
Cryptanalysis of RadioGatún

Thomas Fuhr1 and Thomas Peyrin2

1 DCSSI Labs
thomas.fuhr@sgdn.gouv.fr

2 Ingenico
thomas.peyrin@ingenico.com

Abstract. In this paper we study the security of the RadioGatún family
of hash functions, and more precisely the collision resistance of this pro-
posal. We show that it is possible to find differential paths with accept-
able probability of success. Then, by using the freedom degrees available
from the incoming message words, we provide a significant improvement
over the best previously known cryptanalysis. As a proof of concept, we
provide a colliding pair of messages for RadioGatún with 2-bit words. We
finally argue that, under some light assumption, our technique is very
likely to provide the first collision attack on RadioGatún.

Key words: hash functions, RadioGatún, sponge functions.

1 Introduction

A cryptographic hash functions is a very important tool in cryptography, used in
many applications such as digital signatures, authentication schemes or message
integrity. Informally, a cryptographic hash function H is a function from {0, 1}∗,
the set of all finite length bit strings, to {0, 1}n where n is the fixed size of the
hash value. Moreover, a cryptographic hash function must satisfy the properties
of preimage resistance, 2nd-preimage resistance and collision resistance [26]:

– collision resistance: finding a pair x 6= x′ ∈ {0, 1}∗ such that H(x) =
H(x′) should require 2n/2 hash computations.

– 2nd preimage resistance: for a given x ∈ {0, 1}∗, finding a x′ 6= x such
that H(x) = H(x′) should require 2n hash computations.

– preimage resistance: for a given y ∈ {0, 1}n, finding a x ∈ {0, 1}∗ such
that H(x) = y should require 2n hash computations.

Generally, hash functions are built upon a compression function and a do-
main extension algorithm. A compression function h, usually built from scratch,
should have the same security requirements as a hash function but takes fixed
length inputs instead. Wang et al. [30, 32, 33, 31] recently showed that most stan-
dardized compression functions (e.g. MD5 or SHA-1) are not collision resistant.
Then, a domain extension method allows the hash function to handle arbitrary
length inputs by defining an (often iterative) algorithm using the compression

function as a black box. The pioneering work of Merkle and Damg̊ard [15, 27]
provided to designers an easy way in order to turn collision resistant compression
functions onto collision resistant hash functions. Even if preserving collision re-
sistance, it has been recently shown that this iterative process presents flaws [16,
18, 20, 19] and new algorithms [24, 7, 2, 1, 25] with better security properties have
been proposed.

One of the alternative candidate for building cryptographic hash functions
are sponge constructions. This domain extension algorithm has recently been
proposed by Bertoni et al. [6]. The underlying idea of sponge functions is to first
absorb all them-bit message blocks into a big internal state of size c+m, and then
squeeze the hash output words out. Then, for each iteration, a round function F
is applied to the internal state. At Eurocrypt 2008, Bertoni et al. [5] published
a proof of security for their constructions : when assuming that the internal
function F is ideally secure, then the sponge construction is indifferentiable
from a random oracle up to c/2 operations. However, for evident performance
reasons3, in practice the internal function F is clearly not ideal and this threat
is patched by applying blank rounds (rounds without message incorporation)
just after adding the last padded message word. Several hash proposals follow
the sponge framework or a closely related one, for example Grindahl [23] or
RadioGatún [4]. More recently, some NIST SHA-3 candidates are using sponge-
related framework as well, for example Keccak [3] or SHABAL [10].

Regarding the Grindahl family of hash functions, apart from potential slide
attacks [17], it has been shown [28, 22] that it can not be considered as colli-
sion resistant. However, RadioGatún remains yet unarmed by the preliminary
cryptanalysis [21]. The designers of RadioGatún claimed that for an instance
manipulating w-bit words, one can output as much as 19 × w bits and get a
perfectly secure hash function. That is, no collision attack should exist which re-
quires less than 29,5×w hash computations. The designers also stated [4] that the
best collision attack they could find (apart from generic birthday paradox ones)
requires 246×w hash computations. A first cryptanalysis result by Bouillaguet
and Fouque [8] using algebraic technique showed that one can find collisions
for RadioGatún with 224,5×w hash computations. Finally, Khovratovich [21] de-
scribed an attack using 218×w hash computations and memory, that can find
collisions with the restriction that the IV must chosen by the attacker (semi-
free-start collisions).

Our contributions. In this paper, we provide an improved cryptanalysis of
RadioGatún regarding collision search. Namely, using an improved computer-
aided backtracking search and symmetric differences, we provide a technique
that can find a collision with 211×w hash computations and negligible memory.
As a proof of concept, we also present a colliding pair of messages for the case
w = 2. Finally, we argue that this technique has a good chance to lead to

3 The internal state of sponge functions is usually quite big in order to avoid generic
attacks applying to iterative constructions.

2

the first collision attack on RadioGatún (the computation cost for setting up a
complete collision attack is below the ideal bound claimed by the designers, but
still unreachable for nowadays computers).

Outline. The paper is organized as follows. First, in Section 2, we describe
the hash function proposal RadioGatún. Then, in Section 3, we introduce the
concepts of symmetric differences and control words, that will be our two mains
tools in order to cryptanalyze the scheme. In Section 4, we explain our differential
path generation phase and in Section 5 we present our overall collision attack.
Finally, we draw the conclusion in last section.

2 Description of RadioGatún

RadioGatún is a hash function using the design approach and correcting the
problems of Panama [14], StepRightUp [13] or Subterranean [11, 13]. At the
same time, RadioGatún is an instance of the sponge functions framework [6],
which directly provides a security proof of the domain extension algorithm when
assumed that the internal main function is ideal.

RadioGatún maintains an internal state of 58 words of w bits each, divided in
two parts and simply initialized by imposing the zero value to all the words. The
first part of the state, the mill, is composed of 19 words and the second part,
the belt, can be represented by a matrix of 3 rows and 13 columns of words.
We denote by Mk

i the i-th word of the belt state before application of the k-th
iteration (with 0 ≤ i ≤ 18) and Bk

i,j represents the word located at column i
and row j of the mill state before application of iteration k (with 0 ≤ i ≤ 12
and 0 ≤ j ≤ 2).

