussed in Section 2 above, information sufficient to factor N will be revealed much earlier, at
i = dn/4− lg ee.

7

Lemma 4.2 (Multivariate Hensel’s Lemma). A root r = (r1, r2, . . . , rn) of the polynomial
f(x1, x2, . . . , xn) mod πi can be lifted to a root r + b mod πi+1 if b = (b1πi, b2πi, . . . , bnπi), 0 ≤
bj ≤ π − 1 is a solution to the equation

f(r + b) = f(r) +
∑
j

bjπ
ifxj (r) ≡ 0 (mod πi+1) .

(Here, fxj is the partial derivative of f with respect to xj .)
We can rewrite the lemma using the notation of Section 3. Write r in base π = 2 and assume

the i first bits are known. Then the lemma tells us that the next bit of r, r[i] = (r1[i], r2[i], . . .),
must satisfy

f(r)[i] +
∑
j

fxj (r)rj [i] ≡ 0 (mod 2) . (12)

In our case, the constraint polynomials generated in Section 2, equations (1)–(4) form four
simultaneous equations in five variables. Given a partial solution (p′, q′, d′, d′p, d

′
q) up to slice i of

the bits, we apply the condition in equation (12) above to each polynomial and reduce modulo 2
to obtain the following conditions on bit i:

p [i] + q [i] ≡ (n− p′q′) [i] (mod 2)
d
[
i+ τ(k)

]
+ p [i] + q [i] ≡

(
k(N + 1) + 1− k(p′ + q′)− ed′

) [
i+ τ(k)

]
(mod 2)

dp
[
i+ τ(kp)

]
+ p [i] ≡

(
kp(p′ − 1) + 1− ed′p

) [
i+ τ(kp)

]
(mod 2)

dq
[
i+ τ(kq)

]
+ q [i] ≡

(
kq(q′ − 1) + 1− ed′q

) [
i+ τ(kq)

]
(mod 2) .

(13)

These are precisely (11).

4.1 Local branching behavior

Without additional knowledge of the keys, the system of equations in (13) is underconstrained, and
each partial satisfying assignment can be lifted to two partial satisfying assignments for slice i. If
bit i − 1 of a variable x is known, the corresponding x [i− 1] is fixed to the value of this bit, and
the new partial satisfying assignments correspond to solutions of (13) with these bit values fixed.
There can be zero, one, or two new solutions at bit i generated from a single solution at bit i− 1,
depending on the known values.

Now that we have a framework for characterizing the partial solutions generated at step i from
a partial solution generated at step i−1, we will assume that a random fraction δ of the bits of the
key values are known, and estimate the expectation and variance of the number of these solutions
that will be generated.

In order to understand the number of solutions to the equation, we would like to understand the
behavior of the ci when the partial solution may not be equal to the real solution. Let ∆x = x−x′,
then substituting x′ = x−∆x into (13) we see that any solution to (11) corresponds to a solution
to

∆p [i] + ∆q [i] ≡ (q∆p+ p∆q + ∆p∆q) [i] (mod 2)
∆d
[
i+ τ(k)

]
+ ∆p [i] + ∆q [i] ≡ (e∆d+ k∆p+ k∆q))

[
i+ τ(k)

]
(mod 2)

∆dp
[
i+ τ(kp)

]
+ ∆p [i] ≡ (e∆dp − kp∆p)

[
i+ τ(kp)

]
(mod 2)

∆dq
[
i+ τ(kq)

]
+ ∆q [i] ≡ (e∆dq − kq∆q)

[
i+ τ(kq)

]
(mod 2)

and ∆x [i] is restricted to 0 if bit i of x is fixed.

