
Optimally Hybrid-Secure MPC

Christoph Lucas, Dominik Raub, and Ueli Maurer

Department of Computer Science, ETH Zurich, Switzerland,
{clucas, raubd, maurer}@inf.ethz.ch

Abstract. Most protocols for multi-party computation (MPC) are secure either against information-theoretic (IT) or against
computationally bounded adversaries. Hybrid-secure MPC protocols guarantee different levels of security, depending on the
power of the adversary. We present a hybrid-secure MPC protocol that provides an optimal trade-off between IT robustness
and computational privacy: For any robustness parameter ρ < n

2
we obtain an MPC protocol that is simultaneously IT

secure with robustness for up to t ≤ ρ actively corrupted parties, IT secure with fairness (no robustness) for up to t < n
2

and computationally secure with agreement on abort (no fairness) for up to t < n − ρ. Our construction is secure in the
universal composability (UC) framework (with broadcast and CRS), and achieves the bounds of Ishai et al. [CRYPTO’06],
Katz [STOC’07], and Cleve [STOC’86] on trade-offs between robustness and privacy, and on fairness.
For example, in the special case ρ = 0 our protocol simultaneously achieves non-robust MPC for up to t < n corrupted
parties in the computational setting (like Goldreich et al. [STOC’87]) while providing security with fairness in the IT setting
for up to t < n

2
corrupted parties (like Rabin and Ben-Or [STOC’89] though without robustness).

A crucial technique in our construction is player emulation, first suggested by Chaum [CRYPTO’89]. In this work we
provide a formal and detailed treatment of emulated players in the UC setting.

Keywords: multi-party computation, information-theoretic security, computational security, hybrid security, robustness,
fairness, agreement on abort, universal composability, player emulation.

1

1 Introduction

1.1 Secure Multi-Party Computation

In [Yao82], Yao introduced multi-party computation (MPC): Given an arbitrary but fixed function f and a set of
n mutually distrusting parties, an MPC protocol enables these parties to compute the function f on their inputs
securely, even if some of the parties are corrupted by an adversary. This first notion (often called Secure Function
Evaluation) has meanwhile been extended to reactive and randomized functionalities.

Security requirements for MPC in the literature (e.g. [Gol01]) include privacy, correctness, robustness, fairness,
and agreement on abort. Privacy is achieved if the adversary cannot learn more about the honest players’ inputs
than what is implied by the inputs and outputs of the corrupted players. Correctness means that the protocol output
equals the intended function value f(x1, . . . , xn) of the inputs or there is no output. Privacy and correctness are the
two basic requirements. Possible additional requirements are notions of output guarantees, which we dicuss in order
of decreasing strength: A protocol achieves robustness if an adversary cannot abort the computation and prevent
the honest players from obtaining output. Fairness is achieved if the honest parties obtain as much information
about the output as the adversary. Agreement on abort means that all honest parties detect if one of them aborts
(and then generally make no output).

A first general solution to the MPC problem was given by [GMW87], based on computational (CO) intractabil-
ity assumptions and a broadcast (BC) channel. They achieve security with robustness against t < n

2 actively cor-
rupted parties or with agreement on abort against t < n actively corrupted parties as described in [Gol04]. On
the other hand [BGW88], and independently [CCD88], presented protocols which are information-theoretically
(IT) secure and require no BC channel. However, they prove that security can only be achieved as long as t < n

3
parties are corrupted. When no robustness is required (detectable MPC) [FHHW03] or if a BC channel is available
[RB89], this bound can be improved to t < n

2 .
MPC is generally treated in a setting where parties are connected by a complete and synchronous network of

secure channels. Additionally an authenticated synchronous BC channel or a public key infrastructure (PKI) may
be available. Universally composable (UC) MPC protocols usually also require a common reference string (CRS)
[Can01,CF01]. Unless otherwise stated we assume a complete and synchronous network of secure channels, a
synchronous and authenticated broadcast channel, and a CRS.

1.2 Hybrid Security

Most MPC protocols are designed to be secure either against IT or against CO adversaries. IT MPC protocols
have the disadvantage that only a corrupted minority can be tolerated without compromising security. On the other
hand, CO protocols can tolerate any number of corrupted parties if robustness and fairness are not required, but
they are based on unproven intractability assumptions. Invalidation of the underlying assumptions generally leads
to a complete loss of security, even if only a single party is corrupted.

MPC protocols with hybrid security provide different levels of security, depending on the number of corrupted
parties. Thus they allow for graceful degradation of security. Specifically, we discuss a protocol offering IT security
in case of few corruptions, but still providing CO security in case of many corruptions.

1.3 Contributions and Related Work

We provide UC secure MPC protocols that combine IT and CO security and allow for flexible trade-offs between
security with robustness, fairness, or agreement on abort. For any robustness parameter ρ < n

2 we describe an
MPC protocol πρ that, given a CRS, simultaneously provides IT security with robustness against static adversaries
actively corrupting t ≤ ρ parties, IT security with fairness (no robustness) for t < n

2 , and CO security with
agreement on abort (no fairness) for t < n − ρ. Furthermore, we provide proofs in the UC model as well as the
stand-alone model without CRS.

In [Cha89] Chaum sketches a construction aimed at simultaneously guaranteeing CO privacy for any number
of actively corrupted parties and IT privacy, given that only a minority of the parties is corrupted. In contrast to our

2

work, [Cha89] does not discuss fairness or robustness. Furthermore, several critical details are neglected. In fact,
correctness is not guaranteed in [Cha89]. A central element of both Chaum’s approach and ours is the emulation
of a player in one protocol using another protocol. In [HM00], this technique was discussed in the stand-alone
setting for perfectly secure MPC and applied to general adversary structures. We contribute a formal treatment of
this technique in the UC setting.

Fitzi et al. [FHW04] also combine IT and CO security: Up to a first threshold tp, the security is IT. Between tp
and a second threshold tσ IT security is guaranteed conditional on the consistency of the underlying PKI. Finally,
between tσ and T the protocol is as secure as the signature scheme in use. Fitzi et al. show that their notion of
hybrid MPC is achievable for (2T + tp < n) ∧ (T + 2tσ < n), which they prove to be tight.

Another work by Fitzi et al. [FHHW03] improves upon [BGW88,CCD88] in the IT setting when no BC channel
is available by allowing for two thresholds tv and tc where tv = 0 or tv + 2tc < n. For t ≤ tv corrupted parties,
fully secure MPC is achieved while for tv < t ≤ tc corrupted parties non-robust (but fair) MPC is accomplished.