The message to hash is first padded and then divided into blocks of m words
of w bits each that will update the internal state iteratively. We denote by mk

i

the i-th word of the message block mk (with 0 ≤ i ≤ 2). Namely, for iteration
k, the message block mk is firstly incorporated into the internal state and then
a permutation P is applied on it. The incorporation process at iteration k is
defined by :

Bk
0,0 = Bk

0,0 ⊕mk
0 Bk

0,1 = Bk
0,1 ⊕mk

1 Bk
0,2 = Bk

0,2 ⊕mk
2

Mk
16 = Mk

16 ⊕mk
0 Mk

17 = Mk
17 ⊕mk

1 Mk
18 = Mk

18 ⊕mk
2

where ⊕ denotes the bitwise exclusive or operation.
After having processed all the message blocks, the internal state is finally

updated with Nbr blank rounds (simply the application of the permutation P ,
without incorporating any message block). Eventually, the hash output value is
generated by successively applying P and then outputting Mk

1 and Mk
2 as many

time as required by the hash output size.

The permutation P can be divided into four parts. First, the Belt function
is applied, then the MillToBelt function, the Mill function and eventually the
BeltToMill function. This is depicted in Figures 1 and 2.

3

Fig. 1. The permutation P in RadioGatún.

Fig. 2. The permutation P in RadioGatún.

The Belt function simply consists of a row-wise rotation of the belt part of
the state. That is, for 0 ≤ i ≤ 12 and 0 ≤ j ≤ 2 :

B′i,j = Bi+1 mod 13,j .

The MillToBelt function allows the mill part of the state to influence the belt
one. For 0 ≤ i ≤ 11, we have :

4

B′i+1,i mod 3 = Bi+1,i mod 3 ⊕Mi+1.

The Mill function is the most complex phase of the permutation P and it
updates the mill part of the state (see Figure 3). In the following, all the indexes
should be taken modulo 19. First, a non linear transformation is applied on all
the words. For 0 ≤ i ≤ 18 :

M ′i = Mi ⊕Mi+1 ∧Mi+2

where X denotes the bitwise negation of X and ∧ represents the bitwise and
operation. Then, a diffusion phase inside the words is used. For 0 ≤ i ≤ 18 :

M ′i = M7×i ≫ (i× (i+ 1)/2)

where X ≫ (y) denotes the rotation of X on the right over y positions. Then,
a diffusion phase among all the words is applied. For 0 ≤ i ≤ 18 :

M ′i = Mi ⊕Mi+1 ⊕Mi+4.

Finally, an asymmetry is created by simply setting M0 = M0 ⊕ 1.
The BeltToMill function allows the belt part of the state to influence the

mill one. For 0 ≤ i ≤ 2, we have :

M ′i+13 = Mi+13 ⊕B12,i.

Fig. 3. The Mill function in RadioGatún.

5

The RadioGatún security claims. In their original paper [4], the authors
claim that RadioGatún can output as much as 19 words and remain a secure
hash function. Thus, it should not be possible for an attacker to find a collision
attack running in less than 29,5×w hash computations.

3 Symmetric differences and control words

3.1 Symmetric differences

The first cryptanalysis tool we will use are symmetric differences, already men-
tioned in [4]. More precisely, a symmetric difference is an intra-word exclusive
or difference that is part of a stable subspace of all the possible differences on a
w-bit word. For example, in the following we will use the two difference values 0w

and 1w (where the exponentiation by x denotes the concatenation of x identical
strings), namely either a zero difference or either a difference on every bit of the
word.

Considering those symmetric differences will allow us to simplify the overall
scheme. Regarding the intra-word rotations during the Mill function, a 0w or
a 1w difference will obviously remain unmodified. Moreover, the result of an
exclusive or operation between two symmetric differences will naturally be a
symmetric difference itself :

0w ⊕ 0w = 0w 0w ⊕ 1w = 1w 1w ⊕ 0w = 1w 1w ⊕ 1w = 0w

The non linear part of the Mill function is more tricky. We can write :

a ∧ b = a ∨ b.

The output of this transformation will remain a symmetric difference with a
certain probability of success, given in Table 1.

Due to the use of symmetric differences, the scheme to analyze can now be
simplified : we can concentrate our efforts on a w = 1 version of RadioGatún,
for which the intra-word rotations can be discarded. However, when building a
differential path, for each differential transition during the non linear part of the
Mill function, we will have to take the corresponding probability from Table 1
in account4. Note that this probability will be the only source of uncertainty in
the differential paths we will consider (all the differential transitions through ex-
clusive or operation always happen with probability equal to 1) and the product
of all probabilities will be the core of the final complexity of the attack.

Also, one can check that the conditions on the Mill function input words
are not necessarily independent. One may have to control differential transitions
for non linear subfonctions located on adjacent positions (for example the first
subfunction, involving M0 and M1, and the second, involving M1 and M2). This
has two effects : potential incompatibility or condition compression (concerning
4 In a dual view, all the conditions derived from Table 1 must be fulfilled.

6

∆a ∆b ∆a∨b Probability Condition

0w 0w 0w 1

0w 1w 0w 2−w a = 1w

0w 1w 1w 2−w a = 0w

1w 0w 0w 2−w b = 0w

1w 0w 1w 2−w b = 1w

1w 1w 0w 2−w a = b

1w 1w 1w 2−w a 6= b

Table 1. Differential transitions for symmetric differences during the non linear part
of the Mill function of RadioGatún. ∆a and ∆b denote the difference applied on a and
b respectively, and ∆a∨b the difference expected on the output of a∨b. The last column
gives the corresponding conditions on the values of a and b in order to validate the
differential transition. By a = b (respectively a 6= b) we mean that all the bits of a and
b are equal (respectively different), i.e. a⊕ b = 0w (respectively a⊕ b = 1w).

M1 in our example). In the first case, two conditions are located on the same
input word and are contradicting (for example, one would have both M1 = 0w

and M1 = 1w). Thus, the differential path would be impossible to verify and,
obviously, one has to avoid this scenario. For the second case, two conditions
apply on the same input word but are not contradicting. Here, there is a chance
that those conditions are redundant and we only have to account one time for a
probability 2−w. Finally, note that all those aspects have to be handled during
the differential path establishment and not during the search for a valid pair of
messages.

3.2 Control words

When trying to find a collision attack for a hash function, two major tools are
used : the differential path and the freedom degrees. In the next section, we
will describe how to find good differential paths using symmetric differences. If
a given path has probability of success equal to P , the complexity of a naive
attack would be 1/P operations : if one chooses randomly and non-adaptively
1/P random message inputs that are coherent with the differential constraints,
there is a rather good chance that a pair of them will follow the differential path
entirely. However, for the same differential path, the complexity of the attack
can be significantly decreased if the attacker chooses its inputs in a clever and
adaptive manner.

