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Abstract. Most protocols for multi-party computation (MPC) are secure either
against information-theoretic (IT) or against computationally bounded adversa-
ries. In this work, we bring together the best of both worlds: For any robustness
parameter ρ < n

2
we obtain one MPC protocol that is simultaneously IT secure

with robustness for up to t ≤ ρ actively corrupted parties, IT secure with fairness
(no robustness) for up to t < n

2
and computationally secure with agreement

on abort (no fairness) for up to t < n − ρ. Our construction is secure in the
universal composability (UC) framework, and achieves the bounds of Ishai et al.
[CRYPTO’06], Katz [STOC’07], and Cleve [STOC’86] on trade-offs between
robustness and privacy, and on fairness.
For example, for the special case ρ = 0 our protocol simultaneously achieves
non-robust MPC for up to t < n corrupted parties in the computational setting
(like Goldreich et al. [STOC’87]) while providing security with fairness in the
IT setting for up to t < n

2
corrupted parties (like Rabin and Ben-Or [STOC’89]

though without robustness).

Keywords: multi-party computation, information-theoretic security, computa-
tional security, hybrid security, robustness, fairness, agreement on abort, universal
composability.

1 Introduction

1.1 Secure Multi-Party Computation

In [21], Yao introduced multi-party computation (MPC): Given any arbitrary but fixed
function f and a set of n mutually distrusting parties, an MPC protocol enables these
parties to compute the function f on their inputs securely, even if some of the parties
are corrupted by an active adversary.

Security notions for MPC in the literature (e.g. [13]) are numerous and include
privacy, correctness, robustness, fairness, and agreement on abort. Privacy is achieved if
the adversary cannot learn more about the honest players’ inputs than what is implied by
inputs and outputs of the corrupted players. Correctness means that the protocol output
equals the intended function value f(x1, ..., xn) of the inputs or there is no output.
A protocol achieves robustness if an adversary cannot abort it and prevent the honest
players from obtaining output. Fairness is achieved if the honest parties learn the output
whenever the adversary learns anything about it. Agreement on abort means that either
all honest parties obtain the output or none. Full security encompasses all of the above.



A first general solution to the MPC problem was given by [15], based on computa-
tional (CO) intractability assumptions and a broadcast (BC) channel. They achieve full
security against t < n

2 actively corrupted parties or security with abort against t < n
actively corrupted parties as described in [14]. On the other hand [2], and independently
[7], presented protocols which are information-theoretically (IT) secure and require no
BC channel. However, they prove that security can only be achieved as long as t < n

3
parties are corrupted. When no robustness is required (detectable MPC) [11] or if a BC
channel is available [19], this bound can be extended to at most t < n

2 .
MPC is generally treated in a setting where parties are connected by a complete and

synchronous network of secure channels. Additionally an authenticated synchronous
BC channel or a public key infrastructure (PKI) may be available. Universally com-
posable (UC) MPC protocols usually also require a common reference string (CRS) [3,
4]. Unless otherwise stated we assume a complete and synchronous network of secure
channels, an authenticated synchronous BC channel, and a CRS.

1.2 Hybrid Security

Most MPC protocols are designed to be secure either against IT or against CO adver-
saries. IT MPC protocols have the disadvantage that only a corrupted minority can be
tolerated without compromising security. On the other hand, CO protocols can tolerate
any number of corrupted parties if robustness and fairness are not required, but they
are based on unproven intractability assumptions. Invalidation of the underlying as-
sumptions generally leads to a complete loss of security, even if only a single party is
corrupted.

The goal of MPC protocols with hybrid security is to provide different levels of
security, depending on the number of corrupted parties. For instance we will discuss
protocols that are IT secure with fairness in the presence of t < n

2 actively corrupted
parties and still CO secure with agreement on abort in the presence of arbitrarily many
corrupted parties.

1.3 Contributions and Related Work

We provide UC-secure MPC protocols that combine IT and CO security and allow for
flexible trade-offs between security with robustness, fairness, or agreement on abort. For
any robustness parameter ρ < n

2 we describe an MPC protocol Πρ that simultaneously
provides robust IT security in the presence of t ≤ ρ actively corrupted parties, fair
IT security (no robustness) for t < n

2 , and CO security with agreement on abort (no
robustness) for t < n− ρ.

In [6] Chaum sketches a construction aimed at guaranteeing CO security with abort
for any number of actively corrupted parties, and simultaneously IT security with abort,
given that only a minority of the parties is corrupted. However, several critical details
are neglected in [6]. We provide a protocol construction based on Chaum’s idea and give
a formal and complete description. Our construction improves upon [6] by guaranteeing
fairness in the IT setting, agreement on abort in the CO setting and a method for trading
robustness against at most ρ corrupted parties for CO security against up to n − ρ



corrupted parties. Furthermore, we provide proofs in the UC model as well as the stand-
alone model (see full version).

Fitzi et al. [12] combine IT and CO security: Up to a first threshold tp, the security
is unconditional. Between tp and the second threshold tσ IT security is guaranteed
conditional on the consistency of the underlying PKI. Finally, between tσ and T the
protocol is as secure as the signature scheme in use. Fitzi et al. show that their notion
of hybrid MPC is achievable if and only if (2T + tp < n)∧ (T + 2tσ < n), which they
prove to be tight.

Fitzi et al. [11] improve upon [2, 7] in the IT setting, when no BC channel is avail-
able by allowing for two thresholds tv and tc where tv = 0 or tv + 2tc < n. Then for
t ≤ tv corrupted parties, fully secure MPC is achieved while for tv < t ≤ tc corrupted
parties non-robust (but fair) MPC is accomplished.