8

Incorrect solutions generated from a correct solution. When the partial satisfying assign-
ment is correct, all of the ∆x will be equal to 0. If all of the ∆x [i] are unconstrained or if only
∆d [i+ τ(k)] is set to 0, there will be two possible solutions (of which we know one is “good” and
the other is “bad”), otherwise there will be a single good solution. Let Zg be a random variable
denoting the number of bad solutions at bit i + 1 generated from a single good solution at bit i.
Since each ∆x [i] is set to 0 independently with probability δ, the expected number of bad solutions
generated from a good solution is equal to

EZg = δ(1− δ)4 + (1− δ)5

and
EZ2

g = EZg .

Both these expressions are dependent only on δ.

Incorrect solutions generated from an incorrect solution. When the partial satisfying
assignment is incorrect, at least one of the ∆x is nonzero. The expected number of new incorrect
satisfying assignments generated from an incorrect satisfying assignment is dependent both on δ
and on the behavior of the bj .

We conjecture the following is close to being true:

Conjecture 4.3. For random p and q and for ∆x not all zero and satisfying

q∆p+ p∆q −∆p∆q = 0 (mod 2i)

e∆d+ k∆p+ k∆q = 0 (mod 2i+τ(k))

e∆dp − kp∆p = 0 (mod 2i+τ(kp))

e∆dq − kq∆q = 0 (mod 2i+τ(kq)) ,

the next bit of each congruence is 0 or 1 independently with probability near 1/2.

We tested this empirically; each value of the vector (b1, b2, b3, b4) occurs with probability ap-
proximately 1/16. (The error is approximately 5% for δ = 0.25 and n = 1024, and approximately
2% for δ = 0.25 and n = 4096.)

Let Wb be a random variable denoting the number of bad solutions at bit i+ 1 generated from
a single bad solution at bit i. Assuming Conjecture 4.3,

EWb =
(2− δ)5

16

and
EW 2

b = EWb + δ(1− δ)4 + 2(1− δ)5 .

Note that the expectation is over the randomness of p and q and the positions of the unknown
bits of the key.

When partial knowledge of some of the values (p, q, d, dp, dq) is totally unavailable, we can obtain
a similar expression.

9

4.2 Global branching behavior at each step of the program

Now that we have characterized the effect that the constraints have on the branching behavior of
the program, we can abstract away all details of RSA entirely and examine the general branching
process of the algorithm. We are able to characterize the behavior of the algorithm, and show that
if the expected number of branches from any partial solution to the program is less than one, then
the total number of branches examined at any step of the program is expected to be constant. All
of the following analysis assumes Conjecture 4.3.

Let Xi be a random variable denoting the number of bad assignments at step i, and recall that
Zg and Wb are random variables denoting the number of bad solutions at bit i+ 1 generated from
a single good or bad solution at bit i.

Theorem 4.4.
EXi =

EZg
1− EWb

(1− (EWb)i)

This expression can be calculated in a number of ways; we demonstrate how to do so using
generating functions in Section 6.

When EWb < 1, we can bound EXi from above.

EXi ≤
EZg

1− EWb

In the previous section, we calculated expressions for EZg and EWb dependent only on δ, thus
when EWb < 1, EXi can be bounded above by a constant dependent on δ and not on i.

We can evaluate this expression numerically using the values for the expected number of bad
solutions discovered in the last section.

In the case with four equations and five unknowns (that is, we have partial knowledge of p, q,
d, dp, and dq), EWb < 1 at δ > 2 − 2

4
5 . For δ = .2589, EXi < 93247; for δ = .26, EXi < 95; and

for δ = .27 EXi < 9.
In a similar fashion we can obtain the following complicated expression for the variance VarXi =

EX2 − (EX)2.

Theorem 4.5.
VarXi = α1 + α2(EWb)i + α3(EWb)2i (14)

with

α1 =
EZg VarWb + (1− EWb) VarZg

(1− (EWb)2)(1− EWb)

α2 =
EW 2

b + EWb − 2 EWb EZg − EZg
1− EWb

+ 2
(

EZg
1− EWb

)2

α3 = −α1 − α2 .