In the case of RadioGatún, 3 w-bit message words are incorporated into the
internal state at each round. Those words will naturally diffuse into the whole
internal state, but not immediately. Thus, it is interesting to study how this dif-
fusion behaves. Since the events we want to control through the differential path
are the transitions of the non linear part of the Mill function (which depend on

7

the input words of the Mill function), we will only study the diffusion regarding
the input words of the Mill function.

Table 2 gives the dependencies between the message words incorporated at an
iteration k, and the 19 input words of the Mill function at iteration k, k+ 1 and
k+2. One can argue that a modification of a message block does not necessarily
impacts the input word marked by a tick in Table 2 because the non linear
function can sometimes “absorb” the diffusion of the modification. However, we
emphasize that even if we depict here a behavior on average for the sake of
clarity, all those details are taken in account thanks to our computer-aided use
of the control words.

iteration M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

k X

k+1 X X X X X X X X

k+2 X X X X X X X X X X X X X X X X X X X

iteration M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

k X

k+1 X X X X X X X X

k+2 X X X X X X X X X X X X X X X X X X X

iteration M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

k X

k+1 X X X X X X X X

k+2 X X X X X X X X X X X X X X X X X X X

Table 2. Dependencies between the message words incorporated at an iteration k, and
the 19 input words of the Mill function of RadioGatún at iteration k, k + 1 and k + 2.
The first table (respectively second and third) gives the dependencies regarding the
message block mk

0 (respectively mk
1 and mk

2). The columns represent the input words
of the Mill function considered and a tick denotes that a dependency exists between
the corresponding input word and message block.

4 An improved backtracking search

Our aim is to find internal collisions, i.e. collisions on the whole internal state
before application of the blank rounds.

In order to build a good differential path using symmetric differences, we
will use a computer-aided meet-in-the-middle approach, similar to the technique
in [28]. More precisely, we will build our differential path DP by connecting
together separate paths DPf and DPb. We emphasize that, in this section, we
only want to build the differential path and not to look for a colliding pair of
messages. DPf will be built in the forward direction starting from an internal
state containing no difference (modeling the fact that we have no difference after

8

the initialization of the hash function), while DPb will be built in the backward
direction of the hash computation starting from an internal state containing no
difference (modeling the fact that we want a collision at the end of the path).

Starting from an internal state with no difference, for each round the algo-
rithm will go through all the possible differences incorporation of the message
input (remember that we always use symmetric differences, thus we only have
23 = 8 different cases to study) and all the possible symmetric differences tran-
sitions during the Mill function according to Table 1 (the differential transitions
through exclusive or operations are fully deterministic). The algorithm can be
compared to a search tree in which the depth represents the number of rounds
of RadioGatún considered and each leaf or sub-leaf is a reachable differential
internal state.

4.1 Entropy

An exhaustive search in this tree would obviously imply making useless compu-
tations (some parts of the tree provide too costly differential path anyway). To
avoid this, we always compute an estimation of the cost of finding a message
pair fulfilling the differential paths during the building phase of the tree, from
an initial state to the current leaf in the forward direction, and from the current
leaf to colliding states in the backward direction.

A first idea would be to compute the current cost of DPf and DPb during
the meet-in-the-middle phase. But, as mentioned in Section 3, some words of the
mill only depend on the inserted message block after 1 or 2 rounds. Therefore,
some conditions on the mill value have to be checked 2 rounds earlier, and some
degrees of freedom may have to be used to fulfill conditions two rounds later.
As DPf and DPb are computed round per round, it is difficult to compute
their complexity during the search phase, while having an efficient early-abort
algorithm.

Therefore, we use an ad hoc parameter, denoted Hk and defined as follows.
If ck is the total number of conditions on the mill input words at round k (from
Table 1), we have for a path of length n :

{
Hk = max(Hk+1 + ck − 3, 0), ∀k < n

Hn = 0

The idea is to evaluate the number of message pairs required at step k in
order to get 2w×Hk+1

message pairs at step k+ 1 of the exhaustive search phase.
To achieve this, one needs to fulfill ck×w bit conditions on the mill input values,
with 3×w degrees of freedom. Therefore, the values of Hk can be viewed as the
relative entropies on the successive values of the internal state during the hash
computation.

The final collision search complexity would be 2w×Hmax , where Hmax is the
maximum value of Hi along the path, if the adversary could choose 3 words of

9

his choice at each step, and if each output word of the Mill function depended
on all the input words. In the case of RadioGatún, the computation cost is more
complex to evaluate, and this is described in Section 5.

4.2 Differential path search algorithm

The path search algorithm works as follows. We first compute candidates forDPf

with a modified breadth-first search algorithm, eliminating those for which the
maximum entropy exceeds the minimum entropy by more than 8×w (because we
want to remain much lower than the 9, 5×w bound from the birthday paradox).
The algorithm differs from a traditional breadth-first search as we do not store
all the nodes, but only those with an acceptable entropy : to increase
the probability of linking it to DPb, one only stores the nodes whose entropy is
at least (Hmax− 4)×w. We also store the state value of the previous node with
entropy at least (Hmax−4)×w, to enable an efficient backtracking process once
the path is found.

We then compute DPb, using a depth-first search among the backwards tran-
sitions of the Mill function, starting from colliding states. We set the initial en-
tropy to Hn = 0, and we do not search the states for which H > 8 (same reason
as for DPf : we want to remain much lower than the bound from the birthday
paradox). For each node having an entropy at most 4, we try to link it with a
candidate for DPf .

4.3 Complexity of the path search phase

The total amount of possible values for a symmetric differential on the whole
state is 213×3+19 = 258. We use the fact that for RadioGatún, the insertion of
M ⊕M ′ can be seen as the successive insertions of M and M ′ without applying
the round function. Therefore, we can consider setting the words 16, 17, 18 of the
stored mill to 0 by a message insertion before storing it in the forward phase, and
doing the same in the backward phase before comparing it to forward values.
Therefore, the space on which the meet-in-the-middle algorithm has to find a
collision has approximately 255 elements. We chose to store 227 values of DPf ,
and thus we have to compare approximately 228 values for DPb.

5 The collision attack

In this section, we depict the final collision attack, and compute its complexity.
Once a differential path is settled, the derived collision attack is classic : we will
use the control words to increase as much as possible the probability of success
of the differential path.

5.1 Description

The input for this attack is a differential path, with a set of sufficient conditions
on the values of the mill to ensure that a pair of messages follow the path. The

10

adversary searches the colliding pairs in a tree, in which the nodes are messages
following a prefix of the differential path. The leaves are messages following
the whole differential path. Thanks to an early-abort approach, the adversary
eliminates candidates as soon as they differ from the differential path. Nodes
are associated with messages, therefore they will be denoted by the message
they stand for. The sons of node M are then messages M ||b, where b is a given
message block, and the hash computation of M ||b fulfills all the conditions.

