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Abstract. In this paper, we first present a new distinguisher on the
CBC-MAC based on a block cipher in Cipher Block Chaining (CBC)
mode. It can also be used to distinguish other CBC-like MACs from
random functions. The main results of this paper are on the second-
preimage attack on CBC-MAC and CBC-like MACs include TMAC,
OMAC, CMAC, PC-MAC and MACs based on three-key encipher CBC
mode. Instead of exhaustive search, this attack can be performed with
the birthday attack complexity.
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1 Introduction

A message authentication code (MAC), also known as keyed hash function, is a
short piece of information used to authenticate both the source of a message and
its integrity without the use of any additional mechanisms. A MAC algorithm
takes as input a secret key and an arbitrary-length message to be authenticated,
and outputs a short tag. As an important cryptographic primitive, MAC has
been widely used in practice. The applications include Internet communication
protocols, e-commerce, ebanking etc. The analysis of MAC model usually in-
volves three participants: a sender, a receiver and an adversary. The sender and
the receiver have agreed on a secret key (or a set of keys). Prior to sending a
message, the sender uses a signing algorithm to produce an authentication tag
(or MAC) from the message and the secret key. On receipt, the receiver veri-
fies the message and the MAC by the same calculation using their share secret
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key. The goal of the adversary is to trick the receiver into accepting a message
that was not sent by the sender. There are three main types of constructions
for MAC algorithms: construction based on block ciphers (OMAC, CBC-MAC
and PMAC), construction based on cryptographic hash functions (HMAC), and
construction based on universal hashing. In this paper we shall focus on the first
type of construction.

The Security of MAC Functions One of the most important requirements of
MAC is that given a massage M and a lk-bit secret key K, the computation of the
MAC value MACK(M) should be easy. However, it should be computationally
infeasible to find MACK(M) without knowing K. Security properties of MAC
function include:

Existential Forgery An adversary is able, without initial knowledge of K,
to get a corresponding MAC C for any message M , which has not been
MACed by the legitimate MAC generator. The message M may not have
any particular meaning.

Selective Forgery An adversary is able to determine the MAC for a message
of his choice.

Second Preimage Resistance Second preimage resistance is sometimes re-
ferred to as weak collision resistance. If an adversary observes M and the cor-
responding MAC C, constructing a message M ′ 6= M with MACK(M ′) = C
should be computationally infeasible for him. The relation Pr[MACK(M ′) =
C] = 2−lm should hold in this case, where lm is the length of the tag.

Universal forgery An adversary is able to find a MAC for every given message.
This attack is much more powerful than previous cases.

Key Recovery Attack A key recovery attack is more devastating than forgery.
In this case an adversary is able to recover K itself, and thus can perform
arbitrary forgeries. Ideally, any attack allowing key recovery requires about
2lk operations. Verification of such an attack requires ⌈ lk

lm
⌉ text-MAC pairs.

Related Work CBC-MAC [5], a technique for constructing a message authen-
tication code from a block cipher through CBC mode, was first introduced for
messages with fixed length by Bellare et. al. Variants of the CBC-MAC for vari-
able length messages were then proposed, examples include EMAC [19], ECBC,
FCBC, XCBC [4], TMAC [13], OMAC[12]and CMAC[15]. In [9], Daemen and
Rijmen introduced a new MAC construction Alred and its special instance
Alpha-MAC. Recently some provably secure MACs from differentially-uniform
permutations was brought forward by Minematsu and Tsunoo [14]. Dodis et.al.
[10] introduced a new mode of operation for block ciphers and length-preserving
MACs.

In [17], Preneel and van Oorschot proposed a general forgery attack on all
iterated MACs using the birthday paradox [23]. In [18] they presented a key
recovery attack on the retail MAC based on DES, which requires 232.5 known
text-MAC pairs and 3 ·256 off-line computations to find the 112-bit key. Knudesn



[11] presented a forgery attack on CBC-MAC based on n-bit block cipher with
truncation to lm bit tag, with 21+(n−lm)/2 known text-MAC pairs and two known
texts. In [8], Coppersmith and Mitchell proposed the key recovery attack against
the DesMAC. This attack was further improved by Coppersmith, Knudsen, and
Mitchell [7]. The new attack applies to DesMAC involves prefixing the data to
be MACed with its length. Recently, new techniques to identify the underlying
hash functions of MACs were developed Wang et. al. in [21,20]. In [21], Wang
et. al. presented distinguishing attacks on HMAC/NMAC-MD5 and MD5-MAC,
partial subkey recovery of MD5-MAC can be achieved. Their distinguisher makes
use of internal near-collisions, which leaks more information than internal col-
lisions. A distinguisher based on the internal near-collision was shown in [22].
Based on that, a forgery attack on Alred construction and equivalent subkey
recovery attack on its AES-based Instance Alpha-MAC was suggested.