Both [12] and [11] largely focus on a setting without BC channel. When a BC
channel is provided our results improve substantially upon those of [12, 11]. As [11]
focuses exclusively on IT MPC and [12] only treats robust MPC both [12, 11] do not
reach beyond t < n

2 corrupted parties, nor are they easily extended, whereas we can
guarantee CO security with agreement on abort for t < n − ρ. In the setting without
BC channel, and for ρ > 0 our results match those of [11] (which they prove optimal
for this case). However, for the special case that ρ = 0 (i.e., no robustness is required)
our construction achieves IT fairness for t < n

2 , and CO security with abort for t < n
corrupted parties, which goes beyond [11].

In [16] and [17] trade-offs between robust and non-robust MPC are discussed, but
only in the CO setting. They show that a protocol which guarantees robustness for up to
ρ corrupted players can be secure with abort against at most n−ρ corrupted players and
give CO secure protocols that match these bounds. Our protocol Πρ is optimal under
the bounds of [16, 17] but beyond that also provides IT security for t < n

2 . Futhermore,
we match the bound t < n

2 on fairness for general MPC put forth in [9], and the bound
t < n

2 on IT security in the presence of active adversaries (e.g. [18]).
So, in conclusion we obtain a flexible and optimal trade-off between IT robustness,

IT fairness and CO security with agreement on abort, and give proofs of these properties
in the UC setting.

2 Security Definitions and Notations

We use the universal composability (UC) model of security [3, 1]1 which is a simulation-
based security model. The security of a protocol (the real model) is defined with respect
to an ideal model, where the computation is performed by a Trusted Third Party or Ideal
Functionality I . A protocol π is to implement an ideal functionality I from a given set
of resources (e.g. authentic or secure channels, BC channels, a PKI) using local proto-
col machines πi for each party Pi . Informally, a protocol π achieves security according
to the simulation paradigm if whatever an adversary A corrupting a subset A ⊆ [n]
(where [n] = {1, 2, ..., n})2 of t := |A| parties can do in the real model, a simulator

1 We follow the UC model of [3] in spirit, but do not adhere to the notation of [3].
2 We will occasionally refer to party Pi by its index i, and e.g. write Pi ∈ A.



(or ideal adversary) σ could also do in the ideal model. This is formalized by means
of a distinguisher (or environment) D , which connects to the protocol interfaces of the
honest parties Pi ∈ H = [n] \ A and to the adversary. A protocol π is secure if there
is a simulator σ such that no distinguisher D can tell real model and ideal model with
simulator σ apart.

As (in contrast to stand-alone definitions of security) the distinguisher is not re-
stricted to providing input and receiving output, but may interact with the adversary or
simulator during the entire course of the protocol execution, we implicitly model that
other protocols may be running in the environment (i.e. the distinguisher) in parallel and
that the adversary may swap messages or otherwise use information from one protocol
in another. This yields a strong composition theorem [3, 1] which allows us to securely
replace a protocol component with the ideal functionality that it securely implements in
any protocol context.

As shown in [3] it is not necessary to consider a proper adversary A. Rather the (real
model) adversary can be thought of as part of the distinguisher D (dummy adversary
in [3]). D then directly connects to the resource interfaces of the corrupted parties.
Security is exhibited by providing a simulator acting on the interfaces of the corrupted
parties in the ideal setting that renders the ideal functionality with simulator and the real
protocol indistinguishable for any such distinguisher. Indistinguishability is formalized
by means of the advantage that a distinguisher has in distinguishing two system:

Definition 1 (Advantage of a Distinguisher). The advantage of a class D of distin-
guishers in distinguishing systems S and S′ is advD (S, S′) := maxD∈D |Pr[D(S) =
1]−Pr[D(S′) = 1]|, where D(S) denotes the output of distinguisher D when interact-
ing with system S.

UC security then essentially states that wherever a protocol π is used, we can in-
distinguishably replace this protocol by the ideal functionality I it implements together
with an appropriate simulator:

Definition 2 (Universally Composable (UC) Security). Given a class of distinguish-
ers D and a class of simulators Σ , a protocol π UC-securely implements an ideal
functionality I if for every set of corrupted players A there is a simulator σ ∈ Σ such
that advD (σA(I ), πH(R))) ≤ ε(κ), where ε(κ) is a negligible function in the security
parameter κ. Here πH denotes the protocol machines of the honest parties in H. We
generally take Σ as the class of efficient simulators. If D is the class of efficient dis-
tinguishers we obtain CO security, if D is the class of all distinguishers we obtain IT
security.

We will generally be interested in securely computing an n party function f that
takes n inputs x1, . . . , xn, one from each party, and maps them to a common output
y = f(x1, . . . , xn). At first glance it might appear more natural to consider asymmetric
functions which provide a separate output for each party: (y1, ..., yn) = f(x1, ..., xn).
However, a simple argument shows that asymmetric MPC can IT securely be reduced
to symmetric MPC (see e.g. [8], there called private output). Thus we may restrict our
attention to symmetric functions. In some cases this work still uses indexed outputs yi.
However, this is not an indication of asymmetric output, but denotes the output received



at the interface of party Pi . As is common for MPC, we assume that the function f is
given as a circuit over a finite field F. All computations are then performed over the
finite field F.

We model the computation of a function f with a specific set of security properties
by providing an ideal functionality for each such set.