Again evaluating numerically for five unknowns and four equations, at δ = .26 VarXi < 7937,
at δ = .27 VarXi < 80, and at δ = .28 VarXi < 23.

10

4.3 Bounding the total number of keys examined

Now that we have some information about the distribution of the number of partial keys examined
at each step, we would like to understand the distribution of the total number of keys examined
over an entire run of the program.

We know the expected total number of keys examined for an n-bit key is

E

[
n∑
i=0

Xi

]
≤ EZg

1− EWb
n .

We will bound how far the total sum is likely to be from this expectation. First, we apply the
following bound on the variance of a sum of random variables:

Lemma 4.6.

Var
n∑
i=1

Xi ≤ n2 max
i

VarXi

The proof writes the variance of the sum in terms of covariance, and applies Schwartz’s inequality
and
√
ab ≤ a+b

2 .
Apply Chebyshev’s inequality to bound the likelihood that

∑
Xi is too large:

Pr(|
∑

iXi − E
∑

iXi| ≥ nα) ≤ 1
(nα)2

Var
∑

iXi .

Apply the above lemma to obtain

Pr(|
∑

iXi − E
∑

iXi| ≥ nα) ≤ 1
α2

max
i

VarXi .

When δ = .27, setting α > 9n gives that, for an n-bit key, the algorithm will examine more
than 9n2 + 71n potential keys with probability less than 1

n2 .

4.4 Missing key fields

The same results apply when we have partial knowledge of fewer key fields.

• If the algorithm has partial knowledge of d, p, and q but no information on dp and dq, we
know that

EZg = δ(1− δ)2 + (1− δ)3

EZ2
g = EZg

EWb =
(2− δ)3

4
EW 2

b = EWb + δ(1− δ)2 + 2(1− δ)3 ,

so EWb < 1 when δ > 2 − 2
3
4 ≈ .4126. Then for δ = .42 the probability that the algorithm

examines more than 22n2 + 24n keys is less than 1
n2 .

11

n = 512 768 1024 1536 2048 3072 4096 6144 8192

δ = 0.27 0 0 0 0 0 0 0 0 1

0.26 0 0 0 0 1 5 3 4 8

0.25 0 0 3 6 8 10 17 35 37

0.24 4 5 7 27 50 93 121 201 274

Table 1: Runs (out of 10,000) in which width exceeded 1,000,000

• If the algorithm has partial knowledge of p and q but no information on the other values,

EZg = (1− δ)2

EZ2
g = EZg

EWb =
(2− δ)2

2
EW 2

b = EWb + 2(1− δ)2 .

Then EWb < 1 when δ > 2 − 2
1
2 ≈ .5859. When δ = .59 the probability that the algorithm

examines more than 29n2 + 29n keys is less than 1
n2 .

5 Implementation and Performance

We have developed an implementation of our key reconstruction algorithm in approximately 850 lines
of C++, using NTL version 5.4.2 and GMP version 4.2.2. Our tests were run, in 64-bit mode, on
an Intel Core 2 Duo processor at 2.4 GHz with 4 MB of L2 cache and 4 GB of DDR2 SDRAM at
667 MHz on an 800 MHz bus.

We ran experiments for key sizes between 512 bits and 8192 bits, and for δ values between 0.40
and 0.24. The public exponent is always set to 65537. In each experiment, a key of the appropriate
size is randomly censored so that exactly a δ fraction of the bits of the private key components
considered together is available to be used for reconstruction. To reduce the time spent on key
generation, we reused keys: We generated 100 keys for each key size. For every δ and keysize, we
ran 100 experiments with each one of the pregenerated keys, for a total of 10,000 experimental
runs. In all, we conducted over 1.1 million runs.

For each run, we recorded the length and width. The length is the total number of keys con-
sidered in the run of the algorithm, at all bit indices; the width is the maximum number of keys
considered at any single bit index. These correspond essentially to

∑n/2
i=1Xi and maxiXi, in the

notation of Section 4, but can be somewhat larger because we run the algorithm twice in parallel
to account for both possible matchings of solutions of (10) to kp and kq. To avoid thrashing, we
killed runs as soon as the width for some index i exceeded 1,000,000.