Our Contribution This paper explores a new distinguishing attack on MACs,
which can be used to distinguish MAC based on block ciphers under CBC mode
from random functions. This distinguishing attack is useful in second preimage
attack, which is the main topic of this paper. Instead of exhaustive search, our
second preimage attack can be achieved with birthday attack complexity. This
reveals serious weakness in practice which has not been noted by the design-
ers of the iterate block cipher based MACs. We show that MACs based on a
block cipher in CBC mode and its variants are all vulnerable to weak collision
attack. The attack also applies to the recent proposed provably secure MACs
from differentially-uniform permutations [14] and the MAC suggested in [10].

Our approach is to utilize the CBC structure and turn the complexity of the
second preimage attack into birthday attack complexity. More specifically, given
a two-block message x1‖x2, we want to create another message x′

1‖x
′
2 with the

same MAC, i.e., EK(x′
1)⊕ x′

2 = EK(x1)⊕ x2. From the CBC operation, we get
EK(x1) ⊕ x′

2 = EK(x′
1) ⊕ x2. We are able to choose x′

1, x
′
2 at random to get a

collision–MACK(x1‖x′
2) =MACK(x′

1‖x2). In particular, we explore the second
preimage attack on the CBC-MAC [5], EMAC [19], ECBC, FCBC, XCBC [4],
TMAC [13], OMAC[12], CMAC[15], PC-MAC and MT-MAC[14], etc.

Organization of the Paper. This paper is organized as follows. In section 2,
after basic notations are reviewed, we give brief descriptions of some MACs based
on the CBC encryption mode for block cipher. Section 3 shows a new method
for distinguishing MAC based on block cipher under CBC mode from a random
function. A second preimage attack on the CBC-like MACs is introduced in the
section 4. Finally, we summary our results in Section 5.

2 Preliminaries and Notations

In this section, we first list some notations used in this paper and then give some
brief descriptions of the related MAC functions.



2.1 Notations

xi : the ith block of the message
yi : the internal state after ith iteration
K : the secret key
C : the output of MAC taking secret key K and message M as input
|M | : the length of M
0i : the strings of i 0s.
lm : the length of the MAC output

M‖N : the concatenation of M and N
Σn : {0, 1}n, the set of all strings of length n

2.2 The CBC-like MAC Functions

MAC functions based on block ciphers are of great practical significance. CBC-
MAC [5,6] is a well-known method to generate a MAC based on a block cipher
in CBC mode. In general, we will call MAC functions based on block cipher in
CBC encryption mode the CBC-like MAC functions.

CBC-MAC is used to compress the message M of a fixed length mn with a
secret key K, where n is the length of a block and m is the number of blocks.
See Fig. 1. More precisely, the CBC-MAC is defined as:

xm1 2x
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y y y
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Fig. 1. CBC-MAC Algorithm

y0 = 0,

yi = EK(yi−1 ⊕ xi), 1 ≤ i ≤ m,

CBCK(M) = f(ym),

where f is the truncation function. For messages with fixed length, Bellare,
Kilian, and Rogaway [5] established the security of the CBC-MAC. However, a
well known fact says that the CBC-MAC without truncation is not secure for
variable-length messages. In fact, suppose that an adversary has known C =
CBCK(M), C′ = CBCK(M ′), then for any single block Y , the messages M‖Y
and M ′‖(Y ⊕(C⊕C′)) have the same MAC. Several variants of CBC-MAC have
been proposed for variable length messages in order to counter this attack.