Both [FHW04] and [FHHW03] largely focus on a setting without BC channel. When a BC channel is provided
our results improve substantially upon those of [FHW04,FHHW03]. As [FHHW03] focuses exclusively on IT MPC
and [FHW04] only treats robust MPC, both [FHW04,FHHW03] do not reach beyond t < n

2 corrupted parties, nor
are they easily extended, whereas we can guarantee CO security with agreement on abort for t < n − ρ. In the
setting without BC channel and for ρ > 0 our results match those of [FHHW03] (which they prove optimal for this
case). However, for the special case that ρ = 0 (i.e., no robustness is required) our construction achieves IT fairness
for t < n

2 , and CO security with agreement on abort for t < n corrupted parties, which goes beyond [FHHW03].
In [IKLP06] and [Kat07] trade-offs between robust and non-robust MPC are discussed, but only in the CO set-

ting. They show that a protocol which guarantees robustness for up to ρ corrupted players can be secure with abort
against at most n − ρ corrupted players, and give CO secure protocols that match these bounds. Our protocol πρ

is optimal under the bounds of [IKLP06,Kat07] but beyond that also provides IT security for t < n
2 . Furthermore,

we match the bound t < n
2 on fairness for general MPC put forth in [Cle86], and the bound t < n

2 on IT security
in the presence of active adversaries (e.g. [Kil00]).

In conclusion we obtain a flexible and optimal trade-off between IT robustness, IT fairness and CO security
with agreement on abort, and give proofs of these properties in the UC setting. On the technical side, we also
contribute a treatment of player emulation in the UC setting.

2 Security Definitions and Notations

We follow the Universal Composability (UC) paradigm [PW00,Can01,BPW04]1, which defines a simulation-based
security model. The security of a protocol (the real world) is defined with respect to an ideal world, where the
computation is performed by a Trusted Third Party or Ideal Functionality F. Informally, a protocol π achieves
security if whatever an adversary can achieve in the real world could also be achieved in the ideal world.

More precisely, let P = {P1, . . . ,Pn} be the set of parties, and define [n] := {1, . . . , n} Then, in the real
world, there is a given set of resources R (e.g., authentic or secure channels, BC channels, a PKI) and for each
honest party Pi a protocol machine πi is connected to the resources R. Let H ⊆ P denote the set of such honest
parties. Corrupted parties Pi access the resources directly. Let A = P \ H denote the set of corrupted parties. The
ideal world consists of the ideal functionality F and an ideal adversary (or simulator) S connected to F.

A protocol π achieves security if, for every possible set of corrupted parties A, there is a simulator S such
that no environment or distinguisher D can tell the real world and the ideal world apart.2 For this purpose, the
distinguisher directly interacts with either one of the two systems, and in the end outputs a decision bit.

In contrast to [Can01] we use a synchronous communication model with static corruption. We work in the
crs-model to avoid the impossibility results of [Can01,CF01], where a common reference string crs drawn from
a prescribed distribution is made available to all parties. So, we will generally assume as resources R a common

1 We follow the UC model of [Can01] in spirit, but do not adhere to the notation of [Can01].
2 In this model, the adversary is thought of as being part of the distinguisher. Canetti [Can01] shows that this is equivalent since the

security definition quantifies over all distinguishers.

3

reference string crs and a complete network netn of synchronous secure channels including a synchronous authen-
ticated BC channel.3 We also present results without a crs for the stand-alone setting. In the UC setting though, a
correctly chosen crs is a prerequisite to the security of our protocols.4

In this model, a strong composition theorem can be proven [PW00,Can01,BPW04]. In other words, UC security
states that wherever a protocol π is used, we can indistinguishably replace this protocol by the corresponding
ideal functionality F together with an appropriate simulator. This follows from the free interaction between the
distinguisher and the system during the execution, which implicitly models that outputs of the system can be used
in arbitrary other protocols, even before the execution ends.5

Definition 1 (Universally Composable (UC) Security). A protocol π UC securely implements an ideal function-
ality F if ∀A, ∃SA, ∀D : |Pr[D(SA(F)) = 1] − Pr[D(πH(R)) = 1]| ≤ ε(κ). Here ε(κ) denotes a negligible
function in the security parameter κ, F denotes the ideal functionality to be implemented, πH denotes the protocol
machines of the honest parties in H, and R denotes the resources available to the protocol machines. If we admit
computationally unbounded distinguishers we obtain information-theoretic (IT) security, if we restrict ourselves to
efficient distinguishers and simulators we arrive at computational (CO) security.

We generally only consider efficient simulators, since otherwise, IT security does not imply CO security. We
discuss hybrid-secure protocols that provide different security properties depending on the number of corrupted
parties and on the computational setting. As such we will use corruption and computational model aware func-
tionalities that exhibit different behavior depending on the number t of corrupted parties and on the computational
setting (CO or IT). We will say that a protocol π UC securely implements an ideal functionality F if π securely
implements F in both the CO and the IT setting.

We will, in the following, be interested in securely implementing an arbitrary n party functionality F. The only
restrictions on functionality F are that it provides an I/O-interface to each of the n parties and that it notifies the
adversary of the length of any input or output, and the identity of the sending or receiving party Pi.

For simplicity, we assume that functionality F is symmetric, i.e., when functionality F makes output, it pro-
vides the same output y to all participants. This is wlog, since, as shown e.g. in [CDG88], securely implementing
an asymmetric functionality, providing a separate output for each party, can IT securely be reduced to securely
implementing a symmetric functionality F′:

In addition to the usual inputs of functionality F the functionality F′ requests `i random bits ri from each
party Pi (where `i is the length of the output yi). Instead of y = (y1, . . . , yn), F′ then yields y′ = (y1⊕r1, . . . , yn⊕
rn) and provides the same output y′ to all parties.

Each party can recover its own output as yi = y′i ⊕ ri. It follows from the security of one-time-pad (OTP)
encryption that no party is able to obtain any information about the other parties’ output, even with unbounded
computational resources, given that the input remains private. This idea was presented in [GMW87] for com-
putational security with asymmetric encryption. The generalization to the IT case with an OTP encryption was
discussed e.g. briefly in [CDG88] (there called private output).

