Collision attack on NaSHA-512

Li Ji ${ }^{1}$, Xu Liangyu ${ }^{1}$, and Guan Xu^{2}
${ }^{1}$ Sony China Research Laboratory
${ }^{2}$ Mathematics department, Nankai university
\{Ji.Li, Liangyu.Xu\}@sony.com.cn
guanxu1984@mail.nankai.edu.cn

Abstract

The hash function NaSHA [1] is a new algorithm proposed for SHA-3. The compression function adopts quasigroup transformations, which raise obstacles to analysis. However, the high probability difference to cause inner collision can be found in the quasigroup transformations. We propose a collision attack to NaSHA-512 with the time complexity 2^{192} and negligible memory, which is lower than the complexity of birthday attack to NaSHA-512. Using the similar method, we find free-start collision on all versions with negligible complexity.

1 Description of NaSHA

NaSHA [1] is a hash functions family, defined as NaSHA-(m,k,r). It adopts linear transformations $\operatorname{Lin} T r_{2^{s}}$ and quasigroup transformations $\mathcal{M T}$. The parameters m denotes the length of hash value, k denotes the complexity of $\mathcal{M T}$ and $2^{2^{r}}$ denotes the order of used quasigroup.

The main transformations of $\mathcal{M} \mathcal{T}$ is defined by three transformations \mathcal{A}_{l}, ρ and $\mathcal{R} \mathcal{A}_{l}$.

Definition 1 (The operation of quasigroup *).
The operation of quasigroup $*$ is built from the Extended Feistel Networks $F_{A, B, C}(L, R)=\left(r \oplus A, L \oplus B \oplus f_{a_{1}, b_{1}, c 1, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha, \beta, \gamma}(R+C)\right)$, which is illustrated in Fig 1. The operation $*_{\left(a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha, \beta, \gamma, A, B, C\right)}$ denoted by

$$
x *_{\left(a_{1}, b_{1}, c 1, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha, \beta, \gamma, A, B, C\right)} y=F_{A, B, C}(x \oplus y) \oplus y
$$

is the quasigroup operation in \mathbb{Z}_{2}^{64}.
Definition 2 (Quasigroup additive string transformations $\mathcal{A}_{l}: Q^{t} \rightarrow Q^{t}$ with leader l). Let t be a positive integer, let $(Q, *)$ be quasigroup, $Q=(z)_{2^{n}}$, and $l, x_{j}, z_{j} \in Q$.

$$
\mathcal{A}_{l}\left(x_{1}, \ldots x_{t}\right)=\left(z_{1}, \ldots z_{t}\right) \Leftrightarrow z_{j}= \begin{cases}\left(l+x_{1}\right) * x_{1}, & j=1 \\ \left(z_{j-1}+x_{j}\right) * x_{j}, & 2 \leq j \leq t\end{cases}
$$

where + is addition modulo 2^{n}. The element l is said to be a leader of \mathcal{A}. The transformation is illustrated in Fig 2.

Fig. 1. The extended Feistel networks

Fig. 2. The transformations \mathcal{A}_{l}

The definition of ρ and $\mathcal{R} \mathcal{A}_{l}$ can be refer to the specification of NaSHA [1]. We ignore them because them have no relation with the attack.

We give a short description of NaSHA-(512, 2, 6), which adopts 2048-bit (32 words) state and output 512-bit hash value.

Firstly, the 512-bits message block M and the 512-bits initial value H form the state S alternately:

$$
S=M_{1}\left\|H_{1}\right\| M_{2}\left\|H_{2}\right\| M_{3}\left\|H_{3}\right\| \ldots\left\|M_{16}\right\| H_{16}
$$

Secondly, update state words 32 times by the transformations of $\operatorname{LinTr} r_{512}$, which is defined by:

$$
\left.\operatorname{LinTr}_{512}\left(S_{1}\left\|S_{2}\right\| \ldots\left\|S_{31}\right\| S_{32}\right)=\left(S_{7} \oplus S_{15} \oplus S_{25} \oplus S_{32}\right)\left\|S_{1}\right\| S_{2}\|\ldots\| S_{31}\right)
$$

Then choose parameters for the quasigroup transformations $\mathcal{M} \mathcal{T}$ according to the values of S_{1} to S_{16}. And update the state one time by quasigroup transformations $\mathcal{M} \mathcal{T}$.