EMAC Proposed by Berrendschot et. al., EMAC is the first encrypted MAC
[3]. It is obtained by encrypting the CBC-MAC value by E again with a new
key K2. That is,

EMACK1,K2(M) = EK2(CBCK1(M)),

where K1 is the key of the CBC-MAC and CBCK1(M) is the CBC-MAC value
of M . Petrank and Rackoff [19] proved that EMAC is secure if the message
length is a positive multiple of n. It is remarked that, however, EMAC requires
two key scheduling of the corresponding block cipher E. The ANSI retail MAC
[2], a variant of EMAC, selects as its output transformation a decryption D with
a second key K2 followed by an encryption with K1, (such that the last block
undergoes a two key triple encryption):

f(ym) = EK1(DK2(ym)) = EK1(DK2(EK1(ym−1 ⊕ xm)))

my

1 m

1 1 1

2

x xx2

EK K E K E

K E

C

y1 y2

Fig. 2. EMAC Algorithm

XCBC Black and Rogaway [4] suggested some simple variants of the CBC-MAC
i.e., ECBC, FCBC and XCBC. These modified CBC-MACs can be used to MAC
messages of arbitrary lengths efficiently. Their favorite construction is XCBC
which requires only one key scheduling of the built-in block cipher E. In general,
XCBC takes three keys: one block cipher key K1, and two n-bit keys K2 and K3.
Fig. 3 depicts the process of XCBC. If the message length is the multiple of n, let
K = K2, P = M . Otherwise, let K = K3, P = M‖10i, where i = n− 1 − (|M |
mod n). Write P = x0‖x1‖ · · · ‖xt, y0 = 0. Then yi = EK1(xi ⊕ yi−1), for
i = 1, . . . , t− 1. The XCBC value is C = EK1(xt ⊕ yt−1 ⊕K).

TMAC Kurosawa and Iwata introduced Two-key CBC-MAC (TMAC) in [13].
TMAC takes two keys, (lk +n) bits in total: a block cipher key K1 of lk bits and
a key K2 of n bits. TMAC is obtained from XCBC by replacing (K2, K3) with
(K2 · u, K2), where u is some non-zero constant and “·” denotes multiplication
in the field GF (2n).
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Fig. 3. XCBC MAC Algorithm

OMAC OMAC, also proposed by Iwata and Kurosawa [12], is a generic name
for OMAC1 and OMAC2. OMAC1 is obtained from XCBC by replacing (K2, K3)
with (L · u, L · u2) for some non-zero constant u in GF (2n), where L is given by
L = EK(0n). OMAC2 is constructed in a similar manner by using (L ·u, L ·u−1).
Note that L ·u, L ·u−1 and L ·u2 = (L ·u) ·u can be computed efficiently by one
shift and one conditional XOR from L, L and L · u, respectively.

CMAC CMAC [15] is equivalent to OMAC1, which is recommended by NIST.

PC-MAC and MT-MAC PC-MAC and MT-MAC was proposed by by Mine-
matsu and Tsunoo [14] for more performance. To facilitate the description of
the algorithm, let GU = (GU1 , GU2 , . . . , GUd

) be the sequence of the so called
auxiliary permutations with corresponding key U = (U1, U2, · · · , Ud), where for
1 ≤ i ≤ d, Ui ∈ ΣlU and GUi is permutation with key Ui. GUi can be abbreviated
to Gi unless it is confused. d is called the interval. Let F⊕K(α) = F (K ⊕ α).
PC-MAC PC-MAC, a very efficient periodic CBC-like construction. To describe
PC-MAC, let

Ch[F1, . . . , Fm](x) = xm+1 ⊕ Fm(xm ⊕ Fm−1(· · ·F2(x2 ⊕ F1(x1)) · · · ),

where for each i = 1, · · · , m, Fi is an n-bit block keyed function. Assume that
(d− 1) n-bit keys, denoted by Kxor

1 , . . . , Kxor
d−1, are available. Then the Periodic

CBC Hash (PCH) with interval d is a keyed function: (Σn)+ → Σn defined as:

PCHd[EK , GU ] = Ch[EK , G1, G
⊕Kxor

1
2 , . . . , G

⊕Kxor
d−1

d ].

Here, PCHd[EK , GU ] terminates as soon as the last input block is XORed.
The PC −MACd[EK , L|GU ](M) is defined as follows, where the message is

M , the key is (K, L), GU is the auxiliary permutations with interval d.

Preprocessing Let U = (U1, U2, · · · , Ud) be the first dlU bits of E⊕L
K (0), . . . , E⊕L

K (a1),
where a1 = ⌈dlU/n⌉ and Let Kxor

j = E⊕L
K (j + a1) for j = 1, . . . , d− 1.