Thus, we may restrict our attention to symmetric n party functionalities F.
We now model implementing a functionality F with subsets of the security properties described in Sec. 1.1,

generally at least encompassing privacy and correctness. We describe the following four specific security notions:
Full Security. Computing functionality F with privacy, correctness and robustness, which implies all the se-

curity notions mentioned above, is modelled by functionality F itself, since, in the setting which we consider,
demanding a secure implementation of functionality F already amounts to demanding full security.

Fair Security. Demanding privacy, correctness and fairness (which implies agreement on abort) only for
functionality F is captured by the ideal functionality Ffair, which operates as follows: Ffair internally runs F. Any

3 In [Can01], resources R are modeled as ideal functionalities available in a hybrid model.
4 It is possible to minimize the reliance on the crs such that our protocols tolerate an adversarially chosen crs for few corrupted parties

by applying techniques from [GK08,GO07] and a (t, 2t − 1)-combiner for commitments (e.g. [Her05]). However, this construction is
beyond the scope of this paper.

5 This is in contrast to a stand-alone definition of security where the distinguisher is restricted to providing input in the beginning of the
computation, and receiving output only at the end.

4

inputs to F are forwarded, as are any messages F may output to the adversary. If F makes an output y, then Ffair

request an output flag o ∈ {0, 1} from the adversary, defaulting to o = 1 if the adversary makes no suitable input.
Finally, for o = 1 functionality Ffair makes output y to all parties, for o = 0 it halts.

Abort Security. The functionality Fab, specifying privacy, correctness and agreement on abort only, works
like Ffair but forwards output y to the adversary before requesting an output flag.6

No Security. The functionality FnoSec models demanding no security whatsoever: Functionality FnoSec turns
control over to the adversary by forwarding all inputs from the honest parties to the adversary and letting the
adversary fix all outputs to honest parties.

As a simulator SnoSec can use the inputs of honest parties to simulate honest protocol machines, this already
proves the following (rather trivial) lemma:

Lemma 1. Any protocol π UC securely implements the ideal model FnoSec.

3 Hybrid-secure MPC: The Protocol πρ

We present a protocol πρ that UC securely implements hybrid-secure MPC from a common reference string crs
and a complete n party network netn (consisting of secure channels and an authenticated n party broadcast chan-
nel bcn). Furthermore, we provide a stand-alone secure protocol πρ

SA which provides the same guarantees as proto-
col πρ without relying on a crs. More precisely, given a robustness parameter ρ < n

2 and an n party functionality F,
protocol πρ implements F simultaneously providing IT full security in the presence of up to t ≤ ρ actively cor-
rupted parties, IT fair security (no robustness) for t < n

2 and CO abort security (no fairness) for t < n− ρ. These
security requirements are formalized via the ideal functionality Fρ in Fig. 1.

We construct protocol πρ in three steps:

1. We show how to IT securely emulate and integrate an additional party P0 given an n party network netn (see
Sec. 4). This amounts to emulating the protocol π0 of party P0 and an n + 1 party network netn+1.

2. We exhibit an n+1 party MPC protocol πdes,ρ (see Sec. 5) that has a designated party property: Protocol πdes,ρ

is run among the n parties P1, . . . ,Pn, and a special, designated party P0. Fairness and robustness of proto-
col πdes,ρ depend centrally on the honesty of the designated party P0. Furthermore, the designated party P0 has
IT privacy and correctness guarantees. In contrast, the parties P1, . . . ,Pn have only CO privacy and correctness
guarantees. Such a designated party protocol πdes,ρ can be obtained by modifying the protocol of [CLOS02]
as described in Sec. 5.
The strong security guarantees of protocol πdes,ρ for the designated party P0 are then transferred to the re-
maining parties P1, . . . ,Pn by having them emulate P0: As long as the emulation is secure (for t < n

2), the
emulated party P0 can be regarded as honest and the resulting protocol will have the strong fairness, robustness,
and correctness properties which protocol πdes,ρ exhibits if the designated party P0 is honest.

3. We provide an input protocol πin (see Sec. 6), that transforms a designated party MPC into a hybrid-secure
MPC, exploiting the designated party property.

By the UC theorem, these three steps can be aggregated into a protocol πρ that securely realizes hybrid-secure
MPC as fomalized by functionality Fρ. Protocol πρ relies on the basic resources needed for the construction above,
namely a crs and an n party network netn.7 An overview of our construction can be found in Fig. 2.

Theorem 1 (UC Security of πρ). Let F be an ideal n party functionality and let ρ < n
2 be a robustness parameter.

Let a crs setup and a network netn (encompassing a complete and synchronous network of secure channels and
an authenticated BC channel) be given. Protocol πρ then implements functionality Fρ UC securely against static
adversaries corrupting any number t of parties. That is, πρ implements the ideal functionality F

6 We could relax the definition further by allowing the adversary to send one output flag for each party, dropping agreement on abort.
However, all our protocols will achieve agreement on abort.

7 Note that our construction uses multiple instances of the network netn. However, it is easy to securely implement multiple instances
of netn from a single instance of netn by multiplexing.

5

Functionality Fρ behaves as specified by the following table. That is, for a given computational setting (CO or IT) and number t of
corrupted parties functionality Fρ behaves exactly like the corresponding functionality listed under behavior below.

Adversarial Power Behavior

t ≤ ρ CO/IT F (implement F with full security)
ρ < t < n

2
CO/IT Ffair (implement F with fair security)

n
2
≤ t < n− ρ CO Fab (implement F with abort security)

IT FnoSec (no guarantees)
n− ρ ≤ t CO/IT FnoSec (no guarantees)

Fig. 1. The ideal functionality Fρ.

netn Ppm
0 Pem

0 Jdes Fρ

netn

crs

π0 ◦ πem
0 π0 ◦ netn+1 J F

πpm πem πdes,ρ πin

π0 := πdes,ρ
0

Resources R

Emulation of P0

Fig. 2. Protocol πρ: The construction of the hybrid MPC functionality Fρ. Protocol πρ is the composition of the protocols πpm, πem, πdes,ρ,
and πin in the figure. The dashed boxes beneath the ideal functionalities contain hints on their behavior.

1. with IT full security, given that t ≤ ρ,
2. with IT fair security (as formalized by Ffair), given that t < n

2 , and
3. with CO abort security (as formalized by Fab), given that t < n− ρ.

Proof. The UC security of protocol πρ = πin ◦πdes,ρ ◦πem ◦πpm as claimed in Thm. 1 follows by the UC theorem
from the UC security of its subprotocols πin, πdes,ρ, πem, and πpm, discussed in Sections 6, 5, and 4.