The adversary then uses a depth-first approach to find at least one node at
depth n, where n is the length of the differential path. It is based on the trail
backtracking technique, described in [4, 28]. To decrease the complexity of the
algorithm, we check the conditions on the words of the mill as soon as they
cannot be modified anymore by a message word inserted later.

From Table 2, we know that the k-th included message block impacts some
words of the mill before the k-th iteration of the Mill function, some other words
before the k + 1-th iteration, and the rest of the mill words before the k + 2-th
iteration. We recall that mk is the k-th inserted block, and we now set that
Mk

j is the value of the j-th mill word after the k-th message insertion. Let also
M̂k

j be the value of the j-th word of the mill after the k-th nonlinear function
computation.

After inserting mk, one can then compute Mk
16,M

k
17,M

k
18, but also Mk+1

j for
j = {1, 2, 4, 5, 7, 8, 9, 12, 13, 15}, and Mk+2

j for j = {0, 3, 6, 10, 11, 14}. Similarly,
one can compute Mk

j ⊕Mk
j+1, for j = {15, 16, 17, 18}, Mk+2

j ⊕Mk+2
j+1 for j =

{7, 11}, and Mk+1
j ⊕ Mk+1

j+1 for all other possible values of j. Therefore, the
adversary has to check conditions on three consecutive values of the mill on
message insertion number k.

The most naive way to do it would be to choose mk at random and hoping
the conditions are verified, but one can use the following facts to decrease the
number of messages to check :

– The conditions on words Mk
16, Mk

17 and Mk
18 as well as these on the values

Mk
15⊕Mk

16, Mk
16⊕Mk

17, Mk
17⊕Mk

18 and Mk
18⊕Mk

0 at step k can be fulfilled
by xor-ing the adequate message values at message insertion k.

– Using the linearity of all operations except the first one, the adversary can
rewrite the values Mk+1

j as a linear combination of variables M̂k
j , with j =

{0, . . . , 18}. Words M̂k
0 to M̂k

13 do not depend on the last inserted message
value, therefore can be computed before the message insertion.

– A system of equations in variables M̂k
14, . . . , M̂

k
18 remains. More precisely,

these equations define the possible values of these variables, or of the xor of
two of these variables, one of them being rotated.

The computation of the sons of a node at depth k work as follows :

1. The adversary checks the consistency of the equations on M̂k
14, . . . , M̂

k
18. The

probability that this system is consistent depends on dimension of the Kernel
of the system and can be computed a priori.

11

2. The adversary exhausts the possible joint values of M̂k
14, . . . , M̂

k
18, Mk

16, Mk
17

and Mk
18. This can be achieved bitwise, as the nonlinear part of the Mill

function works bitwise. The cost of this phase is then linear in w. The mean
number of sons depends on the number of conditions.

3. For each remaining message block, the adversary checks all the other linear
conditions on M̂k

14, . . . , M̂
k
18 and the conditions on the mill values 2 rounds

later.

5.2 Computation of the cost

We will now explain how to compute the complexity of the collision search
algorithm. The most expensive operation is the search of the sons of nodes. The
total complexity of a given depth level k is the product of the number of nodes
that have to be explored at depth k by the average cost of the search of these
nodes. These parameters are exponential in w, therefore the total cost of the
search can be approximated by the search of the most expensive nodes.

To compute the search cost, we assume that for all considered messages, the
words of the resulting states for which no condition is imposed are indepen-
dent and identically distributed. This is true at depth 0, provided the attacker
initializes the search phase with a long random message prefix. The identical
distribution of the variables can be checked recursively, their independence is an
hypothesis for the attack to work. This assumption is well-known in the field of
hash function cryptanalysis for computing the cost associated to a differential
path (see e.g. [28]).

Let Ak be the number of nodes that have to be reached at depth k, and Ck

the average cost of searching one of these nodes. Let P k be the probability that
a random son of a node at depth k follows the differential path, and Qk the
probability that a given node at depth k has at least one valid son. At depth
k, the average number of explored nodes is related to the average number of
explored nodes at depth k + 1. When only a few nodes are needed, the average
case is not sufficient, and one has to evaluate the cost of finding at least one
valid node of depth k + 1.

One has the following relations, for k ∈ {0, . . . , n− 1}:

Ak = max(
Ak+1

23wP k
,

1
Qk

)

An = 1

Let Kk be the dimension of the Kernel of the linear system that has to be
solved at depth k, and P̂ k the probability that the bitwise system of equations
on the values of the mill before and after the nonlinear function has solutions.
P̂ k can be computed exhaustively a priori for each value of k. which is true
provided the free words - i.e. without conditions fixing their values, or linking
it to another word - are i.i.d. A random node at depth k has at least one valid
son if the two following conditions happen :

12

– The bitwise conditions at depth k and k + 1 can be fulfilled,
– The remaining freedom degrees can be used to fulfill all the remaining con-

ditions.

The first item takes account of the fact that some conditions might not depend
on all the freedom degrees. Therefore, we have :

Qk = min(2−Kk

P̂ k, 23w−Nk
COND),

where Nk
COND is the total number of conditions that has to be checked on the

k-th message insertion. We also have P k = 2−Nk
COND , because each condition is

supposed to be fulfilled with probability half in the average case, which is true
provided the free words - i.e. without conditions fixing their values, or linking it
to another word - are i.i.d. .

Searching a node works as follows : one solves the bitwise system of equations
on the values of M16,M17,M18, M̂14, . . . , M̂18. The set of message blocks that
fulfill this equation system then has to be searched exhaustively to fulfill the
other conditions, and to generate nodes at depth k + 1. Ck is then the cost of
this exhaustive search, and can be computed as the average number of message
blocks that fulfill the system of equations. Therefore, we have Ck = 23wP̂ k.

For each node at depth k, the attacker can first check the consistency of the
conditions on the mill words at steps k and k+1, which allows him not to search
inconsistent nodes. Therefore, we have the following overall complexity :

T = O(max
k

(
CkAk

2Kk))

The best path we found has complexity about 211×w, which is above the
security claimed by the designers of RadioGatún[4], it is given in Appendix. As
a proof of concept, we also provide in Appendix an example of a colliding pair
of messages following our differential path for RadioGatún with w = 2. One can
check that the observed complexity confirms the estimated one.