Tag Computation

PC-MACK,L(M) =

{

EK(PCHd[EK , GU ](M)⊕ L · u), if |M | is a multiple of n;
EK(PCHd[EK , GU ](M‖10i)⊕ L · u2), otherwise.
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Fig. 4. PC-MAC with d = 2 and M = x1 · · ·x7.

Here, u is an element of GF (2n) and i = n− 1− (|M | mod n). See Fig.4 for
an example of PC-MAC2[EK , L|GU ](M), and M = x1‖ · · · ‖x7.
MT-MAC MT-MAC is an efficient MAC with provable security based on MTH
(modified tree hash). (See Fig. 5.) The precise description of MTH for the binary
case is give as follows:
Let H = (H1, H2, . . . , ) be an infinite sequence of keyed functions: (Σn)2 → Σn.
Let X = (x1‖ · · · ‖xm) ∈ (Σn)m. For all i ≥ 1, let LHi be a function defined as:

LHi(X) =

{

Hi(x1, x2)‖Hi(x3, x4)‖ · · · ‖Hi(xm−1, xm), if m mod 2 = 0;
Hi(x1, x2)‖Hi(x3, x4)‖ · · · ‖Hi(xm−1, xm)‖xm, if m mod 2 = 1;

The output of the MTH using H for input X is

MTHH(X) = LHb
◦ LHb−1

◦ · · · ◦ LH1(X),

where b = ⌈log2 m⌉ and ◦ denotes the serial composition (i.e., F2 ◦ F1(x) =
F2(F1(x))).

Now give a description of MT-MAC[EK |GU ](M), where the key is K and
GU is the auxiliary permutations with interval b = ⌈log2(⌈|M |/n⌉)⌉.

Preprocess Let a2 = ⌈blU/n⌉, U = (U1, U2, · · · , Ub) be the first blU bits of
EK(1), . . . , EK(a2)

Tag Computation Let

Hi(α, β) = GUi(α⊕ EK(i + a2))⊕ β), for1 ≤ i ≤ b;

MT-MACK(M) =

{

EK(MTHH(M)⊕ L · u), if |M | is a multiple of n;
EK(MTHH(M‖10i)⊕ L · u2), otherwise.

Here, L = EK(0), u is an element of GF (2n) and i = n− 1− (|M | mod n).

Three-Key Enciphered CBC Mode Three-key enciphered CBC mode [10],
a variable input length MAC, was constructed using the preserving fixed input
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Fig. 5. MT-MAC with M = x1‖ · · · ‖x5.

length MAC by Dodis et.al. First some auxiliary definitions are given. For f1, f2 :
Σn → Σn, let g[f1, f2](x2‖x1) = f1(x1) ⊕ f2(x2). The compression function
G[f1, f2] is defined as

G[f1, f2](x1‖ · · · ‖xt) = g[f1, f2](xt‖g[f1, f2](· · · g[f1, f2](x2‖x1) · · · )).

The three key enciphered CBC construction (See Fig. 6), H [f1, f2, f3], uses three
length-preserving functions f1, f2, f3 : Σn → Σn and takes a variable-length
input M = x1‖ · · · ‖xt (w.l.o.g., we assume the length to be a multiple of n; if
not, then append a 1 followed by 0s to achieve this). The mode is defined as:

H [f1, f2, f3](x1‖ · · · ‖xt) = f3(G[f1, f2](x1‖ · · · ‖xt)).

Enhanced enciphered CBC suggested in [10] which can be used for the “un-

f2

f 1f 1

f2

f 1

f2

f 1

f2

f3

x1 x xx 3 t (t )2

Fig. 6. The basic three-key enciphered CBC mode



keyed” settings (RO and CRHF) still works for the “keyed” settings (PRF and
MAC). The mode is depicted in Fig. 7 and is denoted H∗[π1, π2, π3], which is
the basic enciphered CBC mode H [f1, f2, f3] with length-preserving functions
f1, f2, f3 defined as follows:fi = πi(x)⊕x for i=1, 2 and f3(x) = π3(x)⊕π−1

3 (x).

x1 x xx 3 t (t )2

π1π1π1
π1

π2π2π2π2

π3 π−1

3

Fig. 7. The enhanced three-key enciphered CBC mode

2.3 Related Attacks

Finally in this section, we give several attacks that are closely related to our
attacks. Preneel and van Oorschot proposed a general forgery attack on all it-
erated MACs [17]. Their idea is that the adversary explores a pair of messages
(M, M ′) with the same MAC using the birthday attack. Then he appends the
same blocks in the end of the message pair to recognize whether this is an inter-
nal collision (whose values are equal before the last transformation) or not. If it
is an internal collision, the adversary can use MAC of M‖y to forge the MAC
of M ′‖y.