Demanding privacy, correctness and agreement on abort only for the computation
of f is captured by the ideal functionality Iabort

f , which operates as follows: Iabort
f

accepts an input from each party, computes the output y according to f and sends y
to the adversary (simulator). If a party Pi provides no input, a default input is used,
e.g. xi = 0. Given these values, the adversary may decide whether the other parties
also receive the output (abort flag 0) or not (abort flag 1). Finally, Iabort

f sends either
the output y or the empty value ⊥ to the honest parties, depending on the flag received
from the adversary.3

The ideal functionality Ifair
f specifying privacy, correctness and fairness (which

implies agreement on abort) works like Iabort
f but takes an abort flag before making

output to the adversary. Then for abort flag 0 the functionality Iabort
f sends the result y

to all parties and for abort flag 1 it sends ⊥ to all parties.
Computing function f with full security, which implies all the security notions men-

tioned above, is specified by means of the ideal functionality Isec
f . The functionality

Isec
f operates like Ifair

f but takes no abort flag and instead directly delivers the output
y to all parties.

3 The Protocol Πρ

We present a protocol Πρ that, for any choice of robustness parameter ρ < n
2 , simul-

taneously provides IT security with robustness in the presence of up to t ≤ ρ actively
corrupted parties, IT security with fairness (no robustness) for t < n

2 and CO security
with agreement on abort (no fairness) for t < n− ρ. Formally stated:

Theorem 1 (UC Security of Πρ). For any ρ < n
2 , Πρ implements

1. the ideal model Isec
f (with robustness), with IT security, given that t ≤ ρ,

2. the ideal model Ifair
f (with fairness), with IT security, given that t < n

2 , and
3. the ideal model Iabort

f (with agreement on abort), with CO security, given that
t < n− ρ,

from a complete and synchronous network of secure channels, an authenticated BC
channel, and a CRS-setup, in the UC setting, where t is the number of (actively) cor-
rupted parties.

Our construction uses the idea of emulating a player sketched in [6]. We employ a
CO secure MPC protocol πco,ρ executed among n + 1 parties P1 ,...,Pn , and P0, which

3 We could relax the definition further by allowing the adversary to send one abort flag for each
party, dropping agreement on abort. However, all our protocols will achieve agreement on
abort.



is tweaked to provide additional IT security guarantees for the designated party P0.
Now, in contrast to the parties P1 ,...,Pn , we make P0 a virtual party, emulated by an IT
secure protocol πit run among the parties P1 ,...,Pn .

As a consequence, each party Pi runs two protocol machines πco,ρ
i and πit

i , par-
ticipating both in the CO protocol πco,ρ and in the IT protocol πit where πit emu-
lates the protocol machine πco,ρ

0 of the designated (n + 1)st party P0 of subproto-
col πco,ρ. Party Pi locally shares its input into xi = xco

i ⊕ xit
i submitting xit

i to πit
i

and xco
i to πco,ρ

i . The CO secure subprotocol πco,ρ then essentially computes the output
y = f ′((xit

1, ..., x
it
n), xco

1 , ..., xco
n ) := f(xco

1 ⊕ xit
1, ..., x

co
n ⊕ xit

n) = f(x1, ..., xn), where
(xit

1, ..., x
it
n) is the input of P0.

We now describe the protocol machine πi for party Pi in protocol Πρ in detail4

(also see Figures 1,2):

Initial Situation: Each party Pi i ∈ [n] holds an input xi.
Goal: Each party Pi receives the output y = f(x1, ..., xn) or the empty value ⊥.

1. Choose xit
i uniformly at random and compute xco

i := xi ⊕ xit
i (over F).

2. Using an IT hiding commitment scheme compute [ci, oi] = COMMIT(xit
i ).

3. Start protocol machine πit
i on input (xit

i , oi) emulating πco,ρ
0 IT securely as stated in

Lemma 2 below.
4. Start protocol machine πco,ρ

i for f according to Lemma 3 below on input (xco
i , ci).

5. Start a protocol machine πv
i implementing an n + 1 party BC (see Section 3.1).

6. Establish channels between (a) πv
i and the BC interface of πco,ρ

i , (b) πv
i and the BC

channel BC , (c) πv
i and πit

i , and (d) πv
i and the interface of πco,ρ

i for the private
channel with πco,ρ

0 .
7. If a callback to Pi occurs from πco,ρ

i , Pi provides input xit
i to πco,ρ

i .

By sharing the input between πco,ρ and πit we achieve IT security as long as the
correct functioning of the emulated party P0 (i.e. the IT protocol πit) is guaranteed, and
CO security beyond. The commiments and callbacks are necessary to ensure correctness
in case n

2 ≤ t < n− ρ parties are corrupted. Then πit provides no security guarantees,
so the emulated party P0 may misbehave arbitrarily and must hence be CO tied to the
correct inputs.

We now describe the components of the above protocol Πρ in detail, beginning with
the IT secure subprotocol πit emulating the designated party P0.

3.1 Emulating the Designated Party P0: The IT secure Protocol πit

For the emulation of the protocol machine πco,ρ
0 of the designated party P0 in subpro-

tocol πco,ρ we use an IT secure MPC subprotocol πit as guaranteed by the following
lemma taken from [19, 3]:

4 We describe the two subprotocols πco,ρ and πit as relying on (separate) BC channels. However,
we assume only a single BC channel for the entire protocol. This is no contradiction as the
reader may verify that the BC channel can easily be “multiplexed”.



Lemma 2 ([19, 3]) Given a (well-formed, see [3]) ideal functionality I there is a pro-
tocol πit that (robustly) implements the ideal model I with IT security, from a complete
and synchronous network of secure channels, and a BC channel, in the UC setting,
given that t < n

2 parties are corrupted.