Note that our protocol does not tolerate an adversarially chosen crs, even for t ≤ ρ.8 However, in our proto-
col πρ the crs is only needed for the perfectly hiding or perfectly binding UC secure commitments of [DN02]. Thus,
in the commitment hybrid model we achieve the same security guarantees as above without a crs. CO assumptions
sufficient for implementing the necessary CO primitives for protocol πρ include the p-subgroup assumption or the
decisional composite residuosity assumption [DN02].

Furthermore, we can obtain a stand-alone secure variation πρ
SA of protocol πρ which stand-alone securely

implements Fρ without reliance on a crs.

Theorem 2 (SA Security of πρ
SA). Let F be an ideal n party functionality and let ρ < n

2 be a robustness parameter.
Let a network netn (encompassing a complete and synchronous network of secure channels and an authenticated
BC channel) be given. Protocol πρ

SA then implements functionality Fρ stand-alone securely against static adver-
saries corrupting any number t of parties. That is, πρ

SA implements the ideal functionality F

1. with IT full security, given that t ≤ ρ,
2. with IT fair security (as formalized by Ffair), given that t < n

2 , and
3. with CO abort security (as formalized by Fab), given that t < n− ρ.
8 It is possible to minimize the reliance on the crs such that our protocols tolerate an adversarially chosen crs for t ≤ ρ by applying

techniques from [GK08,GO07] and a (t, 2t − 1)-combiner for commitments (e.g. [Her05]). However, this construction is beyond the
scope of this work.

6

Protocol πρ
SA is constructed along the same lines as protocol πρ but relies on a stand-alone secure subproto-

col πdes,ρ
SA instead of the UC secure subprotocol πdes,ρ. Protocols πdes,ρ

SA and πdes,ρ are both discussed in Sec. 5.
The stand-alone security of protocol πρ

SA = πin ◦ πdes,ρ
SA ◦ πem ◦ πpm as claimed in Thm. 2 is proven in Sec. 7.

4 Emulating a Party

We now describe how to IT securely emulate a party P0 and its network connection from an n party network netn.
Emulating party P0 amounts to emulating the protocol machine π0 which P0 is supposed to run. Running a given
emulated party protocol π0 on an n + 1 party network netn+1 is formalized by means of the emulation functional-
ity Pem

0 described next.

4.1 The Emulation Functionality Pem
0

Functionality Pem
0 (Fig. 3) formalizes a given emulated party protocol π0 connected to an n + 1 party net-

work netn+1. Here, π0 may be an arbitrary n + 1 party MPC protocol machine with a communication interface
connecting to netn+1 and n I/O-interfaces corresponding to the emulating parties P1, . . . ,Pn. Functionality Pem

0

will then run Pem
0 = π0 ◦ netn+1 for t < n

2 . For t ≥ n
2 , functionality Pem

0 only formalizes a network netn+1, in
short Pem

0 = netn+1 for t < n
2 . We may think of the emulated party P0 running π0 as being honest for t < n

2 and
corrupted for t ≥ n

2 . This is optimal as IT fully secure general MPC is only achievable for t < n
2 corrupted parties

[Cle86].
For t < n

2 , protocol machine π0 is connected to netn+1 via its communication interface. The remaining inter-
faces (the n I/O-interfaces of protocol π0 and the n open interfaces to netn+1) constitute the interfaces of func-
tionality Pem

0 : Functionality Pem
0 gives each party Pi (i ∈ [n]) access to one I/O-interface to π0 and one interface

to netn+1. For t ≥ n
2 , we have Pem

0 = netn+1 and we consider the emulated party P0 which is supposed to run
protocol machine π0 as corrupted. Accordingly, the interface of netn+1 connected to π0 for t < n

2 is exposed to
the adversary for t ≥ n

2 .

Adversarial Power Behavior

t < n
2

CO/IT π0 ◦ netn+1 (emulated party protocol and n + 1-network)
n
2
≤ t CO/IT netn+1 (n + 1-network)

Fig. 3. The ideal functionality Pem
0 .

4.2 Implementing Functionality Pem
0

As a first step towards implementing the emulation functionality Pem
0 from an n party network netn, we provide

a communication protocol πem, which implements the emulation functionality Pem
0 from an n party network netn

and an intermediate functionality Ppm
0 . This functionality Ppm

0 runs the designated party protocol π0 with a com-
munication protocol πem

0 instead of a network netn+1 as described below.

Functionality Ppm
0 Functionality Ppm

0 runs (for t < n
2 , see Fig. 4) the emulated party protocol π0 and a com-

munication protocol πem
0 . All interfaces of protocol π0 (the n I/O-interfaces and the communication interface) are

connected to protocol πem
0 . The communication protocol πem

0 in turn provides n I/O-interfaces corresponding to
the emulating parties P1, . . . ,Pn which become the n I/O-interfaces of functionality Ppm

0 . The concrete communi-
cation protocol πem

0 we use is described with the protocol πem below.

7

Adversarial Power Behavior

t < n
2

CO/IT π0 ◦ πem
0 (emulated party protocol)

n
2
≤ t CO/IT FnoSec (no guarantees)

Fig. 4. The ideal functionality Ppm
0 .

Protocol πem The communication protocol πem (Fig. 6) implements a network netn+1 connected to the designated
party protocol π0 (functionality Pem

0 , Fig. 3) from a communication protocol πem
0 connected to the designated party

protocol π0 (functionality Ppm
0 , Fig. 4) and a network netn.

The communication protocol machines πem
0 (run by functionality Ppm

0) and πem
i (i ∈ [n]) are designed to

interact with each other. Each protocol machine πem
i connects to the I/O-interface of Pi to Ppm

0 and to the interface
of netn to Pi. In turn it provides Pi with a communication interface (to the emulated netn+1) and with an I/O-
interface (to the emulated π0). Recall that Ppm

0 exposes the I/O-interfaces of πem
0 as its own I/O-interfaces, as such

the πem
i connect directly to the I/O-interfaces of πem

0 (for t < n
2). Protocol πem

0 operates as detailed in Fig. 5,
the πem

i (i ∈ [n]) are described in Fig. 6 below.
Protocol πem emulates netn+1 by making use of the fact that the parties Pi (i ∈ [n]) emulating P0 are the same

parties Pi that are supposed to interact with P0 via netn+1. The I/O-interface of Pi to Ppm
0 can therefore serve as

a secure channel between Pi (running πem
i) and the emulated P0 (running πem

0). Protocol πem then integrates P0

into the network netn which is available as a resource by forwarding messages to Ppm
0 (i.e. to πem

0) by means of its
I/O-interfaces. Messages, inputs, and outputs between Pi and the emulation of P0 can directly be forwarded in this
fashion. As the emulated party P0 is only expected to honestly run π0 for t < n

2 , the broadcast bcn available from
the resource netn can be extended to a broadcast bcn+1 by having each πem

i act as a forwarder and performing a
majority vote.