After all message blocks have been processed, NaSHA-(512,2,6) output:

$$
\text { NaSHA- }(512,2,6)(M)=S_{4}\left\|S_{8}\right\| \ldots\left\|S_{28}\right\| S_{32}
$$

2 Observations of NaSHA

We observed some properties, which help us to find collision in NaSHA-512.
Observation 1 (Differential of basic calculation) $(a+x) * x$ is the basic calculation in the transformations \mathcal{A}_{l}, which is defined by the Extended Feistel Network.
when a and x satisfy the conditions $(a)_{64 \ldots 32}=\neg(x)_{64 \ldots 32},(a)_{32}=1$ and $(a)_{31 \ldots 1}=0$, the input difference $\Delta x=0 \mathrm{x} 00000000 \mathrm{FFFFFFFF}$ always lead to the zero output difference for the calculation of $(a+x) * x$. ($(x)_{i}$ denotes the i-th bit of x) For example, given $x=0$ xAAAAAAAA00000000, $x^{\prime}=0$ xAAAAAAAAFFFFFFFF and $a=0 \times 5555555580000000,(a+x) * x=\left(a+x^{\prime}\right) * x^{\prime}$ always holds no matter what parameters are set for the quasigroup operation $*$. The differential property attributes to the structure of Extended Feistel Network. The details are explained as follows.

$$
\begin{aligned}
(a+x) * x= & F_{A, B, C}((a+x) \oplus x) \oplus x \\
= & F_{A, B, C}(0 \mathrm{x} 5555555580000000) \oplus 0 \mathrm{xAAAAAAAAO} 0000000 \\
= & ((0 \mathrm{x} 80000000 \oplus A) \oplus 0 \mathrm{xAAAAAAAA}) \\
& \|(f(0 \mathrm{x} 80000000 \oplus C) \oplus B \oplus 0 \mathrm{x} 55555555) \\
= & \\
\left(a+x^{\prime}\right) * x^{\prime}= & F_{A, B, C}\left(\left(a+x^{\prime}\right) \oplus x^{\prime}\right) \oplus x^{\prime} \\
= & F_{A, B, C}(0 \mathrm{xAAAAAAAA} 0000000) \oplus 0 \mathrm{xAAAAAAAAFFFFFFFF} \\
= & ((0 \mathrm{x} 80000000 \oplus A) \oplus 0 \mathrm{xAAAAAAAA}) \\
& \|(f(0 \mathrm{x} 80000000 \oplus C) \oplus B \oplus 0 \mathrm{x} 55555555)
\end{aligned}
$$

The calculations of $F_{A, B, C}$ are illustrated in Fig 3.

Fig. 3. The calculation of $F_{A, B, C}$

Observation 2 (The output of basic calculation) According to the definition of $(a+x) * x$, for the same parameters $\left(a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha, \beta, \gamma\right)$, the output value of $(a+x) * x$ can be changed by modifying the parameters A, B and C.

Especially, given a and x, we can choose the parameters of A, B and C to make $(a+x) * x=a$. For the same parameters $\left(a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha, \beta, \gamma\right.$, $A, B, C),\left(a+x^{\prime}\right) * x^{\prime}=a$ always holds if the difference $\Delta x=x \oplus x^{\prime}=$ 0x00000000FFFFFFFF.

Observation 3 (Continuous collisions in \mathcal{A}_{l}) According to the observation 1 and the observation 2, difference sequence to generate continuous collisions in full transformation of \mathcal{A}_{l} can be constructed easily.

Firstly, select the triple x, x^{\prime}, a to make $(a+x) * x=\left(a+x^{\prime}\right) * x^{\prime}$ for any quasigroup operation $*$. Secondly, select the parameters of the operation $*$ to make $(a+x) * x=a$ hold. For the basic calculation of $\left(z_{j-1}+x_{j}\right) * x_{j}$, if $z_{j-1}=a$ and $x_{j}=x_{j+1}=\ldots=x_{j+k}=x$ (k denotes the length of the differential sequence), after the transformation \mathcal{A}_{l}, all differences on the difference sequence will be absorbed.

We can control the state words before the transformation \mathcal{A}_{l} freely to keep $x_{j}=x_{j+1}=\ldots=x_{j+k}=x$ due to the message input scheme. It is not easy to control the state words directly after \mathcal{A}_{l}, such as z_{j-1}. The continuous collision requires one word conditions (64 bits) on the first leader $\left(z_{j-1}\right)$.