After receiving input (xit
i , oi) from Pi (i ∈ [n]), protocol machine πco,ρ

0 expects to
interact with the πco,ρ

i (i ∈ [n]) via private channels and an n + 1 party BC channel
BC ′. However, only interfaces to the n parties Pi executing protocol πit are available.
We solve this dilema by defining an n party ideal functionality Isec

0 that specifies the
protocol πit and protocol machines5 πv

i (i ∈ [n]) that together, when applied to the
n party BC channel BC (available by assumption), securely implement the protocol
machine πco,ρ

0 and an n + 1 party BC channel BC ′.
Protocol machine πv

i connects to Isec
0 on the interface of Pi , to BC on the interface

of Pi and to πco,ρ
i on the interfaces to BCn+1 and to πco,ρ

0 . πv
i then forwards private

messages between Isec
0 and πco,ρ

i . BC messages from Isec
0 are marked as originating

from πco,ρ
0 and tranfered to BC . If in turn at least n

2 such marked messages mj from
parties Pj are received via BC and there is a majority ∃m : |{mj |mj = m}| > n

2 then
πv

i forwards m to the BC interface of πco,ρ
i . BC messages from πco,ρ

i are forwarded to
BC and copied to Isec

0 . BC messages from πco,ρ
j (i 6= j) forwarded to the BC interface

of πco,ρ
i and copied to Isec

0 .
The n party ideal functionality Isec

0 internally runs the protocol machine πco,ρ
0 on

the input it receives over the interfaces Pi , i ∈ [n]. Private communication intended
for a protocol machine πco,ρ

i is exchanged via the interface of party Pi . Messages to be
broadcasted by πco,ρ

0 are instead sent to all parties Pi . A BC message m from one of
the Pi (i ∈ [n]) is forwarded (by the functionality Isec

0 ) to the internally run πco,ρ
0 only

if Isec
0 receives the BC message m as input from more than n

2 parties Pi .
This construction exploits the fact that πv

i and πit
i are corrupted if and only if πco,ρ

i

is corrupted as all three protocols are run as subprotocols of πi by the same party Pi .
Therefore if πco,ρ

i is uncorrupted, then πco,ρ
i and πco,ρ

0 share a secure channel by virtue
of πv

i providing a secure connection. If on the other hand πco,ρ
i is corrupted, we need

not worry about the security of this channel. Furthermore, the construction implements
an n + 1 party BC channel BC ′. If at most t < n

2 parties are corrupted and subprotocol
πit is thus secure, the honest πv

i (more than n
2 ) are all forwarding broadcast messages

of protocol πco,ρ to and from Isec
0 which implies persistency. It now suffices to see that

persistency for senders other than πco,ρ
0 and consistency is maintained even for t ≥ n

2 ,
as for t ≥ n

2 protocol πit is insecure and we regard party P0 as corrupted. This holds
due to the fact that BC messages from senders other than πco,ρ

0 are plainly broadcasted
via BC and because rebroadcasts and majority votes ensure consistency regardless of
the behavior of protocol πit.

3.2 Computing the output: The CO secure Protocol πco,ρ

To obtain the final output y of the protocol Πρ we execute a CO secure MPC proto-
col πco,ρ among the n parties Pi (i ∈ [n]) and the emulated party P0. A setup is neces-

5 The v in πv
i stands for majority vote, as this is essentially the task performed by these protocol

machines.



sary for UC-secure MPC without honest majority, so we use the CRS-model where all
parties are given a common, public reference string that is ideally chosen from a given
distribution, thus circumventing the impossibility results for the plain model [4, 5]. As
noted before we require a number of security properties, namely the protocol πco,ρ must
be CO secure with abort in the presence of t < n+1−ρ actively corrupted parties6, IT
protect the designated party P0 and ensure fairness for t < n

2 and additionally guarantee
robustness for t ≤ ρ.

We define these security requirements for subprotocol πco,ρ formally by stating the
n + 1 party functionalities that πco,ρ has to implement:

The ideal model Iabort,cb
f models security with agreement on abort and operates

as follows: Let COMMIT(·) and OPEN(·) denote the respective procedures for an IT
hiding commitment scheme. Functionality Iabort,cb

f takes inputs (xco
i , ci) from parties

Pi (i 6= 0) and ((xit
1, o1), . . . , (xit

n, on)) from party P0. If a party provides no input, a
default input is used, e.g. (0, 0). Iabort,cb

f now checks if OPEN(ci, oi) = xit
i . For every

i where this check fails, Iabort,cb
f makes a callback to party Pi asking it to send a new

xit
i (use xit

i = 0 in case the party does not reply). The functionality then computes
xi := xit

i ⊕ xco
i and y := f(x1, ..., xn). The result y is output to the adversary, which

may now decide to have Iabort,cb
f deliver the output y to the honest parties (abort flag

0) or abort the protocol and have ⊥ delivered to the honest parties (abort flag 1).
The ideal functionality Ides,fair ,cb

f models fairness with a designated party P0. As
such Ides,fair ,cb

f only specifies security requirements if P0 is honest. If P0 is corrupted
control is turned over to the adversary. In case P0 is honest the functionality Ides,fair ,cb

f

behaves identically to Iabort,cb
f with two notable exceptions: Inputs and answers to

callbacks from all parties Pi (i 6= 0) are directly handed to the simulator (only the
privacy of the designated party P0 is protected), and the simulator must give the abort
flag before it receives the output y obtaining y only if it gives flag 0 and thus the honest
parties obtain y as well (fairness).

The ideal functionality Ides,rob,cb
f models robustness with a designated party P0. It

only differs from Ides,fair ,cb
f in that no abort flag is taken, rather the output y is directly

delivered to all parties.