πem
0 connects to all interfaces of protocol π0, that is, to the communication interface and to the n I/O-interfaces corresponding to the

parties P1, . . . , Pn. πem
0 provides n I/O-interfaces of its own to the n parties P1, . . . , Pn. πem

0 then processes messages as follows:

Secure Channels: Inputs on the I/O-interface of Pi to πem
0 that are labeled as messages from Pi are forwarded to the communication

interface of π0 as messages from Pi. Messages for Pi from the communciation interface of π0 are labeled as message from P0 and
output on the I/O-interface of Pi to πem

0 .
Broadcasts: Inputs labeled as broadcast messages from Pi, are forwarded to the communication interface of π0 as broadcast messages

from Pi if received identically at more than n
2

I/O-interfaces of πem
0 or otherwise ignored. Broadcast messages from the communci-

ation interface of π0 are labeled as broadcast messages from P0 and output on all I/O-interfaces of πem
0 .

I/O for π0: Unlabeled inputs from the I/O-interface of Pi to πem
0 are forwarded to the protocol machine π0 as input on the I/O-interface

of Pi. Outputs from π0 on the I/O-interface of Pi are output on the I/O-interface of Pi to πem
0 .

Fig. 5. The protocol machine πem
0 .

Lemma 2. Protocol πem UC securely implements Pem
0 from netn and Ppm

0 against static adversaries.

Proof of Lem. 2 In order to prove Lem. 2, we need to provide a simulator Sem such that the ideal model Sem
A ◦Pem

0

becomes IT indistiguishable from the real model πem
H ◦ netn ◦ Ppm

0 . The simulator Sem connects to all interfaces
of Pem

0 associated with corrupted parties. The interfaces exposed by Pem
0 are those to the network netn+1 it runs,

and, for t < n
2 , the n I/O-interfaces of the protocol π0 of P0. The cases t ≥ n

2 and t < n
2 differ: In case t ≥ n

2
the simulator Sem has to handle the interfaces of corrupted parties among the P1, . . . ,Pn to netn+1 and the P0

interface to netn+1. In case t < n
2 the simulator Sem has to handle the interfaces of corrupted parties to protocol π0

and to netn+1 (but not the P0 interface to netn+1). We can treat both cases jointly if we consider the emulated
party P0 honest for t < n

2 and corrupted t ≥ n
2 as suggested above.

The simulator Sem then internally simulates an instance ñetn of netn and copies π̃em
i of πem

i for the honest par-
ties (including P0 for t < n

2). These machines are connected as in protocol πem. Here, for t < n
2 the machine π̃em

0

8

πem
i connects to the interfaces of netn and Ppm

0 belonging to Pi and offers Pi a communication interface to the emulated netn+1 and an
I/O-interface to π0. πem

i then processes messages as follows:

Secure Channels: Messages for Pj arriving on the communication interface are forwarded to Pj via netn. Messages for P0 arriving
on the communication interface are labeled as messages from Pi and forwarded to the I/O-interface of Ppm

0 . Inputs from the the
I/O-interface of Ppm

0 labeled as messages from P0 are forwarded to the communication interface as messages from P0. Messages
from Pj arriving on the interface to netn are forwarded to the communication interface as messages from Pj .

Broadcasts from P1, . . . , Pn: Broadcast messages arriving on the communication interface are forwarded to netn as broadcast mes-
sages and to the I/O-interface of Ppm

0 labeled as broadcasts from Pi. Broadcast messages from a Pj arriving on the interface to netn,
unless labeled as originating from P0, are forwarded both to the communication interface as broadcast messages from Pj and to the
I/O-interface of Ppm

0 , labeled as broadcast from Pj .
Broadcasts from P0: Inputs from the the I/O-interface of πpm

i labeled as broadcast messages from P0 are forwarded as broadcast
messages to netn, including the label. Broadcast messages arriving on the interface to netn labeled as originating from P0 are
forwarded to the communication interface as broadcast message from P0 if received identically from more than n

2
parties Pj ,

including the copy possibly received from Ppm
0 directly.

I/O for P0: Inputs from the I/O-interface are forwarded to the I/O-interface of Ppm
0 . Unlabeled inputs from the I/O-interface of Ppm

0 are
output on the I/O-interface.

Fig. 6. The protocol machine πem
i .

connects to the other π̃em
i like Ppm

0 in the real model and also connects to the I/O-interfaces of corrupted parties
to protocol π0. The simulator Sem internally makes use of the communication and the I/O-interface of the π̃em

i

intended for Pi. The remaining interfaces are exposed to the distinguisher, i.e. the interfaces of corrupted parties
to ñetn, and for t < n

2 the interfaces of π̃em
0 for connecting to the π̃em

i of corrupted parties or for t ≥ n
2 the

interfaces of π̃em
i for connecting to π̃em

0 .
Now when a (private or BC) message m is received from an honest party Pi via netn+1 the simulator Sem

inputs m to the communication interface of π̃em
i for sending to the appropriate destination. On the other hand, when

a π̃em
i outputs a (private or BC) message m from a corrupted Pj on the communication interface, this means Pj

has sent the message m and simulator Sem forwards m to netn+1 via the interface of Pj . It is fairly straightforward
to see that real system and simulation are perfectly indistinguishable.

4.3 Implementing Functionality Ppm
0

To complete the emulation of a party P0, it remains to IT securely implement the functionality Ppm
0 (Fig. 4) from

a network netn by means of a protocol πpm. Recall that functionality Ppm
0 runs the designated party protocol π0

and the communication protocol πem
0 for t < n

2 , exposing one I/O-interface to each party Pi (i ∈ [n]). For t ≥ n
2 ,

functionality Ppm
0 turns control over to the adversary.

Any such ideal functionality Ppm
0 can be realized using an MPC protocol πpm that, for t < n

2 , provides full
security in the IT setting. The existence of such a protocol is guaranteed by the following lemma taken from
[RB89,Can01]:

Lemma 3 ([RB89,CDD+99,Can01]). Given a (well-formed [Can01]) ideal functionality F there is a protocol πpm

that implements the ideal functionality F with IT full security from a complete and synchronous network of secure
channels and a BC channel in the UC setting, against static adversaries corrupting t < n

2 parties.