Fig. 4. Continuous collision in \mathcal{A}_{l}

Observation 4 (Difference absorption for parameters) The first 16-words of state will be used as parameters of the quasigroup operations. However, it is easy to select differences on state words to make no difference on these parameters.

For example: $\alpha_{1}\left\|\beta_{1}\right\| \gamma_{1} \| \alpha_{2}=S_{7}+S_{8}$. If $\Delta S_{7}=\Delta S_{8}=\Delta x$ and $S_{7}=x, S_{7}^{\prime}=$ $x^{\prime}, S_{8}=x^{\prime}, S_{8}^{\prime}=x$, then $S_{7}+S_{8}=x+x^{\prime}=S_{7}^{\prime}+S_{8}^{\prime}$. Parameters $\alpha_{1}, \beta_{1}, \gamma_{1}, \alpha_{2}$ have no differences.

Observation 5 (Freedom on state words) For NaSHA-512, only 16-word out of 32-word are used to calculate parameters of quasigroup transformation, some state words can be changed freely while parameters of quasigroup transformation keeps.

First 16 -word of state is chose to calculate parameters of quasigroup transformation \mathcal{A}_{l} and $\mathcal{R} \mathcal{A}_{l}$. Eight state words are selected as parameters of quasigroup
transformation \mathcal{A}_{l} as follows:

$$
\begin{aligned}
S_{3}+S_{4} & =l_{2} \\
S_{5}+S_{6} & =a_{1}\left\|b_{1}\right\| c_{1}\left\|a_{2}\right\| b_{2}\left\|c_{2}\right\| a_{3} \| b_{3}, c_{3}=a_{1} \\
S_{7}+S_{8} & =\alpha_{1}\left\|\beta_{1}\right\| \gamma_{1} \|- \\
S_{11}+S_{12} & =A\left\|B, S_{13}+S_{14}=C\right\|-
\end{aligned}
$$

l_{2} is the 64 -bit leader of \mathcal{A}_{l}, the 8 -bit words $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}$, the 16 -bit words $\alpha_{1}, \beta_{1}, \gamma_{1}$ and the 32 -bit words A, B, C are parameters of the operation $*$. (The two - denotes the values do not used in \mathcal{A}_{l}).

These observations can be used to construct collision in full transformation \mathcal{A}_{l}.

3 Collision attack of NaSHA-512

According to these observations in section 2, we can choose differences on state words to find collision. Some differential patterns can be found. The differential pattern illustrated in Fig 5 can generate collision with least conditions and most free state words. We set three continuous differentials on state words, which results in the complexity of $2^{3 * 64}$ because three words conditions need to be fulfilled. We have enough free words to satisfied all conditions. Following we explain the details.

3.1 Differential Pattern

Following we give a differential pattern with three continuous differentials.

Fig. 5. The differential pattern

Following the differential pattern, we set differences on the state words after $\operatorname{LinTr} r_{512}: \Delta S_{9}=\Delta S_{10}=\Delta S_{17}=\Delta S_{18}=\Delta S_{19}=\Delta S_{20}=\Delta S_{21}=\Delta S_{29}=$ $\Delta S_{31}=\Delta x=0 \mathrm{x} 00000000 \mathrm{FFFFFFFF}$. No difference exists on other state words. Set the value of state words $S_{9}=x, S_{10}=x^{\prime}$ and set $S_{17}, S_{18}, S_{19}, S_{20}, S_{21}, S_{29}, S_{30}, S_{31}$ as x or x^{\prime}.

The state words will be process by the transformation \mathcal{A}_{l} :

$$
\mathcal{A}_{l}\left(S_{1}, S_{2}, \ldots, S_{31}, S_{32}\right)=\left(z_{1}, z_{2}, \ldots, z_{31}, z_{32}\right)
$$

According to the observation 3, if three headers $z_{8}=z_{16}=z_{21}=a$, all differences on the state words absorbed. That is sufficient conditions for the differential pattern to generate collision attack.

Following we explain how to select free state words to fulfill the three words conditions.

3.2 Free State Words

To use the given differential pattern to generate collision, we need some free state words to satisfy these three words conditions.

