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Abstract. The privacy preserving multiset union (PPMU) protocol allows a set of parties,
each with a multiset, to collaboratively compute a multiset union secretly, meaning that any
information other than union is not revealed. We propose an efficient PPMU protocol, using
multiplicative homomorphic property of ElGamal encryption over Fq[x]/f(x) where q is a prime
and f(x) is an irreducible polynomial over Fq. The protocol involves a constant number of
rounds and improves the computation and communication complexities of the scheme proposed
by Kissner and Song. We also prove the security of the protocol in the random oracle model.
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1 Introduction

Privacy preserving set operations have been actively studied and examples include set intersection [8,
15, 6, 11] and set union [14, 12, 3]. One of operations, important but comparatively paid less attention,
is multiset union.

Privacy preserving multiset union (PPMU) is useful in various applications such as data collection
for statistics and majority voting, where each element is related with privacy or interests of the data
owner. For example, a research group wants to collect information about patients with a sparse disease,
while hospitals or patients want to protect their privacy. In the Rawlings Gold Glove Award, managers
and coaches select the player judged to have the most superior individual fielding performance at each
position by voting. A company wants to collect clients’ claims to provide better services for its clients,
who are reluctant to directly publish their claims for their privacy. PPMU ensures that a set of parties
collaboratively compute multiset union secretly, meaning that no party learns more information about
other parties’ private inputs than what can be deduced from the result of union.

The literature of multiset union includes the scheme proposed by Kissner and Song (KS) [14]. Pro-
tocols in [14] use additive homomorphic encryption proposed by Paillier [16] for privacy preserving.
Each party in protocols should wait for other parties’ intermediate multiplications, since the Paillier
cryptosystem does not support the product of two encrypted polynomials but the product of an un-
encrypted polynomial and an encrypted polynomial. In other words, if multi-parties want the product
of encrypted polynomials, they should compute the product in turn. Thus, the number of rounds (i.e.,
delay) increases linearly in the number of participants. In addition, the threshold version of Paillier [7]
needs a fully trusted dealer for distributing private key shares; however, the trusted third party (TTP)
in general is undesirable because all of the parties should totally trust it. These disadvantages of KS
motivate us to construct efficient multiset union protocols without TTP. Moreover, considering that
multiset union is a simpler operation than set union, it is natural to think about light-weight protocols,
solely optimized for multiset union.

In this paper, we propose efficient privacy-preserving multiset union (PPMU) protocols using El-
Gamal cryptosystem and its multiplicative homomorphic property [5]. In our protocol, the plaintext
polynomial is selected in a multiplicative cyclic group (Fq[x]/f(x))∗ where q is a prime number and
f(x) is an irreducible polynomial of degree d. The ElGamal encryption and decryption are implemented
in (Fq[x]/f(x))∗, which is isomorphic to the finite field Fqd . We call it ElGamal with polynomials. Us-
ing multiplicative homomorphic property of ElGamal with polynomials, every party in the protocol
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can compute the product of encrypted polynomials simultaneously. Hence the proposed scheme re-
quires only a constant round of communications, and improves the computation and communication
complexities of the Kissner and Song’s scheme [14] based on Paillier cryptosystem. Our implementa-
tion shows that the proposed scheme is about 30 times faster than the previous one. Moreover, the
proposed PPMU is easily combined with the threshold decryption of ElGamal [4, 9] which does not
require TTP.

2 Privacy Preserving Multiset Union (PPMU) with ElGamal

2.1 Problem Setting and Polynomial Representation of a Set

Problem Setting In this paper, we follow KS’s definition and technique for PPMU. Let f and g be
polynomial representations of multisets S and T . They defined the union S ∪ T as a multiset, where
each element a that appears bS ≥ 0 times in S and bT ≥ 0 times in T , appears in the resulting multiset
bS + bT times. Then, one computes the polynomial representation of S ∪ T as f ∗ g.

Polynomial Representation of a Set by an Element in Fqd We represent a set of elements by a polyno-
mial in (Fq[x]/f(x))∗, which is isomorphic to the finite field Fqd , where q is a prime number and f(x) is
an irreducible polynomial of degree d. For example, given a set of k elements Si = {m1,m2, · · · ,mdk

}
where each mi is an element of Fq, we construct its polynomial representation as m(x) =

∏k
i=1(x−mi).

We can easily implement ElGamal cryptosystem with polynomials in (Fq[x]/f(x))∗ and extend it to
a threshold version.