5.3 Breaking the birthday bound

Finding a final collision attack for RadioGatún with a computation complexity
of 211w required us to own a computer with a big amount of RAM for a few
hours of computation. Yet, the memory and computation cost of the differen-
tial path search phase is determined by the Hmax chosen by the attacker. We
conducted tests that tend to show that the search tree is big enough in order
to find a collision attack with an overall complexity lower than the birthday
bound claimed by the designers5. The problem here is that the memory
and computation cost of the differential path search will be too big for
nowadays computers, but much lower than the birthday bound. This

5 Note also that the size of the search tree can be increased by considering more
complex symmetric differences, such as 0w, 1w, 01w/2 and 10w/2.

13

explains why we are now incapable of providing a fully described collision at-
tack for RadioGatún. However, we conjecture that applying our techniques with
more memory and computation resources naturally leads to a collision attack
for RadioGatún, breaking the ideal birthday bound.

Conclusion

In this paper, we presented an improved cryptanalysis of RadioGatún regarding
collision search. Our attack can find collisions with a computation cost of about
211w and negligible memory, which is by far the best known attack on this
proposal.

We also gave arguments that shows that RadioGatún might not be a collision
resistant hash function. We conjecture that applying our differential path search
technique with more constraints will lead to collision attacks on RadioGatún.

References

1. Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-
Property-Preserving Iterated Hashing: ROX. In ASIACRYPT, pages 130–146,
2007.

2. Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving Hash Domain
Extension and the EMD Transform. In Xuejia Lai and Kefei Chen, editors, ASI-
ACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 299–314.
Springer, 2006.

3. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak specifications.
Submission to NIST, 2008.

4. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Radiogatun,
a belt-and-mill hash function. Presented at Second Cryptographic Hash Workshop,
Santa Barbara (August 24-25, 2006). See http://radiogatun.noekeon.org/.

5. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the
Indifferentiability of the Sponge Construction. In Nigel P. Smart, editor, EU-
ROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 181–197.
Springer, 2008.

6. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge
Functions, presented at ECRYPT Hash Workshop 2007.

7. Eli Biham and Orr Dunkelman. A framework for iterative hash functions: Haifa.
Second NIST Cryptographic Hash Workshop, 2006.

8. Charles Bouillaguet and Pierre-Alain Fouque. Analysis of radiogatn using algebraic
techniques. In Liam Keliher Roberto Avanzi and Francesco Sica, editors, SAC,
Lecture Notes in Computer Science. Springer, 2008.

9. Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of Lecture Notes in Computer Science. Springer,
1990.

10. Emmanuel Bresson, Anne Canteaut, Benot Chevallier-Mames, Christophe Clavier,
Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-Franois Misarsky, Mara Naya-
Plasencia, Pascal Paillier, Thomas Pornin, Jean-Ren Reinhard, Cline Thuillet, and
Marion Videau. Shabal – a submission to advanced hash standard. Submission to
NIST, 2008.

14

11. Luc J. M. Claesen, Joan Daemen, Mark Genoe, and G. Peeters. Subterranean: A
600 mbit/sec cryptographic vlsi chip. In ICCD, pages 610–613, 1993.

12. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture
Notes in Computer Science. Springer, 2005.

13. Joan Daemen. Cipher and hash function design strategies based on linear and
differential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, 1995.

14. Joan Daemen and Craig S. K. Clapp. Fast hashing and stream encryption with
panama. In Serge Vaudenay, editor, FSE, volume 1372 of Lecture Notes in Com-
puter Science, pages 60–74. Springer, 1998.

15. Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [9], pages
416–427.

16. R.D. Dean. Formal aspects of mobile code security. PhD thesis, Princeton Univer-
sity, 1999.

17. Michael Gorski, Stefan Lucks, and Thomas Peyrin. Slide attacks on hash functions.
In Joseph Pieprzyk, editor, ASIACRYPT, Lecture Notes in Computer Science.
Springer, 2008.

18. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture
Notes in Computer Science, pages 306–316. Springer, 2004.

19. John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus
Attack. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes
in Computer Science, pages 183–200. Springer, 2006.

20. John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions for
Much Less than 2n Work. In Cramer [12], pages 474–490.

21. Dmitry Khovratovich. Two attacks on radiogatn. In INDOCRYPT, Lecture Notes
in Computer Science. Springer, 2008.

22. Dmitry Khovratovich. Cryptanalysis of hash functions with structures, presented
at ECRYPT Hash Workshop 2008.

23. Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl
Hash Functions. In Alex Biryukov, editor, FSE, volume 4593 of Lecture Notes in
Computer Science, pages 39–57. Springer, 2007.

24. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bimal K.
Roy, editor, ASIACRYPT, volume 3788 of Lecture Notes in Computer Science,
pages 474–494. Springer, 2005.

25. Ueli M. Maurer and Stefano Tessaro. Domain Extension of Public Random Func-
tions: Beyond the Birthday Barrier. In Alfred Menezes, editor, CRYPTO, volume
4622 of Lecture Notes in Computer Science, pages 187–204. Springer, 2007.

26. A.J. Menezes, S.A. Vanstone, and P.C. Van Oorschot. Handbook of applied cryp-
tography. CRC Press, Inc., Boca Raton, FL, USA, 1996.

27. Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [9], pages
428–446.

28. Thomas Peyrin. Cryptanalysis of Grindahl. In ASIACRYPT, pages 551–567, 2007.
29. Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual Inter-

national Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, volume 3621 of Lecture Notes in Computer Science. Springer,
2005.

30. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the hash functions md4 and ripemd. In Cramer [12], pages 1–18.

15

31. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
sha-1. In Shoup [29], pages 17–36.

32. Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In
Cramer [12], pages 19–35.

33. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search attacks
on sha-0. In Shoup [29], pages 1–16.

Appendix A: the differential path

We give here the differential path for the 211×w collision attack for RadioGatún.
For each step, it gives the input value of the internal state after the message
insertion, and the output value of the state after the update function.

As the path is 143-block long, we use a hexadecimal notation to describe
the differential values of internal states. Each mill value is written as Σ18

i=0δMi2i

where δMi = 1 if word i of the mill contains a difference and δMi = 0 otherwise.
Similarly, we write the belt values as Σ12

i=0δBi,j2i. The belt values are given in
the order B ,0, B ,1, B ,2.

We also give an estimation of the search cost at each step, as computed in
section 5. In the column Nodes, we give the estimated value of log2w (Ai), which
is the logarithmic value of the estimated number of nodes the attacker has to
search at depth i. In the column Cost, we give the estimated value of log2w (CiAi

2−Ki),
which is the logarithmic value of the estimated search cost at depth i.