Denote H as initial value, $M_{\text {LinTr }_{512}}^{32 \times 16}$ as the transformation matrix from the state S to H.

$$
H=\left[\begin{array}{c}
H_{1} \\
H_{2} \\
\cdots \\
\\
H_{16}
\end{array}\right]=M_{\text {LinTr }_{512}}^{16 \times 32} \times\left[\begin{array}{c}
S_{1} \\
S_{2} \\
\cdots \\
\\
S_{31} \\
S_{32}
\end{array}\right]
$$

According to the linear transformation of $\operatorname{Lin} \operatorname{Tr}_{512}$, we can get the algebraic equations among state words as follows.

Where H^{\prime} is a constants vector, which denotes the linear relationship of initial value words. $S_{\text {fix }}$ denotes the linear relationship of these 10 state words $\left(S_{9}, S_{10}, S_{17}, S_{18}, S_{19}, S_{20}, S_{21}, S_{29}, S_{30}, S_{31}\right.$), which need to be pointed by following the differential pattern, refer to Appendix A. In $S^{\prime} 16$ state words are limited by the 16 equations in (1). There are still 6 free words $\left(S_{5}, S_{6}, S_{7}, S_{8}, S_{11}, S_{14}\right)$ left. We need set right parameters A, B and C to make $(a+x) * x=a$. The parameters of A, B and C can be calculated by:

$$
\begin{align*}
& S_{11}+S_{12}=S_{11}+\left(S_{7} \oplus S_{8} \oplus C_{1}\right) \tag{2}\\
& S_{13}+S_{14}=S_{14}+\left(S_{6} \oplus C_{2}\right) \tag{3}
\end{align*}
$$

Where C_{1} and C_{2} denote the fixed values in H^{\prime} and $S_{f i x}$. This two equations (2) and (3) need to be fulfilled and will cost 2 words out of 6 free words.

As a result, we can find 4 free state words left to satisfy three words conditions. For example, we use S_{11} and S_{14} for the calculation of parameters and select $S_{5}, S_{6}, S_{7}, S_{8}$ as free state words.

3.3 Generate Collision

Following the differential pattern and select free state words, we can find right state words to generate continuous collision of \mathcal{A}_{l}. If after the transformation \mathcal{A}_{l}, these values of state words $z_{8}=z_{16}=z_{28}=a$ hold, generate continuous collision of \mathcal{A}_{l} will happen and we can find collision. Algorithm 1 explains how to find message pairs to generate collision for details.

Algorithm 1 Searching message pairs causing collision
Input: $\quad x, x^{\prime}, a$ s.t. $(a+x) * x=\left(a+x^{\prime}\right) * x^{\prime}$
Output: the message pairs M and M^{\prime} causing collision on NaSHA-512.

1. Choose $S_{5}, S_{6}, S_{7}, S_{8}$ randomly
2. Calculate parameters $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha_{1}, \beta_{1}, \gamma_{1}$: $a_{1}\left\|b_{1}\right\| c_{1}\left\|a_{2}\right\| b_{2}\left\|c_{2}\right\| a_{3} \| b_{3}=S_{5}+S_{6}, c_{3}=a_{1}$, $\alpha_{1}\left\|\beta_{1}\right\| \gamma_{1} \|-=S_{7}+S_{8}$.
3. Calculate parameters A, B, C s.t. $(a+x) * x=\left(a+x^{\prime}\right) * x^{\prime}=a$:

Choose parameters C randomly, $A \leftarrow 0 ; B \leftarrow 0$;
calculate $z=\left((a+x) *_{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha_{1}, \beta_{1}, \gamma_{1}, A, B, C} x\right.$, $A \| B \leftarrow(z \oplus a)$.
4. Calculate State words:
$S_{12}=S_{7} \oplus S_{8} ; S_{13}=S_{6} ;$
$S_{11}=(A \| B)-S_{12} ; S_{14}=(C \|-)-S_{13}$;
$S_{1} \cdots S_{4}, S_{15}, S_{16}, S_{22}, \cdots, S_{28}, S_{32}$ according to equation (1).
5. Calculate the leader l_{2}.
6. Do the transformation of \mathcal{A}_{l} and check:
if $\left\{\begin{array}{l}z_{8}=\mathcal{A}_{l}\left(S_{1}, S_{2}, \cdots, S_{8}\right)=a \text { and } \\ z_{16}=\mathcal{A}_{l}\left(S_{1}, S_{2}, \cdots, S_{16}\right)=\mathcal{A}_{l}\left(z_{8}, S_{9}, \cdots, S_{15}, S_{16}\right)=a \text { and } \\ z_{28}=\mathcal{A}_{l}\left(S_{1}, S_{2}, \cdots, S_{28}\right)=\mathcal{A}_{l}\left(z_{16}, S_{17}, \cdots, S_{21}, S_{22}, \cdots, S_{28}\right)=a\end{array}\right\}$
Calculate message pair M and M^{\prime} by inversing transformation LinTr r_{512}, then return the message pair (M and M^{\prime});
Else go to the step 1.