When the panic width was not exceeded, the algorithm always ran to completion and correctly
recovered the factorization of the modulus.

Of the 900,000 runs of our algorithm with δ ≥ 0.27, only a single run (n = 8192, δ = 0.27)
exceeded the panic width. Applying a Chebyshev bound in this case (with EXi = 9 and VarXi =
80) suggests that a width of 1,000,000 should happen with extremely low probability.

12

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.34 0.36 0.38 0.4

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

delta

le
n

Figure 1: Boxplot for total number of keys examined by algorithm for n = 2048, varying δ.

Even below δ = 0.27, our algorithm almost always finished within the allotted time. Table 1
shows the number of runs (out of 10,000) in which the panic width was exceeded for various
parameter settings. Even for n = 8192 and δ = 0.24, our algorithm recovered the factorization of
the modulus in more than 97% of all runs. And in many of the overly long runs, the number of
bits recovered before the panic width was exceeded suffices to allow recovering the rest using the
lattice methods considered in Section 2; this is true of 144 of the 274 very long runs at n = 8192
and δ = 0.24, for example.

As expected, search runtime was essentially linear in the total number of keys examined. For n =
1024, for example, examining a single key took approximately 5 µsec; for n = 6144, approximately
8 µsec. The setup time varied depending on whether k was closer to 0 or to e, but never exceeded
210 msec, even for n = 8192.

In Figure 2, we show the runtime behavior of the algorithm for the parameters n = 2048 and
δ = 0.27. The y axis shows the fraction of the 10,000 runs in which the total number of keys
examined by the algorithm (i.e., the length of the run) exceeded the length given in the x axis.
For example, 1442 runs had a length in excess of 10,000 and 237 had a length in excess of 25,000.
Using a boxplot, we can examine the behavior of the algorithm for different values of δ. The plot
in Figure 1 gives the behavior for n = 2048. The bar for δ = 0.27 summarizes the data presented
in Figure 2. (In our boxplot, generated using R’s boxplot function, the central bar corresponds
to the median, the hinges to the first and third quartiles, and the whisker extents depend on the
interquartile range.)

Figure 3 and Figure 4 show the total number of keys examined by the algorithm as a function
of n, the number of bits of the modulus, and holding δ constant at, respectively, 0.27 and 0.24.
The length is largely linear in n for δ = 0.27 but grows more quickly than linearly for δ = 0.24.

13

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

len

fr
ac

tio
n

of
 r

un
s

ex
ce

ed
in

g
le

n

Figure 2: Total number of keys examined by algorithm for n = 2048 and δ = 0.27. The y axis gives
the fraction of runs in which the total length exceeded the length given in the x axis.

6 Computing the Expectation and Variance

In this appendix, we derive expressions for the expectation and variance of the number of incorrect
keys generated at each step of the program. Let Xi be a random variable denoting the number of
bad assignments at step i. We will calculate the expectation EXi and variance VarXi. (We know
that the number of good assignments is always equal to one.)

To calculate these values, we will use probability generating functions. For more information
on this approach, see e.g., [12, Ch. 8]. A probability generating function F (s) =

∑
Pr[X = k]sk

represents the distribution of the discrete random variable X. F (s) satisfies the following identities:

F (1) = 1

EX = F ′(1)

VarX = F ′′(1) + F ′(1)− F ′(1)2 .

Let Gi(s) be the probability generating function for the Xi, z(s) the probability generating
function for the Zg (the number of bad assignments generated from a correct assignment) and w(s)
the probability generating function for the Wb (the number of bad assignments generated from a
bad assignment).