5 Implementing a Designated Party MPC Jdes

We exhibit a designated party MPC protocol πdes,ρ which implements an n + 1 party designated party MPC from
a common reference string crs and an n + 1 party network netn+1. For our purposes, the designated party P0

(running protocol πdes,ρ
0 as specified below) will be emulated as described in Sec. 4. More formally, we provide

a protocol πdes,ρ that implements the designated party MPC functionality Jdes from a crs and the emulation func-
tionality Pem

0 , running the emulated party protocol π0 = πdes,ρ
0 .

9

5.1 Functionality Jdes

We define a designated party MPC functionality Jdes that formally captures computing a functionality J with the
designated party property.

Functionality Jdes takes as parameter an arbitrary n + 1 party functionality J which has 2n interfaces. Here,
each party Pi (i ∈ [n]) has one I/O-interface to J and a second I/O-interface formally belonging P0, but available
to Pi. We refer to this second interface as the P0-interface of Pi to J. Functionality Jdes then evaluates functional-
ity J, providing the following guarantees: In case the designated party P0 is honest, functionality Jdes guarantees
privacy of P0’s input, correctness, and fairness against arbitrarily many IT corrupted parties, as well as robustness
against t ≤ ρ IT corrupted parties. In case the designated party P0 is corrupted, functionality Jdes still guarantees
correctness and privacy to the honest parties against t < n−ρ CO corrupted parties.9 Recall that, by design of the
designated party functionality Pem

0 , we think of the emulated party P0 as honest for t < n
2 and corrupted for t ≥ n

2 .
Keeping this in mind we arrive at the functionality Jdes described in Fig. 7.

Functionality Jdes models computing a functionality J with the designated party property. Like functionality J, functionality Jdes provides
one I/O-interface and one P0-interface to each party Pi (i ∈ [n]). Functionality Jdes operates as follows:9

1. If P0 is corrupted (t ≥ n
2

), and addtionally we are in the IT setting or t ≥ n − ρ, turn control over to the adversary by running
functionality FnoSec. Otherwise, run functionality J.

2. Forward any inputs from the I/O-interfaces to J and, in the IT setting, copy them to the adversary.
3. If P0 is honest (t < n

2
), forward any inputs from the P0-interfaces to functionality J, if P0 is corrupted (t ≥ n

2
), expose all P0-

interfaces of functionality J directly to the adversary, and forward any inputs of honest parties to P0-interfaces to the adversary.
4. If functionality J makes output:

(a) If P0 is honest (t < n
2

) and t ≤ ρ set o := 1.
(b) Elsif P0 is honest (ρ < t < n

2
) request an output flag o ∈ {0, 1} (default to o = 1) from the adversary.

(c) Elsif P0 is corrupted (n
2
≤ t < n − ρ, in the CO setting) make output to the adversary and take an output flag o ∈ {0, 1}

(default to o = 1) as input from the adversary.
(d) If o = 1 forward the remaining outputs, otherwise (o = 0) halt.

5. Any messages from J to the adversary are forwarded.

Fig. 7. The ideal functionality Jdes.

Functionality Jdes thus computes the n + 1 party functionality J with properties as summarized in Table 1.

Adversarial Power9 Guarantees
IT/CO t Cor. Priv. P0 Priv. Pi Fair. Rob.

IT t ≤ ρ yes10 yes no yes yes
IT ρ < t < n

2
yes10 yes no yes yes

IT n
2
≤ t no n/a (corrupted) no no no

CO t ≤ ρ yes yes yes yes yes
CO ρ < t < n

2
yes yes yes yes no

CO n
2
≤ t < n− ρ yes n/a (corrupted) yes no no

CO n− ρ ≤ t no11 n/a (corrupted) no no no

Table 1. Security Guarantees formalized by functionality Jdes.

9 The number t of corrupted parties always pertains to the real parties P1, . . . , Pn and never includes the emulated party P0.
10 Correctness is maintained in the sense that the ideal functionality still performs the desired computation. However, the adversary may

make inputs dependent on the inputs of honest parties in the current and previous input phases.
11 Our protocol πdes,ρ actually achieves correctness here in the sense that it still performs the desired computation. However, the adversary

may make inputs dependent on the state of the protocol, i.e. on the inputs of honest parties in previous but not the current input phases.
For our subsequent results though, we need not demand correctness here.

10

5.2 Protocol πdes,ρ

We now describe a designated party MPC protocol πdes,ρ which implements an n + 1 party designated party MPC
from a common reference string crs and an n+1 party network netn+1. We then emulate party P0, having the em-
ulation functionality Pem

0 run protocol machine πdes,ρ
0 and provide the network netn+1. As a result, protocol πdes,ρ

will implement the designated party MPC functionality Jdes from a crs and emulation functionality Pem
0 , running

the emulated party protocol π0 = πdes,ρ
0 . We obtain protocol πdes,ρ by adapting the CO MPC protocol of [CLOS02]

to our needs ([CLOS02] is in turn an adaption of [GMW87] to the UC setting. For the stand-alone setting we may
directly adapt [GMW87] obtaining a stand-alone protocol πdes,ρ

SA .).

Modifying [CLOS02] Before we adapt the protocols of [CLOS02,GMW87] to satisfy the requirements laid out
in Sec. 5.1 we first give an overview of [CLOS02,GMW87]:

The protocols in [CLOS02,GMW87] proceed in stages, each consisting of three phases: an input phase, a
computation phase, and an output phase. If the functionality to be implemented is non-interactive, a single stage
suffices; interactive functionalities require several stages. In the input phase the players commit to their inputs and
share them among the participants according to a prescribed secret sharing scheme. In [CLOS02] this is a simple
XOR n-out-of-n sharing, but as described in [Gol04] a different sharing can be used to trade privacy for robustness.
In the computation phase, [CLOS02,GMW87] use oblivious transfer (OT) to evaluate the desired function on the
inputs. All intermediate results are computed as sharings, where the parties commit to their share and prove it
correct using zero-knowledge (ZK) proofs thus achieving security against active adversaries. In the output phase
the results of the computation are reconstructed by the players by opening their commitments to the shares of the
final result.

The security requirements of Sec. 5.1 for protocol πdes,ρ can be grouped into four cases:

1. In the CO case where P0 is honest we require full security for t ≤ ρ and tolerate only the loss of robustness
beyond that bound.