Lemma 3 For any ρ < n
2 there is a protocol πco,ρ that implements

1. the ideal model Iabort,cb
f (with agreement on abort) with CO security for6 t <

n + 1− ρ,
2. the ideal model Ides,fair ,cb

f (with designated party P0 and fairness) with IT security
for7 t < n

2 ,

3. the ideal model Ides,rob,cb
f (with designated party P0 and robustness) with IT se-

curity for t ≤ ρ

6 In the context of the CO protocol πco,ρ, we consider a set of corrupted parties A ⊆ [n] ∪ {0}
that may hence encompass up to n + 1 parties.

7 We actually achieve this for t < n + 1− ρ, but the result for t < n
2

suffices subsequently.



from a complete and synchronous network of secure channels, and an authenticated
BC channel, and a CRS-setup, in the UC setting, where t is the number of (actively)
corrupted parties.

We show that the MPC protocol of [5] can be modified to satisfy Lemma 3 above.
Like [15] the MPC protocol in [5] utilizes oblivious transfer (OT) for multiplications
and uses the compiler of [15] which is based on commitments and zero-knowledge
(ZK) proofs to achieve security against active adversaries. We demonstrate how these
components can be modified to provide additional guarantees without compromising
their original security properties and then argue why the resulting protocol satisfies
Lemma 3. Due to space limitations we refrain from providing a formal proof (for more
details, see full version).

Our modifications to [5] encompass the sharing used, the ouput reconstruction, and
the CO primitives underlying [5]. We replace the XOR-sharing used for inputs and in-
termediate results in [5] by a (2n − ρ)-out-of-(2n) Shamir-sharing where P0 receives
n shares and each remaining party Pi obtains a single share. Thus we enable any set
of n − ρ + 1 parties including P0 to reconstruct the input of up to ρ corrupted par-
ties yielding robustness while maintaining IT privacy for the designated party P0. We
modify the output reconstruction such that designated party P0 opens its shares only
after at least n − ρ parties have correctly opened their shares. In case the designated
party P0 is honest this achieves fairness. Finally, we use CO primitives (commitments,
(perfectly) zero-knowledge arguments of knowledge (ZK-AoK), CO zero-knowledge
proofs of knowledge (cZK-PoK), OT), which IT protect the designated party P0. Before
we provide a proofsketch for Lemma 3, we discuss our modifications to the computa-
tional primitives underlying [5] in more detail:

Oblivious Transfer. As shown in [5, Section 4.1.1] the OT protocol of [15, 14, pp. 640–
643] is UC-secure. Furthermore it is easy to see that it IT protects the receiver. The
[5] protocol makes no restriction as to who is the sender and who the receiver in any
application of OT. So we may use said OT protocol and still IT protect P0 by making
P0 the receiver in every invocation of OT involving P0. Alternatively, a UC-secure OT
protocol that IT protects the sender can be obtained by “turning around” the above OT
as shown in [20, Theorem 4.1]. Thus we can IT protect P0 in any OT invocation.

Commitment. We use the UC-secure IT hiding and IT binding commitment schemes
in the CRS-model described in [10] and employ the IT binding variation for commit-
ments issued by the parties Pi (i ∈ [n]) and the IT hiding variation for commitments
issued by the designated party P0. One-to-many commitment is obtained from the two
party commitment of [10] by simply broadcasting commit message and opening as de-
scribed in [5]. Thus we obtain a UC-secure realization of the one-to-many commiment
functionality ICom,1 :M that additionally IT protects the designated party P0.

ZK proofs. [5] shows how to UC-securely implement the ZK functionality IZK ,1 :M

from the commitment functionality ICom,1 :M without use of further CO assumptions.
The ZK protocol of [5] is based on the Hamiltonian Cycles ZK proof. When using
an IT binding commitment scheme, we obtain cZK-PoKs. On the other hand, when



using an IT hiding commitment scheme, we obtain ZK-AoKs. Thus by instantiating the
one-to-many commitment functionality ICom,1 :M as indicated above, we may obtain
a UC-secure realization of ICom,1 :M which additionally IT protects the designated
party P0.

Commit-and-Prove. Instead of directly working with commitment and ZK functional-
ities, [5] introduces a new primitive called one-to-many commit-and-prove ICP,1 :M .
[5] exhibits an implementation of ICP,1 :M UC-secure against static adversaries that
relies only on IZK ,1 :M and a standard commitment scheme. Implementing IZK ,1 :M as
described above we can then use IT hiding or IT binding commitments in the implemen-
tation of ICP,1 :M to IT protect the designated party P0. Further CO assumptions are
not required and we can thus implement the commit-and-prove functionality ICP,1 :M

UC-securely while IT protecting the designated party P0.

Proofsketch for Lemma 3 We will now show that the modified version of [5] described
above fulfills the requirements stated in Lemma 3.

CO UC security with abort for t < n + 1 − ρ corrupted parties. This first point of
Lemma 3 is already implied by [5]. Our modifications to CO primitives and opening
procedure are within the limits of the original protocol and only apply restrictions as to
what kinds of primitives are used in specific situations. The modification to the sharing
can be treated as in [14]. As shares observed by corrupted parties are still uniformly
random for t < n + 1 − ρ corrupted parties the modifications to the simulator remain
trivial. As such the proof in [5] remains applicable with minimal modifications and we
obtain a CO UC-secure implementation of Iabort,cb

f .
Note that agreement on abort is achieved: The only way to make a party abort is

to send an incorrect message (one for which the zero-knowledge proof does not hold).
However, since the message together with the proof is sent over a BC channel, this will
be noted by all honest parties and they will all abort.