2.2 Privacy Preserving Multiset Union (PPMU) Protocol

We consider both honest-but-curious and malicious models by Goldreich [10]. For the formal definitions
of these models, refer to [14]. First, we propose a protocol for the honest-but-curious model. Next,
we consider several possible attacks and its counter-measures; then, we extend our honest-but-curious
protocol to the malicious model.

Protocol for the Honest-But-Curious (HBC) Model Let Si be the input set of party Pi (1 ≤
i ≤ n) and |Si| = k. Let (Si)j be the j-th element of set Si. Our protocol allows all the parties to
learn the union S1 ∪ S2 ∪ · · · ∪ Sn with multiplicity, but no party can gain a non-negligible advantage
in learning which set Si an element is in. The secret key a corresponding to the public key is shared to
all the parties. Note that this scheme can be easily combined with a threshold ElGamal cryptosystem
to provide a PPMU scheme without TTP [17].

Define a key set
K = {(f(x), α(x), a, β(x)) : β(x) ≡ α(x)a mod f(x)} (2.1)

where α(x), β(x), f(x) are public keys and a is a private key.
In encryption phase, each party Pi calculates a polynomial mi(x) = (x− (Si)1) · · · (x− (Si)k) from

his set Si, encrypts it with a random ri as

ci(x) = (α(x)ri , β(x)ri ·mi(x)) mod f(x) (2.2)

and broadcasts it to all other parties. Then, every party simultaneously can compute the encryption of
multiplication of polynomials using multiplicative homomorphic property of ElGamal cryptosystem.

C(x) = (C1(x), C2(x)) = (α(x)r1+···+rn , β(x)r1+···+rn ·
n∏

i=1

mi(x)) (2.3)

In decryption phase, for a given ciphertext C(x) all the parties perform a group decryption [4] to
obtain the polynomial

∏n
i=1mi(x). Then, all the parties learn all of the elements in the polynomial

by using polynomial factoring [18].
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Security Analysis The only information that an honest-but-curious adversary can obtain is the
encryptions of the sets of other parties or PPMU. Therefore, the adversary cannot obtain any element
of other parties since the ElGamal with polynomials is as secure as the usual ElGamal scheme defined
over a prime field.1

Protocol for the Malicious (MAL) Model In the malicious adversary model, an adversary will
deviate from the protocol in an arbitrary fashion. In our honest-but-curious protocol the following
attacks are possible.

- Guess & Elimination. An adversary can change the result of the protocol. Especially, the number
of elements of the PPMU can be reduced by the adversary. Any inverse polynomial of some valid
polynomial can eliminate valid elements of other parties. Let us consider the following example.
Assume that n = 3 and P3 is an adversary. Let m1(x) = (x− a)(x− b), m2(x) = (x− a)(x− c),
and m3(x) = (x − a)(x − b)2(x − c)−1. Then the result of the protocol will be (x − a)3(x − b)3.
That is, the element c is eliminated by an adversary.

- Delayed Participation. The inverse of any ciphertext can eliminate a valid ciphertext. If P3 pub-
lishes c3(x) := c′3(x) ·

∏2
i=1 ci(x)−1 on the bulletin board, P1 and P2 will get c′3(x) as the result

of multiplication of
∏3

i=1 ci(x). Thus P1 and P2 not only receive a wrong result, but also even do
not know the fact that they receive a wrong one.

To prevent the Guess & Elimination attack, we append a random number to every element of
sets: a′ ← a||Ri, where a||b denotes a concatenated with b and Ri denotes a random number. In the
previous example, the probability that an adversary can make the same form of elements is 1/2w

where w is the number of bits of random numbers.
To prevent the Delayed Participation attack, we utilize commitment and a zero-knowledge proof

of plaintext knowledge (POPK). Commitment prevents delayed participants from learning any infor-
mation about the message and POPK forces participants to generate messages in a correct form, e.g.,
encryption of k-root polynomial in our case.

The malicious protocol has several differences from the honest-but-curious one, and the counter
measures mentioned above play an important role in protecting our protocol from adversaries. The
full description of the protocol is in Fig. 1.

Security Analysis We show that we can make a simulator S which translates any behavior of the
malicious party A∗ in the real model into the behavior of the party in the ideal model. Hence A∗ in
the real model gains no more information than what can be deduced in the ideal model. The following
lemma is a formal statement of this property.

Theorem 1. For any malicious party A∗, simulator S in the ideal model exists in the random oracle
model, such that the multiset union of the malicious party A∗ and the honest parties in the real model
is computationally indistinguishable from the multiset union of the parties in the ideal model.