In [18], Preneel and van Oorschot presented a key recovery attack on the
retail MAC based on DES. The attack requires 232.5 known text-MAC pairs
and 3 · 256 off-line computations to find the 112-bit key. Firstly they search
an internal collision by the birthday attack, and then filter the key K with
the collision. At last the K2 can be obtain by an exhaustive search. Knud-
sen and Preneel [16] suggested another key recovery attack, which requires
only one known text-MAC pair. However it needs 255 online MAC verifica-
tions and 2 · 256 DES encryptions. Suppose that the adversary has observed
a MAC C = f(MACK1,K2(x1‖x2‖ · · · ‖xm)). He can create a message M ′ =
(x′

1‖x
′
2‖x3‖ · · · ‖xm), guess the key K1, and compute x′

2 = x2 ⊕ EK1(x1) ⊕
EK1(x

′
1). If the guess for K1 is correct, then this choice gives y2 = y′

2. Therefore
f(MACK1,K2(M

′)) = C, i.e. the verification will result in a positive answer. On



average, K1 will be found after 2k−1 attempts. Then K2 can be obtained by an
exhaustive search.

3 Distinguishing Attack on the MACs Based on Block

Cipher

In this section, we consider the non-randomness of MACs based on block ciphers
in CBC mode. A new distinguisher is constructed based on our observation.

Recall that Preneel and van Oorschot [17] proposed a general forgery at-
tacks on the iterate MACs, which can be used to distinguish the MAC functions
from a random function. Our new method to distinguish the block cipher-based
MAC from a random function relies on that the built-in block cipher being a
permutation.

The following is our observation.

Proposition 1. Let n, m ≥ 2 be integers. Given the block cipher E: Σn → Σn

and a secret key K, the CBC-MAC values of x1‖x2‖ · · · ‖xm and x′
1‖x2‖ · · · ‖xm

must be different provided x1 6= x′
1, where x′

1 and xi, i = 1, 2, . . . , m are single-
block messages.

Proof. Write
y1 = EK(x1) and y′

1 = EK(x′

1).

It is immediate that y1 6= y′
1 since EK(·) is a permutation on Σn.

For i = 2, . . . , m, yi and y′
i can be recursively defined as

yi = EK(xi ⊕ yi−1) and y′

i = EK(xi ⊕ y′

i−1).

Similarly, we note that yi 6= y′
i for i = 2, . . . , m. In particular, ym 6= y′

m can be
deduced, and hence

C 6= C′.

⊓⊔

To perform the distinguishing attack, the adversary is given an oracle C =
CBCK(·). He makes 2(n+1)/2 queries with m-block messages that have the same
last m− 1 blocks. The following is the explicit structure S:

S = {M i |M i = xi
1‖x2‖ · · · ‖xm, i = 1, 2, . . . , 2(n+1)/2 },

where xi
1’s are distinct random single-block messages. If there is a collision in

the structure, the MAC function is a random function. Otherwise it is the CBC-
MAC.

This attack requires about 2(n+1)/2 chosen messages. By the birthday para-
dox, the probability that the adversary will succeed is 0.63. If we double the
number of the messages, the success rate can be increased to 0.98.

This distinguishing technique can also be used to attack other block cipher-
based MACs mentioned earlier, such as EMAC, XCBC, TMAC and OMAC. For
these cases, we only need messages with one block to query the corresponding
oracle.



4 Second Preimage Attack

Second preimage resistance is sometimes referred to as weak collision resistance.
It means that if an adversary observes M and the corresponding tag C, it must
be computationally infeasible to construct another message M ′ s.t. MACK(M ′)
= C. Ideally one would expect the complexity of finding such M ′ to be 2lm .
However, as we shall prove in this section, most of the block cipher-based MACs
are vulnerable to the second preimage attack.

In this section, we will demonstrate how the complexity of the second preim-
age attack on some MACs can be reduced to birthday attack complexity.