IT UC security with fairness and designated party P0 for t < n
2 corrupted parties. We

sketch a simulator to demonstrate that [5], tweaked as described above, UC-securely
implements the ideal model Ides,fair ,cb

f (with fairness, designated party P0 and for at
most t < n

2 corrupted parties) with IT security as described in point 2 of Lemma 3.
By definition of Ides,fair ,cb

f , we only have to consider the case where the desig-
nated party P0 is honest, as otherwise no demands are made. The simulator will re-
ceive the inputs of all honest parties except P0 from the ideal functionality Ides,fair ,cb

f .
Furthermore corrupted parties have to commit to their input using binding UC com-
mitments8, so by extractability the simulator can extract their inputs and forward them
to Ides,fair ,cb

f . The simulator then simulates the protocol machines of all honest par-
ties, with an arbitrary input x′0 for the simulated party P0 and the inputs of the other
honest parties as obtained from Ides,fair ,cb

f . If a callback to a corrupted party is re-
ceived from Ides,fair ,cb

f , the simulator produces the corresponding protocol callback in

8 Providing extractability and equivocability by means of the CRS.



the simulation (using the equivocability of commitments if needed). Possible answers
to callbacks are handled in the same way as inputs. The simulation then proceeds up
to the point where the result is opened. The designated party P0 which is honest by
assumption and thus simulated internally by the simulator, is supposed to broadcast its
opening information last. If at least t − ρ corrupted parties broadcast their opening in-
formation correctly, then the simulator makes use of the equivocability of commitments
to have the internally simulated P0 open the final result to y and sets the abort flag to 0,
otherwise it sets the abort flag to 1.

The behavior of the simulator is IT indistinguishable from the real protocol. As in
the real protocol, the designated party P0 in the simulation only converses with the
other parties by means of hiding commitments, ZK proofs and OT invocations IT pro-
tecting party P0. Furthermore the sharing scheme is such that without cooperation of
the designated party P0, which is honest by assumption, no information can be recov-
ered. As such no information whatsoever is disseminated by the designated party P0 to
the corrupted parties until reconstruction takes place in the callback and opening phases
respectively.

IT UC security with robustness and designated party P0 for t ≤ ρ corrupted parties.
We use the exact same simulator as above and note that due to t− ρ ≤ 0 the simulator
will always set the abort flag to 0.

4 Proof of Security of Πρ

We have seen how the subprotocols πit and πco,ρ can be realized in the UC setting with
the required security properties, and how the complete protocol Πρ is constructed based
on these subprotocols.

We now prove Theorem 1, namely that given subprotocols πco,ρ and πit, secure
according to Lemma 3 and Lemma 2 respectively, the protocol Πρ securely computes
the function f , with robust IT security for t ≤ ρ, with fair IT security for t < n

2 , and
with CO security and agreement on abort for t < n−ρ. In the following we denote by R
the underlying resources, i.e. a complete and synchronous network of secure channels,
an authenticated BC channel, and a CRS-setup. For simplicity, we will generally omit
the CRS-setup from any drawings.

4.1 Proof of CO Security with Agreement on Abort for t < n − ρ

We begin by proving the first point of Theorem 1, claiming that the protocol Πρ imple-
ments the ideal model Iabort

f (with agreement on abort) with CO security, for t < n−ρ
corrupted parties. The proof is illustrated in Figure 1.

Making use of the UC composition theorems we first replace the IT protocol πit

with an ideal system INoSec
0 which completely turns control over to the adversary (re-

spectively the corresponding simulator σN ). This makes sense due to the fact that we
may have t ≥ n

2 and thus protocol πit may be completely insecure. As INoSec
0 only

forwards messages to the adversary, we may replace it with corresponding channels.
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Fig. 1. Proof of security of Πρ, CO case.

In a second step, we replace the n party BC channel BC and the protocol ma-
chines πv

i with an n + 1 party BC channel BC ′. The corresponding simulator σBC

internally simulates copies B̃C of BC and π̃v
i of πv

i (i ∈ H). The π̃v
i are connected

to B̃C as in the protocol. The remaining interfaces of the π̃v
i (in particular all private

channel interfaces) and of B̃C are open to the distinguisher (σBC forwards all mes-
sages), with exception of the interfaces of the π̃v

i usually connected to the BC interfaces
of the πco,ρ

i . Now when a BC message is received from an honest πco,ρ
i via BC ′ the

simulator σBC inputs it into π̃v
i (which in turn forwards it to B̃C ). On the other hand,



when the π̃v
i output m as BC message from a corrupted party Pj , this means Pj has

sent a BC message and simulator σBC forwards m to BC ′ via Pj s interface. It is fairly
straightforward to see that real system and simulation are perfectly indistinguishable.

The replacements in the previous sections result in a system that applies the pro-
tocol πco,ρ according to its definition, i.e. there is an n + 1 party BC channel BC ′, a
CRS-setup, and correct protocol machines for all honest parties (not including the emu-
lated party P0). From the security of πco,ρ as stated in Lemma 3 we have a simulator σC

for πco,ρ and we may securely replace the protocol πco,ρ with the functionality Iabort,cb
f .

As a last step we have to show that the protocol machines πi implement Iabort
f from

functionality Iabort,cb
f . Once again we do so by providing an appropriate simulator σf .