From Section 4, we know that
z′(1) = EZg

z′′(1) = EZ2
g − EZg

14

512 1024 1536 2048 3072 4096 6144 8192

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

n

le
n

Figure 3: Boxplot for total number of keys examined by algorithm for δ = 0.27, varying n.

w′(1) = EWb

and
w′′(1) = EW 2

b − EWb

Expectation of Xi. We will calculate EXi = G′i(1).
Gi(s) satisfies the recurrence

Gi+1(s) = Gi(w(s))z(s) , (15)

that is, that the number of bad solutions at each step is equal to the number of bad solutions lifted
from bad solutions plus the number of bad solutions produced from good solutions. (Recall that a
generating function for the sum of two independent random variables is given by the convolution
of their generating functions.) We also have that

G0(s) = 1 ,

because initially there are no bad solutions.
Differentiating (15) gives

G′i(s) = (Gi−1(w(s))w′(s)z(s) +Gi−1(w(s))z′(s) . (16)

Set s = 1 and use the fact that Gi(1) = w(1) = z(1) = 1 to obtain

G′i(1) = w′(1)G′i−1(1) + z′(1) .

15

512 1024 1536 2048 3072 4096 6144 8192

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00

n

le
n

Figure 4: Boxplot for total number of keys examined by algorithm for δ = 0.24, varying n.

Solving the recurrence yields

G′i(1) =
z′(1)

1− w′(1)
(1− (w′(1))i) . (17)

If w′(1) < 1, then w′(1)i tends to 0 as i increases and

EXi = G′i(1) <
z′(1)

1− w′(1)
(18)

for all i. The expected number of bad solutions at any step of the process will be bounded by a
value dependent only on δ and not on i.

Variance of Xi. To compute the variance VarXi = G′′i (1) + G′i(1) − (G′i(1))2, we differentiate
(16) again to obtain

G′′i (s) = G′′i−1(w(s))w′(s)w′(s)z(s) +G′i−1(w(s))w′′(s)z(s)
+ 2G′i−1(w(s))w′(s)z′(s) +Gi−1(w(s))z′′(s) .

(19)

Evaluating at s = 1 gives

G′′i (1) = G′′i−1(1)w′(1)2 +G′i−1(1)w′′(1) + 2G′i−1(1)w′(1)z′(1) + z′′(1) .

Substitute in (17) to get

G′′i (1) = G′′i−1(1)w′(1)2 +
z′(1)

1− w′(1)
(1− (w′(1))i)w′′(1)

+ 2
z′(1)

1− w′(1)
(1− (w′(1))i)w′(1)z′(1) + z′′(1) .

(20)

16

The general solution to this recurrence is

G′′i (1) = c1 + c2w
′(1)i + c3w

′(1)2i (21)

with

c1 =
1

1− w′(1)2

(
z′(1)

1− w′(1)
(w′′(1) + 2w′(1)z′(1)) + z′′(1)

)
c2 = − 1

1− w′(1)
(w′′(1) + 2w′(1)z′(1))

c3 = −c1 − c2 .

Acknowledgments

We thank Dan Boneh for suggesting the connection to Hensel lifting; Amir Dembo for improving our
branching process analysis; Daniele Micciancio for extensive discussions on using lattice reduction
to solve the knapsack problem implicit in our attack; and Eric Rescorla for his help with analyzing
the observed runtimes of our algorithm.

In addition, we had fruitful discussions with J. Alex Halderman, Howard Karloff, and N. J.
A. Sloane. We would also like to thank the anonymous Crypto reviewers for their comments and
suggestions.

This material is based in part upon work supported by the National Science Foundation under
CNS grant no. 0831532 (Cyber Trust) and a Graduate Research Fellowship. Any opinions, findings,
conclusions or recommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptog-
raphy against memory attacks. In O. Reingold, editor, Proceedings of TCC 2009, volume 5444
of LNCS, pages 474–95. Springer-Verlag, Mar. 2009.