Proof. (Sketch) Simulator S in the ideal model attempts to respond to malicious party’s messages
on behalf of honest parties, except that it is never told the inputs with which protocols are executed.
The high level view of the proof is the same as the one in Figure 12 in section C.2 in [13]. For the
simplicity of description we assume one malicious party A∗ in this proof. We can extend the proof to
multiple malicious parties. The sketch of how S operates is as follows:

1. For each simulated honest party i, S chooses random commitment value hi ← {0, 1}` and
performs step 1 of the protocol: S sends hi to A∗ and receives h∗ from A∗. (The distribution of hi is
uniform in the range of H.)

2. If there is no H query that outputs h∗, S stops. (The probability of protocol success without
such H query that outputs h∗ is negligible in the random oracle model.)

1 Let (c1, c2) be a ciphertext of a message m(x) =
∏k

i=1(x −mi) where c1 = (α(x)r mod f(x)) and c2(x) =
(β(x)rm(x) mod f(x)). One may think that finding a factor (x −mi) from the ciphertext would be easy.
However, c2(x) is of the form β(x)rm(x)− g(x)f(x) for some g(x) ∈ Fq[x] and so c2(mi) = 0 if and only if
g(mi) = 0, which happens with probability 1/q. This makes that mi ∈ S is indistinguishable from m′ /∈ S.
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Protocol Malicious Protocol for PPMU

Input: There are n > 2 parties Pi with a private input set Si, such that |Si| = k,
where d > nk is the degree of an irreducible polynomial f(x). Let H be a hash
function from {0, 1}∗ to {0, 1}` where ` is a security parameter.

Output: PPMU of S1, · · · , Sn

[Set up]
Each party Pi for 1 ≤ i ≤ n:

1. appends a random number Rij to (Si)j such as (Si)
′
j ← (Si)j ||Rij .

2. calculates the polynomial mi(x) =
(
x− (Si)

′
1

)
· · ·
(
x− (Si)

′
k

)
.

3. for a given key as (2.1), encrypts the polynomial mi(x) with a random ri and si

as equation (2.2).

[Step 1] Commitment
Each party Pi sends hi to all the parties where hi ← H(ci(x)||POPKi).

[Step 2] Broadcast
Each party Pi sends the encryption ci(x) to all the parties with POPKi.

[Step 3] Union
For 1 ≤ j ≤ n, each party Pi

1. verifies the existence hj ← H(cj(x)||POPKj) from cj(x) and POPKj .
2. multiplies all the cj(x) as equation (2.3).

[Step 4] Decryption
All the parties perform a group decryption to obtain the polynomial

∏n
i=1mi(x).

If the form of the polynomial
∏n

i=1mi(x) is a product of nk linear factors, they
‘accept’ the result. Otherwise, ‘reject’.

All the parties learn PPMU of S1, · · · , Sn by performing polynomial factoring.

Fig. 1. Malicious Protocol for PPMU

3. S extracts polynomial m∗(x) from the hash inputs corresponding to h∗. Note that inputs contain
the proof of plaintext knowledge. If inputs are not extractable, S stops. (In real world, if all the proofs
of plaintext knowledge are not verified, the protocol fails.)

4. S obtains the roots of polynomial m∗(x). If the number of roots is not k, S stops. (The malicious
party tries to generate an encryption message on forged polynomials, for example, hoping to eliminate
any linear factor in multiplication of linear factors in the real protocol. However, since the probability
of the correct guessing of any linear factor is negligible and every party verifies the total number of
elements after group decryption, the adversary is forced to generate encryption on a polynomial with
k roots. )

5. S submits the set represented by these roots to the trusted third party. The honest players
submit their private input sets to the trusted third party. The trusted third party returns the multiset
union U to S and the honest players.

6. S chooses a set of polynomials mi(x) s.t.
∏n

i=1mi(x) = U(x)/m∗(x) where U(x) is the poly-
nomial representation of U . S sets as hi the hash query on inputs (ci(x)||POPKi). (In this way, the
second round message for each honest party is correctly formed so that the protocol output matches
the third party output.)

7. S follows the rest of the protocol with A∗ from step 2 and A∗ learns the multiset union.
Note that the malicious party A∗ cannot distinguish whether it interacts to S (in the ideal model)

or to other honest parties (in the real world), and all parties learn the correct answer, in both the
real and ideal models. Extension to multiple malicious parties is simple: in step 4, S multiplies all
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polynomials and computes the roots of polynomials multiplication. If the number of roots is not ck
where c is the number of malicious parties, S stops.