4.1 A General Statement

In this section, we propose a new method for constructing a message that is
different from a given message (with at least two blocks) but with the same MAC.
This task can be achieved with birthday attack complexity. We also identify three
types of building blocks for MAC iterate construction that are vulnerable to our
attack.(See Fig. 8)

f

x1

2x 2x f2

f

x1

1

2x

f

x1

(a) (b) (c)

Fig. 8. Three types of insecurity elements to MAC iterate construction

Our first result in this section is the following.

Proposition 2. Let b ≥ n and f1, f2 : Σb → Σn be two random maps. Set
g(x1, x2) = f1(x1)⊕f2(x2). Then with probability 0.63, a pair (x′

1, x
′
2) can be ob-

tained such that g(x1, x2) = g(x′
1, x

′
2), with (birthday attack) complexity 2(n+3)/2.

To facilitate the proof of the proposition, let us first present the algorithm
to construct (x′

1, x
′
2).



Algorithm 1. Find another pair (x′
1, x

′
2) to make g(x′

1, x
′
2) = g(x1, x2).

INPUT : x1, x2, g.
OUTPUT : x′

1, x′
2.

1. S1 ← ∅
2. For i← 0 to 2(n+1)/2 do

Choose xi
1 /∈ {x1, x

0
1, . . . , x

i−1
1 } at random and compute yi

1 ← g(xi
1, x2)

S1 ← S1

⋃

{(xi
1, y

i
1)}

End For

3 For i← 0 to 2(n+1)/2 do

Choose xi
2 /∈ {x2, x

0
2, . . . , x

i−1
2 } at random and compute yi

2 ← g(x1, x
i
2)

If yi
2 = yk

1 where yk
1 is the second component of an element of S1

Return (xk
1 , xi

2)
End For

Now let us prove the proposition.

Proof. To show that this is a success attack, we need to check two things. First,
the forgery is valid, i.e. g(x′

1, x
′
2) = g(x1, x2). Second, the messages are different,

i.e., (x′
1, x

′
2) 6= (x1, x2).

If a pair (x′
1, x′

2) is obtained from the Algorithm 1, (x′
1, x

′
2) 6= (x1, x2) is

obvious.
Next, we prove g(x′

1, x′
2) = g(x1, x2). By the algorithm, we have g(x′

1, x2) =
g(x1, x

′
2), i.e.,

f1(x
′

1)⊕ f2(x2) = f1(x1)⊕ f2(x
′

2).

This implies that f1(x
′
1)⊕ f2(x

′
2) = f1(x1)⊕ f2(x2), and hence

g(x′

1, x
′

2) = g(x1, x2).

Step 2 needs 2(n+1)/2 computations of the function g, so does the Step 3.
Therefore, the complexity of the algorithm is 2(n+3)/2. The success possibility is

(1−
1

2n
)(2

(n+1)/2)·(2(n+1)/2
−1) ≈ 1− e−2 ≈ 0.63.

⊓⊔

Remark. Fig 8 (a) and (c) depict the case f2(x) = x and general case respec-
tively.

4.2 The Second-Preimage Attack on CBC-MAC

The following is a straightforward statement whose proof is omitted.

Proposition 3. Let n, m ≥ 2 be integers. Let E: Σn → Σn be the block ci-
pher and K the secret key for the CBC-MAC. Then the CBC-MAC values of
x1‖x2‖x3‖ · · · ‖xm and x′

1‖x
′
2‖x3‖ · · · ‖xm are the same if and only if EK(x1)⊕

x2 = EK(x′
1)⊕x′

2, where x′
1, x′

2 and xi, i = 1, 2, . . . , m are single-block messages.



Suppose that the adversary has an oracle C = CBCK(·), which can be used
to query any message. He has intercepted a message M0 = x1‖x2‖ · · · ‖xm and
its MAC is C0. A collision is shown in Fig. 9.

The following procedure can be used to forge the MAC C0 by finding another
message M ′.

1. Construct two structures

S1 = {M i
1 |M

i
1 = x1‖x

i
2‖x3‖ · · · ‖xm, i = 1, . . . , 2(n+1)/2 },

S2 = {M i
2 |M

i
2 = xi

1‖x2‖x3‖ · · · ‖xm, i = 1, . . . , 2(n+1)/2 },

where x1
2, x

2
2, . . . are distinct random message blocks that are different from

x2, and so are x1
1, x

2
1, . . ..

2. Query the oracle for the messages in the two structures and obtain Ci
1 =

CBCK(M i
1), Ci

2 = CBCK(M i
2), where i=1, 2, . . ., 2(n+1)/2.