[2] J. Alwen, Y. Dodis, and D. Wichs. Public key cryptography in the bounded retrieval model
and security against side-channel attacks. In S. Halevi, editor, Proceedings of Crypto 2009,
LNCS. Springer-Verlag, Aug. 2009. This volume.

[3] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the American
Mathematical Society (AMS), 46(2):203–13, Feb. 1999.

[4] D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a small fraction of the private
key bits. In K. Ohta and D. Pei, editors, Proceedings of Asiacrypt 1998, volume 1514 of LNCS,
pages 25–34. Springer-Verlag, Oct. 1998.

[5] D. Boneh and H. Shacham. Fast variants of RSA. RSA Cryptobytes, 5(1):1–9, Winter/Spring
2002.

[6] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabil-
ities. J. Cryptology, 10(4):233–60, Dec. 1997.

17

[7] J.-S. Coron and A. May. Deterministic polynomial-time equivalence of computing the RSA
secret key and factoring. J. Cryptology, 20(1):39–50, Jan. 2007.

[8] Y. Dodis, Y. Tauman Kalai, and S. Lovett. On cryptography with auxiliary input. In
M. Mitzenmacher, editor, Proceedings of STOC 2009. ACM Press, May 2009.

[9] S. Goldwasser. Cryptography without (hardly any) secrets? In A. Joux, editor, Proceedings
of Eurocrypt 2009, volume 5479 of LNCS, pages 369–70. Springer-Verlag, Apr. 2009. Invited
talk.

[10] J. A. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Calandrino, A. Feldman,
J. Appelbaum, and E. Felten. Lest we remember: Cold boot attacks on encryption keys. In
P. Van Oorschot, editor, Proceedings of USENIX Security 2008, pages 45–60. USENIX, July
2008.

[11] M. Herrmann and A. May. Solving linear equations modulo divisors: On factoring given
any bits. In J. Pieprzyk, editor, Proceedings of Asiacrypt 2008, volume 5350 of LNCS, pages
406–24. Springer-Verlag, Dec. 2008.

[12] S. Karlin and H. M. Taylor. A First Course in Stochastic Processes. Academic Press, 1975.

[13] U. Maurer. On the oracle complexity of factoring integers. Computational Complexity,
5(3/4):237–47, Sept. 1995.

[14] A. May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis, University of
Paderborn, Oct. 2003.

[15] A. May. Using LLL-reduction for solving RSA and factorization problems: A survey. In
P. Nguyen, editor, Proceedings of LLL+25, June 2007.

[16] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

[17] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In S. Halevi, editor,
Proceedings of Crypto 2009, LNCS. Springer-Verlag, Aug. 2009. This volume.

[18] P. Nguyen and J. Stern. Adapting density attacks to low-weight knapsacks. In B. Roy, editor,
Proceedings of Asiacrypt 2005, volume 3788 of LNCS, pages 41–58. Springer-Verlag, Dec. 2005.

[19] K. Pietrzak. A leakage-resilient mode of operation. In A. Joux, editor, Proceedings of Eurocrypt
2009, volume 5479 of LNCS, pages 462–82. Springer-Verlag, Apr. 2009.

[20] R. Rivest and A. Shamir. Efficient factoring based on partial information. In F. Pichler, editor,
Proceedings of Eurocrypt 1985, volume 219 of LNCS, pages 31–4. Springer-Verlag, Apr. 1985.

[21] RSA Laboratories. PKCS #1 v2.1: RSA cryptography standard, June 2002. Online: http:
//www.rsa.com/rsalabs/node.asp?id=2125.

[22] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys are public:
Results from the 2008 Debian OpenSSL debacle, May 2009. Manuscript.

18

http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2125

	Introduction
	RSA Private Keys
	The Reconstruction Algorithm
	Algorithm Runtime Analysis
	Local branching behavior
	Global branching behavior at each step of the program
	Bounding the total number of keys examined
	Missing key fields

	Implementation and Performance
	Computing the Expectation and Variance
	References