2. In the CO case where P0 is corrupted, we only require privacy and correctness up to t < n− ρ.
3. In the IT case where P0 is honest, we require correctness, privacy for P0, fairness, and robustness for up

to t ≤ ρ. Again, we tolerate the loss of robustness beyond that bound.
4. In the IT case where P0 is corrupted, we do not require any security guarantees.

We show that the MPC protocols of [CLOS02,GMW87] can be modified accordingly. Like [GMW87] the MPC
protocol in [CLOS02] operates on shares, utilizes oblivious transfer (OT) for multiplications, and uses the compiler
of [GMW87] which is based on commitments and zero-knowledge (ZK) proofs to achieve security against active
adversaries. We demonstrate how these components can be modified to provide additional guarantees without
compromising their original security properties.

Modifying the Computational Primitives We need to modify [CLOS02,GMW87] such that privacy and correct-
ness are IT for player P0. All three CO primitives employed in [CLOS02,GMW87] (i.e. OT, commitments, and ZK
proofs) can be implemented CO securely while IT protecting one (in our case always P0) of the participants. That
is, we can implement [CLOS02,GMW87] using primitives that remain secure if P0 is involved in their computation
and honest, even if arbitrarily many other players Pi are IT corrupted.

This serves our purpose: Using such primitives is merely a refinement of [CLOS02,GMW87], thus the result-
ing n + 1 party protocol is still correct and private in presence of arbitrarily many actively corrupted parties in
the CO setting. Furthermore, given these modifications, the protocol is private for player P0 even in presence of
arbitrarily many IT corrupted parties. Finally, as long as player P0 is honest, the protocol is correct in the IT setting.

Below we discuss suitable CO primitives for [CLOS02,GMW87], namely OT, commitments, (perfectly) zero-
knowledge arguments of knowledge (ZK-AoK), and CO zero-knowledge proofs of knowledge (cZK-PoK) which
IT protect the designated party P0.

11

Oblivious Transfer. As shown in [CLOS02, Sec. 4.1.1] the OT protocol of [GMW87,Gol04, pp. 640–643] is UC
secure. Furthermore, it is easy to see that it IT protects the receiver. The [CLOS02,GMW87] protocols make no
restriction as to which participant of an OT execution acts as sender or receiver. So we may use said OT protocol
and still IT protect P0 by making P0 the receiver in every invocation of OT involving P0. Alternatively, a UC secure
OT protocol that IT protects the sender can be obtained by “turning around” the above OT as shown in [Wul07,
Thm. 4.1]. Thus, security for P0 is guaranteed in any OT invocation, even with an IT adversary.

Commitment. For [CLOS02], we use the UC secure, one-to-many IT hiding and IT binding commitment schemes
in the crs-model described in Sec. A. For our purpose, we employ the IT binding variation for commitments issued
by the parties Pi (i ∈ [n]) and the IT hiding variation for commitments issued by the designated party P0. Thus
we obtain a UC secure realization of the one-to-many commitment functionality FCom,1:M that guarantees security
for P0 against any IT adversary.

In the stand-alone case, for [GMW87], we may directly use IT hiding and IT binding commitment schemes
which do not rely on a crs.

ZK proofs. [CLOS02, Prop. 9.4] shows how to UC securely implement the ZK functionality FZK,1:M from the
commitment functionality FCom,1:M without use of further CO assumptions.12 The one-to-many ZK protocol of
[CLOS02] is based on the two party protocol of [CF01, Sec. 5]. This protocol in turn is based on the Hamiltonian
Cycles ZK proof. Hence, on the one hand, when using an IT binding commitment scheme, we obtain cZK-PoKs.
On the other hand, when using an IT hiding commitment scheme, we obtain ZK-AoKs. The one-to-many property
is obtained by repeating the two-party protocol with each player over the broadcast channel. In addition, the proof
is accepted only if the transcripts of all invocations constitute valid proofs. Now, if P0 is the prover, we instantiate
the one-to-many commitment functionality FCom,1:M with the IT hiding scheme described above. Otherwise, we
instantiate FCom,1:M with the IT binding scheme. Thus we obtain a protocol that is always secure for P0, even
against any IT adversary.

In the stand-alone case, for [GMW87], we may directly use cZK-PoKs and ZK-AoKs which do not rely on a
crs.

Commit-and-Prove. Instead of directly working with commitment and ZK functionalities (as [GMW87] does),
[CLOS02] introduces a new primitive called one-to-many commit-and-prove FCP,1:M. [CLOS02, Sec. 7.1] pro-
vides a protocol implementing the two-party13 functionality FCP secure against static adversaries, which relies
only on FZK and a standard commitment scheme (together with the corresponding computational assumptions).
Since this protocol is non-interactive, it can easily be extended into a one-to-many protocol by having the sender
broadcast all messages and use FZK,1:M instead of FZK. Hence, when implementing FZK,1:M as described above,
we can use IT hiding or IT binding commitments in the implementation of FCP,1:M to IT protect the designated
party P0. Further CO assumptions are not required. Thus, we can implement the commit-and-prove functional-
ity FCP,1:M UC securely for P0, even against any IT adversary.

Modifying Sharing and Output Reconstruction We now describe how to modify the sharing and output recon-
struction underlying [CLOS02,GMW87] in order to meet our robustness and fairness requirements.

We have to robustly tolerate up to t ≤ ρ corruptions among the parties Pi (i ∈ [n]), while preserving the
unconditional privacy of P0. This can be accomplished by modifying the underlying sharing of [CLOS02,GMW87]
as described in [Gol04, Sec. 7.5.5]. We use a sharing where any set M of n − ρ + 1 parties that includes P0 is
qualified, i.e. can reconstruct. Such a sharing can efficiently be implemented using a (2n− ρ)-out-of-(2n) Shamir-
sharing where P0 receives n shares and each remaining party Pi obtains a single share. Here, we inherently trade
privacy for robustness: Any qualified set M of parties can reconstruct the input of the remaining parties. So any
qualified set M of honest parties can recover the input of up to ρ corrupted parties Pi (i ∈ [n]). This ensures

12 Actually, this protocol is secure against adaptive adversaries. For static adversaries a non-interactive protocol might be used. However,
for ease of discussion, we directly use the adaptive protocol.

13 The one-to-many protocol presented in [CLOS02, Prop. 9.5] encompasses adaptive adversaries.

12

robustness, should up to t ≤ ρ corrupted parties try to disrupt the computation. On the other hand, any such
qualified set M of corrupted parties can violate the privacy of the remaining parties.