Input Output
Step Belt Mill Belt Mill Nodes Cost

0 0000 0000 0000 00000 0000 0000 0000 00000 1.000 4.000
1 0000 0000 0000 00000 0000 0000 0000 00000 4.000 6.000
2 0001 0000 0000 10000 0002 0000 0000 20034 4.000 6.000
3 0002 0001 0000 00034 0014 0026 0000 7a065 2.000 1.678
4 0014 0027 0000 5a065 0028 006a 0040 30000 0.000 3.000
5 0029 006b 0040 00000 0052 00d6 0080 00000 0.000 3.000
6 0052 00d6 0080 00000 00a4 01ac 0100 00000 1.000 4.000
7 00a4 01ac 0100 00000 0148 0358 0200 00000 4.000 7.000
8 0148 0359 0200 20000 0290 06b2 0400 19000 5.000 8.000
9 0291 06b3 0400 29000 0522 0d66 1800 71800 4.000 6.000
10 0523 0d67 1801 01800 0a46 12ce 0003 6c000 3.000 4.193
11 0a47 12cf 0002 1c000 148e 059f 0004 40034 2.000 4.000
12 148e 059f 0005 00034 090d 0b1a 000a 30000 1.000 4.000
13 090c 0b1b 000a 00000 1218 1636 0014 00000 4.000 7.000
14 1218 1636 0014 00000 0431 0c6d 0028 06000 7.000 7.193
15 0430 0c6d 0028 16000 0860 18da 0050 20034 5.000 7.000
16 0860 18db 0050 00034 10d0 1193 00a0 30464 3.000 2.000
17 10d0 1192 00a0 10464 05a1 0301 0100 20000 0.000 3.000
18 05a1 0300 0100 00000 0b42 0600 0200 00000 0.000 3.000

Continued on next page

16

Continued from next page
19 0b42 0600 0200 00000 1684 0c00 0400 00000 3.000 6.000
20 1684 0c00 0400 00000 0d09 1800 0800 02000 5.000 6.193
21 0d08 1801 0800 32000 1a10 1003 1000 7a440 4.000 6.000
22 1a11 1002 1001 0a440 1023 0005 0043 00020 0.000 3.000
23 1023 0005 0043 00020 0047 002a 0086 30000 0.000 3.000
24 0046 002b 0086 00000 008c 0056 010c 00000 0.000 3.000
25 008c 0056 010c 00000 0118 00ac 0218 00000 0.000 3.000
26 0118 00ac 0218 00000 0230 0158 0430 00000 2.000 5.000
27 0230 0158 0430 00000 0460 02b0 0860 00000 5.000 8.000
28 0460 02b0 0860 00000 08c0 0560 10c0 00000 7.000 10.000
29 08c0 0561 10c1 60000 1180 0ac2 0183 12390 5.000 7.000
30 1180 0ac2 0183 12390 0391 1484 0106 51400 1.000 2.000
31 0390 1484 0107 01400 0320 0909 120e 60000 0.000 3.000
32 0320 0909 120f 20000 0640 1212 041f 11000 2.000 5.000
33 0641 1212 041f 01000 0c82 0425 183e 60000 2.000 5.000
34 0c82 0424 183f 00000 1904 0848 107f 08000 4.000 7.000
35 1904 0849 107f 28000 1209 1092 00ff 30446 4.000 5.000
36 1209 1093 00ff 10446 0011 0123 01be 20000 0.000 3.000
37 0011 0122 01be 00000 0022 0244 037c 00000 1.000 4.000
38 0022 0244 037c 00000 0044 0488 06f8 00000 4.000 7.000
39 0044 0488 06f8 00000 0088 0910 0df0 00000 7.000 9.000
40 0089 0910 0df0 10000 0112 1220 1be0 20034 7.000 9.000
41 0112 1220 1be0 20034 0234 0465 17c1 21400 6.000 8.000
42 0234 0465 17c1 21400 0068 08ca 1f83 75000 4.000 6.000
43 0068 08ca 1f82 35000 00d0 1194 0f05 11000 2.000 5.000
44 00d1 1194 0f05 01000 01a2 0329 0e0a 60000 2.000 5.000
45 01a2 0328 0e0b 00000 0344 0650 1c16 00000 5.000 8.000
46 0344 0650 1c16 00000 0688 0ca0 182d 08000 7.000 10.000
47 0688 0ca1 182d 28000 0d10 1942 105b 11000 9.000 11.000
48 0d11 1943 105b 21000 1a22 1287 10b7 71000 8.000 11.000
49 1a23 1286 10b6 01000 1447 050d 116d 66800 7.000 7.193
50 1447 050c 116c 06800 088f 0218 02d9 2a006 4.000 6.000
51 088e 0219 02d9 1a006 111e 0436 05b2 60038 4.000 6.000
52 111e 0437 05b3 00038 022d 084e 0b6e 30000 2.000 5.000
53 022c 084f 0b6e 00000 0458 109e 16dc 00000 5.000 8.000
54 0458 109e 16dc 00000 08b0 013d 0db9 0c000 8.000 9.193
55 08b1 013d 0db9 1c000 1162 027a 1b72 20034 7.000 9.000
56 1162 027b 1b72 00034 02d5 04d2 16e5 70001 6.000 9.000
57 02d4 04d3 16e4 00001 05a8 09a6 0dc9 40001 8.000 11.000
58 05a8 09a6 0dc9 40001 0b50 134c 1b92 51001 8.000 10.000
59 0b50 134d 1b92 71001 16a0 069b 0725 00035 4.000 7.000
60 16a0 069b 0725 00035 0d51 0d12 0e4a 30000 2.000 5.000
61 0d50 0d13 0e4a 00000 1aa0 1a26 1c94 00000 4.000 7.000