The simulator σf is connected to the interfaces of the corrupted parties to the ideal
functionality Iabort

f . Furthermore, σf has to simulate the communication of πi (i ∈ H)
with the party P0 (or rather the protocol machine πit

i emulating it), which we regard as
corrupted in this context. So, the simulator σf has two sets of interfaces to the environ-
ment, one (C2) corresponding to the corrupted protocol machines πco,ρ

i of the protocol
πco,ρ and one (C1) corresponding to the interfaces of the protocol machines πi of the
honest parties to the designated party P0 (Figure 1). The simulator has to produce the
correct distributions on these two interfaces and the interface to the ideal functional-
ity Iabort

f , in order to render σf (Iabort
f ) indistinguishable from πH(Iabort,cb

f ).
First, over interface C1, the distinguisher D expects the input of the honest parties

intended for the emulated party P0, which is of the form {xit
i , oi}i∈H . This information

is not available and has to be simulated by σf correctly. Over interface C2, the σf

receives the input of the corrupted parties intended for Iabort,cb
f , which consists of two

parts: {xit
i , oi}i∈[n] representing the input of party P0 to protocol πco,ρ, and {xco

i , ci}i∈A

representing the input of the corrupted parties Pi , i ∈ A to protocol πco,ρ.
The simulator σf performs the following steps:

1. Choose x̃it
i (i ∈ H) for the honest parties at random and compute IT hiding com-

mitments [c̃i, õi] = COMMIT(x̃it
i ).

2. Give {x̃it
i , õi}i∈H as output over C1, intended for P0.

3. Receive two kinds of input over C2, intended for Iabort,cb
f :

– {xit
i , oi}i∈[n] representing the input of party P0 to protocol πco,ρ.

– {xco
i , ci}i∈A representing the input of the corrupted Pi , i ∈ A to protocol πco,ρ.

4. Perform the CHECK: ∀i ∈ A : OPEN(ci, oi) ≡ xit
i (correct opening information)

– [holds] For every triple, where the check holds, use the existing values for xit
i .

– [fails] For every triple, where the check fails, perform a callback and use the
new values for xit

i . Use xit
i = 0 in case the callback is not answered.

5. Compute xi = xco
i ⊕ xit

i , i ∈ A and input the xi to Iabort
f

6. Forward the output y of Iabort
f to the distinguisher via C2.

7. Forward the abort flag from C2 to Iabort
f

We now argue that the simulator σf indeed renders σf (Iabort
f ) indistinguishable

from πH(Iabort,cb
f ).



Protocol machine πi in πH(Iabort,cb
f ) first splits its input into xi = xco

i ⊕ xit
i

(where xit
i is uniformly random) and computes the IT hiding commitment [ci, oi] =

COMMIT(xit
i ). Then, πi provides (xit

i , oi) as input to protocol πit, which may be inse-
cure and controlled by the adversary. As such we think of the input of the honest parties
to πit as being directly forwarded to the adversary (in other words, the environment ex-
pects these values over C1). σf simulates this indistinguishably by providing random
values {(x̃it

i , õi)}i∈H with appropriate opening information to the environment over C1.
After that, protocol machine πi provides xco

i together with the commitment ci as
input to the ideal functionality Iabort,cb

f , while the the protocol πit is to provide the
input {xit

i , oi}i∈[n]. Iabort,cb
f checks if OPEN(ci, oi) ≡ xit

i and issues a callback for
any i where the check fails. σf simulates this behavior identically for all corrupted
parties. The ideal functionality Iabort,cb

f then computes f on the xi = xco
i ⊕ xit

i , which
simulator σf simulates by inputting the xi to Iabort

f . This simulation is faithful, as long
as the adversary does not manage to open a commitment ci to a value other than xit

i

(which being CO bounded it cannot).9

Finally Iabort,cb
f delivers the output y to the adversary and awaits an abort flag

deciding output delivery to honest parties. Outputs are simply forwarded by πi. Func-
tionality Iabort

f behaves identically, and as such the simulator σf need only forward the
messages in question.

Hence the protocol Πρ constitutes a CO secure implementation of the functional-
ity Iabort

f as claimed in the first point of Theorem 1.

4.2 Proof of IT Security with Fairness for t < n
2

We continue by proving the second point of Theorem 1, claiming that the protocol Πρ

implements the ideal model Ifair
f (with fairness) with IT security, for t < n

2 corrupted
parties. The proof is illustrated in Figure 2.

Making use of the UC composition theorems we first replace the IT protocol πit with
the ideal system Isec

0 which it implements IT securely with simulator σN by definition
and according to Lemma 2.

We now have an ideal functionality Isec
0 , an n party BC channel BC , and protocol

machines πv
i . As it is our eventual goal to replace the subprotocol πco,ρ, we first have

to replace these components with an n + 1 party BC channel BC ′ and the protocol
machine πco,ρ

0 .
The corresponding simulator σBC internally simulates copies B̃C of BC and π̃v

i

of πv
i (i ∈ H). The π̃v

i are connected to B̃C as in the protocol. The interfaces of B̃C
to corrupted parties are open to the distinguisher (σBC forwards all messages). Now
when a BC message m is received from πco,ρ

0 via BC ′ the simulator σBC simulates the
actions of Isec

0 by outputting m to the corrupted parties and inputting it to the π̃v
i . When

9 The commitments to the xit
i and the callbacks guarantee that the computation in protocol πco,ρ

is carried out with correct values xit
i . That is, the input xco

i provided by the (honest) parties and
the inputs xit

i provided by party P0 have the relation xco
i ⊕xit

i = xi. Otherwise, if the adversary
controls the protocol πit (as is the case here), he could manipulate the values xit

i leading to a
computation with wrong inputs xi and hence to an incorrect result.
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Fig. 2. Proof of security of Πρ, IT case.

a BC message is received from an honest πco,ρ
i via BC ′ the simulator σBC inputs it into

π̃v
i (which in turn forwards it to B̃C ). On the other hand, when the π̃v

i output m as BC
message from a corrupted party Pj , this means Pj has sent a BC message and σBC

forwards m to Pj s interface to BC ′. It is fairly straightforward to see that real system
and simulation are perfectly indistinguishable.