3 Discussion

3.1 Performance Analysis and Comparison

We compare the performance of our PPMU protocol with that of KS’s Multiset Union which is
composed of the first 4 steps of their ‘Over-Threshold Set-Union Protocol’ in [14] and group decryption.
Table 1 compares the performances of two protocols in communication and computation cost. A
remarkable feature of our protocol is that it requires only constant rounds for communication while
KS protocol requires O(n) rounds. The encryption time is similar for ours and KS protocol, but KS
is slightly better for large n and ours is better for large k. However, we remark that for small nk our
protocol is more efficient than KS protocol since one ElGamal encryption covers many elements of a
multiset, which will be demonstrated in the next subsection.

# of Rounds Communication Enc. Dec.

HBC
KS [14] n nU of size O(nk) O(n2k2) O(nk)
Ours 1 nB of size O(nk) O(n) ·MUL(d) O(1) ·MUL(d)

MAL
KS [14] n+ 1 nB of size O(nk) and nB of size O(k) O(n2k2) O(nk)
Ours 2 nB of size O(nk) O(n) ·MUL(d) O(1) ·MUL(d)

nB and nU denote n Broadcasts and n Unicasts. MUL(d) represents the complexity for a multiplication of
polynomials of length d over Fq, in which d > nk and MUL(d) = O(dlog2 3) or O(d log d log log d).

Table 1. Performance Comparison Our Protocol with KS’s Multiset Union

In HBC protocol of KS’s, to make an encryption of multiset union, the first party P1 encrypts his
polynomial in 2k exponentiations on ZN and relays O(k) ciphertexts. The other party Pi (2 ≤ i ≤ n)
performs simple exponentiations in turn to compute the product of an encrypted polynomial and his
own unencrypted polynomial with ((i−1)k+1)(k+1) exponentiations and relays ik ciphertexts; there-
fore, the protocol totally requires O(n2k2) exponentiations. In our protocol, each party simultaneously
encrypts his own message in two exponentiations in Fqd and broadcasts the ciphertext. Then, each
party computes the product of the n ciphertexts. It involves only O(1) ciphertexts and O(n) exponen-
tiation. However, our protocol performs operations over Fqd and d must be larger than nk. Hence the
size of the ciphertext becomes O(nk) and two exponentiations, which involve a constant number of
multiplications over Fqd , take O(dlog2 3) using Karatsuba method or O(d log d log log d) by fast Fourier
transform (FFT) [18, p.415]. We remark that faster multiplication methods such as Karatsuba or FFT
cannot be applied to KS protocol since each exponentiation is performed independently.

3.2 Experimental Results

We present experimental results to verify the performance gains of our protocol. Our experiments were
conducted on a 3.20-GHz Intel Pentium IV CPU with 1GB memory, Red Hat 8, gcc 4.3.0 and NTL [1]
which is a high-performance library for doing number theoretic computation. For practically secure
use of the Paillier cryptosystem, logN ≥ 1024 is recommended. Thus, we implemented both protocols
for the parameters, k = 10, n = 10, log p = 160 and log qd = logN = 1024. The computation time of
our protocol is 22.28 seconds, which is about 33 times faster than 703.54 seconds of KS’s protocol. In
addition, if we account for delivery time, the performance gain will be more prominent.

Although we did not perform the experiment in Optimal Extension Field (OEF), it is known
that OEF is the best choice [19] for the software implementation. We recommend that ElGamal
cryptosystem with polynomials is implemented over OEF [2].



6 Jeongdae Hong, Jung Woo Kim, and Jihye Kim and Kunsoo Park, and Jung Hee Cheon

Enc. Dec. Total

KS 701.40 sec 2.14 sec 703.54 sec

Ours 15.03 sec 7.25 sec 22.28 sec

Table 2. Comparison of Experimental Results

4 Conclusion & Future Work

In this paper, we proposed efficient privacy preserving multiset union protocols. It requires only
constant-round communication and about 30 times faster encryption than the previous one. However,
there still remains much room for developing various practical applications, since we have not found
solutions for other set operations such as set intersection, element reduction and set union. Another is-
sue is protocol robustness. Although the current version of protocol is secure, its performance degrades
whenever any fault happens. For robustness, the protocol is required to detect malicious players. A
new cryptographic tools such as Zero-knowledge Proof of the Degree of a Message must be studied.
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