Generally the conditions(3 words, 192 bits) will cost 3 words out of 4 left free state words. According to the Proposition 4 and Remark 1 in [1], after trying 2^{192} times and we can expect to find the right one.

Complexity analysis: The main complexity comes from the 2^{192} times call of \mathcal{A}_{l} and requires negligible memory. Finally, we can find collision to NaSHA-512 with the complexity of 2^{192}.

4 Free-start collision of NaSHA

Considering of free-start collision attack, we can find more differentials patterns. Fig 6 shows a free-start differential pattern of NaSHA-256. Fig 7 shows a freestart differential pattern of NaSHA-512.

Fig. 6. The free-start differential pattern of NaSHA-256

Fig. 7. The free-start differential pattern of NaSHA-512

In the two free-start differential patterns, differences only are deposited on S_{1} and S_{2}. We select their values as: $S_{1}=x, S_{2}=x^{\prime}$. Choose the value of S_{3} and S_{4} to make: $S_{3}+S_{4}=a$. Using the similar steps in 3 , we can get free-start collisions for all version of NaSHA-(m,k,r). The complexity is trivial. Appendix B gives examples of a message pair and initial values to make free-start collision on NaSHA.

5 Conclusion

NaSHA adopts quasigroup transformations, which raises an obstacle to analysis. However, we can find the differential with the high probability in quasigroup
transformations. For NaSHA-512, only 16 words out of 32 words are used as parameters of quasigroup transformations. By analysis the algebraic structure of linear transformation, we can find a collision with the time complexity 2^{192} and negligible memory. The similar differential can be used to find free-start collision for all version with the negligible complexity.

References

1. Smile Markovski, Aleksandra Mileva, Algorithm Specications of NaSHA, 2008. http://inf.ugd.edu.mk/images/stories/file/Mileva/Nasha.htm

A The linear relationships

H^{\prime} denotes the linear relationship of initial value words $\left(H_{i}\right)$ as follows.

$$
H^{\prime}=\left[\begin{array}{l}
H_{1} \oplus H_{2} \oplus H_{4} \oplus H_{5} \oplus H_{6} \oplus H_{7} \oplus H_{8} \oplus H_{12} \oplus H_{13} \oplus H_{16} \\
H_{1} \oplus H_{6} \\
H_{6} \oplus H_{10} \\
H_{2} \\
H_{2} \oplus H_{3} \oplus H_{4} \oplus H_{5} \oplus H_{6} \oplus H_{8} \oplus H_{10} \oplus H_{12} \oplus H_{14} \oplus H_{15} \oplus H_{16} \\
H_{3} \\
H_{2} \oplus H_{3} \oplus H_{5} \oplus H_{6} \oplus H_{8} \oplus H_{10} \oplus H_{11} \oplus H_{12} \oplus H_{14} \oplus H_{15} \oplus H_{16} \\
H_{1} \oplus H_{2} \oplus H_{3} \oplus H_{4} \oplus H_{5} \oplus H_{10} \oplus H_{11} \oplus H_{12} \oplus H_{13} \oplus H_{14} \oplus H_{15} \oplus H_{16} \\
H_{5} \oplus H_{12} \\
H_{3} \oplus H_{4} \oplus H_{6} \oplus H_{7} \oplus H_{8} \oplus H_{9} \oplus H_{10} \oplus H_{11} \oplus H_{12} \oplus H_{15} \oplus H_{16} \\
H_{1} \oplus H_{3} \oplus H_{4} \oplus H_{6} \oplus H_{7} \oplus H_{9} \oplus H_{10} \oplus H_{11} \oplus H_{12} \oplus H_{15} \oplus H_{16} \\
H_{2} \oplus H_{3} \oplus H_{6} \oplus H_{7} \oplus H_{8} \oplus H_{9} \oplus H_{10} \oplus H_{11} \oplus H_{14} \oplus H_{15} \\
H_{2} \oplus H_{3} \oplus H_{5} \oplus H_{6} \oplus H_{8} \oplus H_{9} \oplus H_{10} \oplus H_{11} \oplus H_{15} \\
H_{6} \\
H_{2} \oplus H_{3} \oplus H_{5} \oplus H_{7} \oplus H_{8} \oplus H_{9} \oplus H_{11} \oplus H_{14} \oplus H_{15} \\
H_{5} \oplus H_{7} \oplus H_{12}
\end{array}\right]
$$