3. A collision can be obtained by the birthday attack. Assume w.l.o.g. that
Ck

1 =Cj
2 . By Proposition 3,

EK1(x1)⊕ xj
2 = EK1(x

k
1)⊕ x2,

then
EK1(x1)⊕ x2 = EK1(x

k
1)⊕ xj

2.

So the message M ′ = xk
1‖x

j
2‖x3‖ · · · ‖xm has the same MAC value with the

message M .
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Fig. 9. A Collision of the CBC-MAC



It is not difficult to see that our technique still works for the following struc-
tures

S1 = {M i
1 |M

i
1 = x1‖ · · · ‖xj−1‖x

i
j‖xj+1‖ · · · ‖xm, i = 1, . . . , 2(n+1)/2 },

where x1
j , x

2
j , · · · are distinct random message blocks that are different from xj ;

and

S2 ⊂ {M ′ |M ′ = x′

1‖ · · · ‖x
′

j−1‖xj‖xj+1‖ · · · ‖xm, x′

1, . . . , x
′

j−1 are random },

with #S2 = 2(n+1)/2. S2 should not contain x1‖ · · · ‖xj−1‖xj‖xj+1‖ · · · ‖xm.
A collision can be obtained by the birthday paradox, i.e. EK(yj−1 ⊕ xk

j ) =

EK(y′
j−1⊕xj), thus EK(yj−1⊕xj) = EK(y′

j−1⊕xk
j ). The messages x′

1‖ · · · ‖x
′
j−1‖

xk
j ‖xj+1‖ · · · ‖xm and M has the same tag.

This attack is apparently working for the following MACs with arbitrary
message length such as EMAC, XCBC, TMAC, OMAC, CMAC, PC-MAC and
MT-MAC.

We would like to point out that above attack can be applied CFB-MAC[1].
For this, we just observe that the iteration is defined as follows:

yi = f(yi−1, xi) = EK(yi−1)⊕ xi.

4.3 The Second Preimage Attacks for Other Constructions

Our attack applies to other constructions as well.
It is obvious that PC-MAC is a variant of CBC-MAC, so the attack to the

PC-MAC still works.
Note that the function of Hi of MT-MAC contains the basic building blocks

in Fig. 8. Therefore it is vulnerable to the second preimage attack by Proposition
2.

Our attack can be also used to the three-key encipher CBC mode. When f1

and f3 are permutations, it is obvious that three-key encipher CBC mode is a
variant of CBC-like MAC, with message transform function f2(x) instead of x.
So it is not resistant to the second preimage attack. If f1 and f3 are compress
functions, then we need to decide where the collision comes out. The internal
collision is useful to the second preimage attack.

We construct the structures as:

S1 = {M i
1 |M

i
1 = x1‖x

i
2, i = 1, . . . , 2(n+1)/2 },

S2 = {M i
2 |M

i
2 = xi

1‖x2, i = 1, . . . , 2(n+1)/2 },

By birthday paradox, there exist two collisions: an internal collision before f3
function and an external collision (not internal collision). Assume w.o.l.g that
the internal collision is MAC(M j

1 ) =MAC(Mk
2 ). Then the messages x1‖x

j
2‖x3

and xk
1‖x2‖x3 have the same MAC, which is not the case if the pair (M j

1 , Mk
2 ) is

an external collision. By the equitation f1(x1)⊕f2(x
j
2) = f1(x

k
1)⊕f2(x2), we can



deduced f1(x1)⊕f2(x2) = f1(x
k
1)⊕f2(x

j
2). Namely MAC(xk

1‖x
j
2) =MAC(x1‖x2).

The success probability is 0.63. Of course the success rate can be improved by
enlarging the message structures.

To determine whether the underlying functions are permutations or com-
pressing functions, we can use the distinguishing technique described in Section
3.

5 Conclusion

This paper first explores a new distinguishing attack on CBC-like MACs. The
distinguisher can decide weather the MAC function is based on block ciphers
or random functions. The main results of this paper is to propose a second
preimage attack on a variety MACs based on block cipher with CBC mode.
In particular, we prove that the MACs such as CBC-MAC [5], EMAC, ECBC,
FCBC, XCBC [4], TMAC [13], OMAC[12], CMAC[15], PC-MAC, MT-MAC[14],
three-key encipher CBC mode [10] etc. are all vulnerable to second preimage
attack.
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