Continued on next page

17

Continued from next page
62 1aa0 1a26 1c94 00000 1541 144d 1929 0e000 7.000 7.193
63 1540 144c 1929 3e000 0a81 0899 1253 70200 6.000 9.000
64 0a80 0899 1252 20200 1500 1132 06a5 01028 3.000 6.000
65 1500 1132 06a5 01028 0a01 0245 1d42 50000 1.000 4.000
66 0a00 0245 1d43 00000 1400 048a 1a87 08000 3.000 6.000
67 1401 048b 1a87 38000 0803 0916 150f 10200 5.000 8.000
68 0802 0917 150f 20200 1004 122e 081f 01028 2.000 5.000
69 1004 122e 081f 01028 0009 047d 0036 50000 0.000 3.000
70 0008 047d 0037 00000 0010 08fa 006e 00000 2.000 5.000
71 0010 08fa 006e 00000 0020 11f4 00dc 00000 4.000 7.000
72 0020 11f5 00dd 60000 0040 03eb 01ba 041a2 4.000 6.000
73 0041 03eb 01ba 141a2 0000 06f6 0374 10000 0.000 3.000
74 0001 06f6 0374 00000 0002 0dec 06e8 00000 0.000 3.000
75 0002 0dec 06e8 00000 0004 1bd8 0dd0 00000 3.000 6.000
76 0004 1bd8 0dd0 00000 0008 17b1 1ba0 04000 6.000 7.193
77 0009 17b0 1ba0 34000 0012 0f61 1741 15000 6.000 8.000
78 0012 0f60 1741 35000 0024 1ec0 0e83 11000 4.000 6.000
79 0024 1ec1 1e83 31000 0048 1d83 1d07 71000 2.000 5.000
80 0049 1d82 0d06 01000 0092 1b05 1a0c 60000 2.000 5.000
81 0092 1b04 0a0d 00000 0124 1609 141a 04000 5.000 6.193
82 0125 1608 141a 34000 024a 0c11 0835 71000 5.000 8.000
83 024b 0c10 0834 01000 0496 1820 1068 64000 5.000 6.193
84 0496 1821 0069 04000 092c 1043 00d2 24006 4.000 4.678
85 092c 1042 00d3 44006 1258 0085 01a6 00038 3.000 4.000
86 125a 0081 01a6 00038 04b5 0102 034c 30000 2.000 5.000
87 04a4 0123 0344 00000 0948 0246 0688 00000 5.000 8.000
88 0948 0246 0688 00000 1290 048c 0d10 00000 8.000 10.000
89 1291 048d 0d10 30000 0523 091a 1a20 3b034 6.000 8.000
90 0522 091a 1a20 2b034 0a44 1234 1441 41400 3.000 4.000
91 0a54 1210 0440 01400 14a8 0421 0880 60000 2.000 5.000
92 10a8 0420 1881 00000 0151 0840 1103 0a000 4.000 7.000
93 0150 0841 1103 3a000 02a0 1082 0207 11000 5.000 8.000
94 02a1 1082 0207 01000 0542 0105 040e 60000 4.000 7.000
95 0542 0104 140f 00000 0a84 0208 081f 08000 6.000 9.000
96 0a85 0208 081f 18000 150a 0410 103e 20034 7.000 9.000
97 150a 0411 103e 00034 0a15 0822 007d 70001 6.000 9.000
98 0a04 0807 007c 00001 1408 100e 00f8 51001 7.000 9.000
99 1409 100f 00f8 61001 0813 001f 01f0 30201 6.000 9.000
100 0812 001f 11f1 60201 1024 003e 03e3 4002a 2.000 5.000
101 1024 003e 01e2 0002a 0049 007c 03c4 30000 0.000 3.000
102 004a 005d 03cc 00000 0094 00ba 0798 00000 0.000 3.000
103 0094 00ba 0798 00000 0128 0174 0f30 00000 2.000 5.000
104 0128 0174 0f30 00000 0250 02e8 1e60 00000 5.000 8.000

Continued on next page

18

Continued from next page
105 0250 02e8 1e60 00000 04a0 05d0 1cc1 08000 7.000 10.000
106 04a1 05d1 1cc1 38000 0942 0ba2 1983 31006 7.000 10.000
107 0943 0ba3 1983 01006 1286 1746 1307 20444 3.000 3.000
108 1285 1743 0307 10444 050b 0e87 060e 20000 1.000 4.000
109 010b 0e82 064e 00000 0216 1d04 0c9c 00000 3.000 6.000
110 0216 1d04 0c9c 00000 042c 1a09 1938 04000 6.000 7.193
111 042c 1a08 1938 24000 0858 1411 1271 51034 4.000 7.000
112 0859 1411 1270 01034 10b2 0823 04e1 10020 1.000 3.000
113 10a2 0806 14e1 30020 0145 100c 09c3 21000 1.000 4.000
114 0145 102d 09c3 01000 028a 005b 1386 60000 0.000 3.000
115 028a 005a 0387 00000 0514 00b4 070e 00000 2.000 5.000
116 0514 00b4 070e 00000 0a28 0168 0e1c 00000 5.000 8.000
117 0a28 0168 0e1c 00000 1450 02d0 1c38 00000 8.000 10.000
118 1451 02d1 1c38 30000 08a3 05a2 1871 10200 9.000 11.000
119 08a3 05a2 1871 10200 1146 0b44 10e3 18028 5.000 8.000
120 1146 0b44 12e2 58028 028d 1688 05c5 01d40 4.000 5.000
121 028d 16a8 05cd 01d40 051a 0d51 0b9a 60000 0.000 3.000
122 011a 0450 1bdb 00000 0234 08a0 17b7 08000 0.000 3.000
123 0234 08a1 17b7 28000 0468 1142 0f6f 11000 1.000 3.000
124 0469 1142 0f6f 01000 08d2 0285 1ede 60000 1.000 4.000
125 08d2 0284 0edf 00000 11a4 0508 1dbe 00000 4.000 7.000
126 11a4 0508 1dbe 00000 0349 0a10 1b7d 0a000 6.000 9.000
127 0348 0a11 1b7d 3a000 0690 1422 16fb 11000 7.000 10.000
128 0691 1422 16fb 01000 0d22 0845 0df7 68000 5.000 8.000
129 0d22 0844 1df6 08000 1a44 1088 1bed 0b440 5.000 6.000
130 1a44 1088 1bec 4b440 1489 0111 17d9 50028 2.000 5.000
131 1088 0111 0798 00028 0111 0222 0f30 30000 1.000 4.000
132 0110 0203 0f38 00000 0220 0406 1e70 00000 4.000 7.000
133 0220 0406 1e70 00000 0440 080c 1ce1 08000 6.000 9.000
134 0440 080d 1ce1 28000 0880 101a 19c3 11032 5.000 7.000
135 0880 101a 19c2 51032 1100 0035 1385 7002a 0.000 2.000
136 1113 0014 0385 4002a 0227 0028 070a 30000 0.000 3.000
137 0224 0009 0702 00000 0448 0012 0e04 00000 1.000 4.000
138 0448 0012 0e04 00000 0890 0024 1c08 00000 4.000 7.000
139 0890 0024 1c08 00000 1120 0048 1811 08000 5.000 8.000
140 1120 0048 1810 48000 0241 0090 1021 105e2 5.000 6.000
141 0241 0090 1020 505e2 0482 0120 0041 40000 0.000 3.000
142 0000 0000 0000 00000 0000 0000 0000 00000 0.000 3.000

For large values of w, we can approximate the total search cost by the search
cost of the most expensive states. Here we have 4 steps with search cost 211w,

19

therefore we can approximate the collision search cost by :

T = 4× 211w.