$S_{f i x}$ denotes the linear relationship of these words need to fix for the differential pattern.

B Message pairs for free-start collision of NaSHA

B. 1 Message pairs and initial values for NaSHA-224 and NaSHA-256

M0: (length: 512 bits)
FFFFFFFF0000000000000080FFFFFFFF0514FF7FFFFFFF7FFFFFFFFF0000000 00000080FFFFFFFF00 H0:
0x7FFFFFFF7FFF1405, 0x0000000000000000, $0 x 0000000000000000$, $0 x 000000000000000$, 0x00000000FFFFFFFF, 0x80000000FFFF1405, 0x0000000000000000, 0x0000000000000000 M1:(length:512 bits)
000000000000000000000080FFFFFFFF0514FF7FFFFFFF7F0000000000000000 00000080FFFFFFFFFFFFFFFF00 H1:
0x7FFFFFFF8000EBFA, 0x0000000000000000,

0x0000000000000000, 0x00000000FFFFFFFF, 0x0000000000000000, 0x80000000FFFF1405, 0x0000000000000000, 0x0000000000000000 The message digest of NaSHA-256 is: D96E238F061CED9AB4FC687C33875EFD29EC5DEF0DC7173E61C852B21967F58B
The message digest of NaSHA-224 is:
D96E238F061CED9AB4FC687C33875EFD29EC5DEF0DC7173E61C852B2

B. 2 Message pair and initial values for NaSHA-384 and NaSHA-512

M0: (length: 1024 bits)
000000000000000000000080FFFFFFFF0514FF7FFFFFFF7F0000000000000000 FFFFFFFF00 00000080FFFFFFFFFFFFFFFF000000000000000000000000FFFFFFFF00000000 0000000000000000FFFFFFFF000000000514FF7FFFFFFF7F00000080FFFFFFFF H0:
0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x00000000FFFFFFFF, 0xFFFFFFFF80000000, 0x0000000000000000, $0 \times 0000000000000000$, 0x0000000000000000, 0x00000000FFFFFFFF, OxFFFFFFFF80000000, $0 x 7$ FFFFFFF8000EBFA, 0xFFFFFFFF80000000, 0x00000000FFFFFFFF, 0xFFFFFFFF80000000, 0x7FFFFFFF7FFF1405, 0x00000000FFFFFFFF
M1: (length: 1024 bits)
FFFFFFFF0000000000000080FFFFFFFF0514FF7FFFFFFF7F0000000000000000 $000 F F F F F F F F 00000000$ 00000080FFFFFFFF00 00000000000000000000000000000000FAEB0080FFFFFF7F00000080FFFFFFFF H1:
0x00000000FFFFFFFF, 0x0000000000000000,
$0 \times 0000000000000000$, $0 x 000000000000000$,
$0 \times F F F F F F F F 8000000$, 0×000000000000000,
$0 x 0000000000000000$, 0x00000000FFFFFFFF, $0 \times 0000000000000000$, 0xFFFFFFFF80000000, 0x7FFFFFFF7FFF1405, 0xFFFFFFFF80000000, 0x0000000000000000, 0xFFFFFFFF80000000, 0x7FFFFFFF8000EBFA, 0x0000000000000000
The message digest of NaSHA-512 is:
9401156AAA365B353FB7B3FD8A7D4CA944F4BA788C7FCFADBE1411E4ADCBEBD9
ECB7ECF86528134A30C639FB083EC658782D9FBFE730051E15458227E96C3DCF The message digest of NaSHA-384 is: 9401156AAA365B353FB7B3FD8A7D4CA944F4BA788C7FCFADBE1411E4ADCBEBD9 ECB7ECF86528134A30C639FB083EC658