After this replacement, we have an instance of protocol πco,ρ, including a cor-
rect protocol machine πco,ρ

0 for the designated party P0 and utilizing an n + 1 party
BC channel BC ′ and a CRS-setup. We now replace the protocol πco,ρ with the ideal



model Ides,fair ,cb
f which it IT securely implements as stated in point 2 of Lemma 3.

The corresponding simulator we call σC .
It now remains to show that the protocol machines πi IT securely implement Ifair

f

from Ides,fair ,cb
f . Once again we do so by providing an appropriate simulator σf that

renders σf (Ifair
f ) indistinguishable from πH(Ides,fair ,cb

f ).
As each πi provides two inputs (xit

i , oi) and (xco
i , ci) to Ides,fair ,cb

f , we can think of
the simulator σf as simulating two sets of interfaces of Ides,fair ,cb

f to the environment.
By C1 we denote the t interfaces associated with the designated party P0 which carry
the inputs {xit

i , oi}i∈A of the corrupted parties. By C2 we denote the t interfaces corre-
sponding to the {xco

i , ci}i∈A inputs of corrupted parties, as well as leakage and possible
callbacks and replies.

The simulator σf operates as follows:

1. Choose x̃co
i and x̃it

i (i ∈ H) for the honest parties at random and compute IT hiding
commitments [c̃i, õi] = COMMIT(x̃it

i ).
2. Output {x̃co

i , c̃i}i∈H over C2 (information leakage).
3. Receive inputs {xit

i , oi}i∈A over C1 and {xco
i , ci}i∈A over C2

4. Perform the CHECK: ∀i ∈ A : OPEN(ci, oi) ≡ xit
i (correct opening information)

– [holds] For every triple, where the check holds, use the existing values for xit
i .

– [fails] For every triple, where the check fails, perform a callback and use the
new values for xit

i . Use xit
i = 0 in case the callback is not answered.

5. Compute xi = xco
i ⊕ xit

i , i ∈ A and input the xi to Ifair
f

6. Forward the abort flag from C2 to Ifair
f

7. Forward the output y of Ifair
f to C2.

It only remains show that the simulator σf renders the ideal setting σf (Ifair
f ) indis-

tinguishable from πH(Ides,fair ,cb
f ):

In addition to (xco
i , ci), protocol machine πi inputs (xit

i , oi). Ides,fair ,cb
f checks if

OPEN(ci, oi) ≡ xit
i and issues a callback for any i where the check fails. Simulator σf

receives these values from the corrupted parties and simulates this behavior identically.
The ideal functionality Ides,fair ,cb

f then computes f on the xi = xco
i ⊕ xit

i , which σf

simulates by inputting the xi to Ifair
f .

Finally Ides,fair ,cb
f awaits an abort flag and delivers output if the flag is 0. Outputs

are simply forwarded by πi. Iabort
f behaves identically, and as such the simulator σf

need only forward the messages in question.
Hence the protocol Πρ constitutes an IT secure implementation of the functional-

ity Ifair
f as claimed in the second point in Theorem 1.

4.3 Proof of IT Security with Robustness for t ≤ ρ

The proof in this case is essentially indentical to the proof for the case with fairness
above. One simply replaces Ifair

f with Isec
f and Ides,fair ,cb

f with Ides,rob,cb
f , removes

the treatment of the abort flag from σf and relies on point 3 instead of point 2 of
Lemma 3 for introducing Ides,rob,cb

f .



5 Protocols Without Broadcast Channel

We now describe what can be achieved without assuming a BC channel. As our proto-
col relies on a BC channel, we have to implement one from pairwise secure channels.
We make use of the IT secure BC with extended consistency and validity detection
ExtConsBC of [11]. For two thresholds tv and tc where tv ≤ tc, and either tv = 0
or tv + 2tc < n ExtConsBC delivers a robust BC for t ≤ tv and a BC with fairness
(but without robustness) for tv < t ≤ tc. More to the point ExtConsBC performs a
detectable precomputation which either establishes a setup for a robust BC (for t ≤ tv
always) or aborts with agreement on abort.

For robustness bound ρ > 0, setting tv = ρ < n
3 and tc = dn−tv

2 e − 1 we achieve
full IT security (with robustness) for t ≤ ρ and IT security with fairness (no robustness)
for t < n−ρ

2 . Unfortunately these results do not (and connot) go beyond those of [11]
which they have proven optimal for this case.

For robustness bound ρ = 0 however, setting tv = ρ = 0 and tc = n we achieve
IT security with fairness (no robustness) for t < n

2 and CO security with agreement on
abort for t < n. This result is new and actually matches the result for ρ = 0 according
to Theorem 1 in the case where a BC channel is provided.

6 Conclusions

We described a protocol Πρ that provides a flexible and optimal trade-off between full
IT security (with robustness), IT fairness (no robustness), and CO security with abort
(no fairness). More precisely, for an abitrarily chosen robustness parameter ρ < n

2 ,
the protocol Πρ is fully IT secure for t ≤ ρ, IT fair for t < n

2 , and CO secure with
agreement on abort for t < n − ρ corrupted parties. These results are optimal with
respect to the bounds stated in [9, 17, 16].

We proved the UC security of Πρ in the synchronous secure channels model with
BC and a CRS. In the full version of this paper we also show a simple variation of Πρ

that relies on [15] instead of [5] and is stand-alone secure in the synchronous secure
channels model with BC without a CRS.

Furthermore we discuss the synchronous secure channels model without BC. Here
we find that for robustness parameter ρ > 0 the results of [11] are already optimal, but
for ρ = 0 our protocol achieves the same results as in the case where BC is provided,
indicating that a BC channel is only helpful if one aims for robustness.
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