Appendix B: collision for RadioGatún[2]

We give here a collision for the 2-bit version of RadioGatún. One can easily
check that it follows the differential path given above. We write the message
words using values between 0 and 3, which stand for the possible values of 2-bit
words. In the column Nodes, we give the number Ai of nodes that have been
searched at depth i to find a collision. In the column log4(Nodes), we give the
logarithm with base 4 of Ai, which can be compared with the theoric values
given by the computation of the path, as 4 = 2w.

We can notice some differences between the theoric cost and the observed
cost. Let us recall that the theoric number of nodes at step i linearly depends
on the theoric number of nodes at step i+ 1. As a consequence, if at some step
i0, more nodes have to be searched than expected, it will also affect the number
of searched nodes at the previous steps. In our collision, we notice that these
differences mainly arise at steps for which only a few nodes are needed, which
can be explained as the theoric number of nodes is computed on average.

To ensure that one has enough starting points, we used a 5-block common
prefix.

The common value of the internal state is then :

belt[0] = (0, 0, 2, 1, 2, 0, 3, 0, 2, 1, 1, 1, 3),
belt[1] = (3, 1, 0, 2, 3, 2, 2, 3, 1, 2, 3, 0, 2),
belt[2] = (2, 3, 3, 2, 2, 2, 1, 1, 1, 3, 2, 0, 3),

mill = (2, 0, 2, 2, 1, 0, 1, 0, 3, 1, 3, 3, 2, 2, 3, 3, 0, 3, 3)

Step i M0 M1 Nodes log4(Nodes)
-5 330 330 16 2.000
-4 000 000 16 2.000
-3 000 000 16 2.000
-2 000 000 16 2.000
-1 000 000 16 2.000
0 113 113 16 2.000
1 311 311 1014 4.993
2 012 312 974 4.964
3 012 022 57 2.916
4 112 122 1 0.000
5 300 030 1 0.000
6 202 202 4 1.000
7 020 020 227 3.913
8 302 332 915 4.919
9 233 103 245 3.968

Continued on next page

20

Continued from next page
10 030 303 57 2.916
11 030 303 13 1.850
12 000 003 1 0.000
13 223 113 1 0.000
14 222 222 59 2.941
15 220 120 4 1.000
16 111 121 1 0.000
17 000 030 1 0.000
18 010 020 1 0.000
19 031 031 5 1.161
20 001 001 69 3.054
21 033 303 18 2.085
22 020 313 1 0.000
23 000 000 1 0.000
24 000 330 1 0.000
25 222 222 1 0.000
26 103 103 43 2.713
27 110 110 2738 5.709
28 312 312 43959 7.712
29 231 202 2793 5.724
30 321 321 16 2.000
31 102 201 2 0.500
32 012 011 22 2.230
33 322 022 22 2.230
34 023 010 358 4.242
35 323 313 313 4.145
36 232 202 1 0.000
37 001 031 11 1.730
38 023 023 657 4.680
39 032 032 42041 7.680
40 220 120 42301 7.684
41 130 130 10299 6.665
42 103 103 611 4.628
43 203 200 42 2.696
44 003 303 37 2.605
45 200 233 2353 5.600
46 232 232 37597 7.599
47 023 013 601697 9.599
48 011 321 150451 8.599
49 222 111 37874 7.604
50 222 211 588 4.600
51 133 203 589 4.601
52 110 123 29 2.429
53 211 121 1798 5.406
54 031 031 115031 8.406
55 232 132 28707 7.405
56 122 112 6956 6.382
57 033 300 110762 8.379

Continued on next page

21

Continued from next page
58 122 122 110814 8.379
59 021 011 389 4.302
60 202 202 21 2.196
61 302 032 323 4.168
62 003 003 20644 7.167
63 120 210 5110 6.160
64 003 300 81 3.170
65 300 300 6 1.292
66 203 100 73 3.095
67 133 203 1136 5.075
68 021 311 17 2.044
69 302 302 2 0.500
70 311 012 100 3.322
71 101 101 1583 5.314
72 031 002 1731 5.379
73 200 100 1 0.000
74 003 303 3 0.792
75 013 013 177 3.734
76 231 231 11317 6.733
77 032 302 11369 6.736
78 312 322 706 4.732
79 002 032 45 2.746
80 202 131 33 2.522
81 131 102 2083 5.512
82 331 001 2105 5.520
83 122 211 2088 5.514
84 201 232 505 4.490
85 333 300 123 3.471
86 301 301 33 2.522
87 032 302 2068 5.507
88 230 230 132333 8.507
89 031 301 8132 6.495
90 220 120 117 3.435
91 012 011 33 2.522
92 130 103 525 4.518
93 312 022 2068 5.507
94 100 200 578 4.587
95 020 013 9209 6.584
96 322 022 37022 7.588
97 222 212 9150 6.580
98 220 113 37059 7.589
99 201 131 9453 6.603

100 012 311 40 2.661
101 000 003 1 0.000
102 201 131 1 0.000
103 200 200 19 2.124
104 010 010 1155 5.087
105 230 230 18501 7.088

Continued on next page

22

Continued from next page
106 130 200 18326 7.081
107 310 020 60 2.953
108 330 000 6 1.292
109 201 231 84 3.196
110 103 103 5331 6.190
111 130 100 306 4.129
112 210 113 6 1.292
113 102 132 8 1.500
114 001 031 1 0.000
115 200 233 17 2.044
116 321 321 1027 5.002
117 112 112 65692 8.002
118 110 220 263409 9.003
119 232 232 1087 5.043
120 223 220 309 4.136
121 010 010 1 0.000
122 301 332 1 0.000
123 213 223 3 0.792
124 000 300 3 0.792
125 133 100 129 3.506
126 123 123 2007 5.485
127 323 013 7965 6.480
128 222 122 469 4.437
129 331 302 487 4.464
130 132 131 9 1.585
131 103 200 4 1.000
132 021 311 242 3.959
133 012 012 3825 5.951
134 330 300 914 4.918
135 201 202 2 0.500
136 100 230 1 0.000
137 203 133 2 0.500
138 321 321 115 3.423
139 013 013 447 4.402
140 332 331 480 4.453
141 020 023 1 0.000
142 000 003 1 0.000

23