Finally we have to guarantee fairness whenever P0 is honest. As noted in [Gol04] only the player opening his
commitments last in the output phase can violate fairness. If we specify that P0 should open last, and only if he
can contribute sufficiently many shares that all players can reconstruct the result, then the resulting protocol πdes,ρ

is fair in the IT setting as long as P0 is honest.

5.3 The Security of the Designated Party Protocol πdes,ρ

In summary, we have constructed a protocol πdes,ρ from [CLOS02] securely implementing Jdes in the UC setting:

Lemma 4. For any robustness parameter ρ < n
2 there is a protocol πdes,ρ that implements Jdes UC securely

against static adversaries from a crs setup and an emulation functionality Pem
0 running πdes,ρ

0 as designated party
protocol.

Furthermore, we have constructed a protocol πdes,ρ
SA from [GMW87] securely implementing Jdes in the stand-

alone setting, without reliance on a crs:

Lemma 5. For any robustness parameter ρ < n
2 there is a protocol πdes,ρ

SA that implements Jdes stand-alone se-
curely against static adversaries from a designated party functionality Pem

0 running πdes,ρ
SA,0 as designated party

protocol.

A proof-sketch of the above lemmata can be found below. CO assumptions sufficient for implementing the nec-
essary CO primitives for protocol πdes,ρ, in particular perfectly hiding or perfectly binding UC secure commitments
[DN02], are for instance the p-subgroup assumption or the decisional composite residuosity assumption. For the
stand-alone setting, weaker assumptions, e.g. enhanced trapdoor one-way permutations are sufficient [Gol04]. A
similar approach, where all players use primitives that IT disclose no undesired information is used in [KMQR09]
to achieve long-term security for specific functions.

5.4 Proof Sketch for Lem. 4 and 5

We will now show that the modified versions of [CLOS02] and [GMW87] described in Sec. 5.2 fulfill the require-
ments stated in Lem. 4 and 5 respectively.

Case 1: CO security with robustness for t ≤ ρ and fairness beyond, P0 honest (t < n
2). This claim follows

immediately from the IT security guarantees of protocol πdes,ρ shown in Case 3, and the CO security guarantees
shown in Case 2.

Case 2: CO security with abort for t < n − ρ corrupted parties, P0 corrupted (t ≥ n
2). CO correctness and

privacy are already implied by [CLOS02,GMW87]. Our modifications to CO primitives and opening procedures
are within the limits of the original protocol and only apply restrictions as to what kinds of primitives are used in
specific situations. The modification to the sharing can be treated as in [Gol04]. As shares observed by corrupted
parties are still uniformly random for t < n− ρ corrupted parties the modifications to the simulator remain trivial.
As such the proof in [CLOS02,GMW87] remains applicable with minimal modifications and we obtain a CO
secure implementation of the ideal functionality in this case.

Note that agreement on abort is achieved: The only way to make a party abort is to send an incorrect message
(one for which the zero-knowledge proof does not hold). However, since the message together with the proof is
sent over a BC channel, this will be noted by all honest parties and they will all abort.

13

Case 3: IT security for honest P0 (t < n
2) with robustness for t ≤ ρ, and with fairness for t < n − ρ. We

sketch a simulator to demonstrate that [CLOS02], tweaked as described above, UC securely implements the ideal
functionality Jdes in the given setting, i.e. an IT adversary corrupting t ≤ n− ρ parties not including party P0. We
have to show that correctness, privacy for P0, and fairness are guaranteed. In case of t ≤ ρ we have to show that
robustness is maintained as well. The proof for [GMW87] in the stand-alone setting works analogously, but relies
on rewinding to facilitate simulation, instead of extractability and equivocability of UC commitments by means of
the crs. Hence we refrain from describing a separate simulator for the stand-alone setting.

The simulator will receive the inputs of all honest parties except P0 from the ideal functionality Jdes. Further-
more corrupted parties have to commit to their input using binding UC commitments14, so by extractability the
simulator can extract their inputs and forward them to Jdes. The simulator then simulates the protocol machines of
all honest parties, with an arbitrary input x′0 for the simulated party P0, and the inputs of the other honest parties
as obtained from Jdes. The simulation then proceeds up to the point where an output y is opened, i.e. where the
simulator receives a y from Jdes. Recall that party P0, which is honest by assumption and thus simulated internally
by the simulator, is supposed to broadcast its opening information last, and only if sufficiently many (i.e. n − ρ)
parties have broadcasted their opening information correctly, in order to guarantee correct reconstruction of y.

We first consider the case where ρ < t ≤ n−ρ parties are corrupted. Thus, we only need to guarantee fairness.
If at least t − ρ corrupted parties broadcast their opening information correctly, then the simulator makes use of
the equivocability of commitments to have the internally simulated P0 open to the output y and sets the output flag
to o = 1, otherwise it sets o = 0.

Finally, given that t ≤ ρ parties are corrupted, the adversary can no longer prevent the honest parties from
reconstructing the output. Hence, P0, regardless of the shares distributed by the adversary, opens the output to y,
again making use of the equivocability of commitments.

The behavior of the simulator is IT indistinguishable from the real protocol. As in the real protocol, the desig-
nated party P0 in the simulation only converses with the other parties by means of hiding commitments, ZK proofs
and OT invocations IT protecting party P0. Furthermore, the sharing scheme is such that without cooperation of
the designated party P0, which is honest by assumption, no information can be recovered. As such no information
whatsoever is disseminated by the designated party P0 to the corrupted parties until reconstruction takes place in
an opening phase.

Case 4: IT, P0 corrupted (t ≥ n
2), no security guarantees. As we make no security guarantees in this case, there is

nothing to show.

6 Implementing a Hybrid-Secure MPC Fρ

It remains to provide a protocol πin
i implementing a hybrid-secure MPC functionality Fρ (Fig. 1) from the des-

ignated party MPC functionality Jdes. Protocol πin does so by ensuring IT privacy for t < n
2 and CO privacy

for t < n − ρ. This is achieved by having πin
i share any input xi as xi = xem

i ⊕ xdes
i , where xem

i is chosen uni-
formly at random over the input space.15 Protocol πin

i then inputs xdes
i at the I/O-interface of functionality Jdes,

while entering the share xem
i via the P0-interface of functionality Jdes. As functionality Jdes guarantees IT privacy

for P0, this results in a protocol where privacy is IT as long as P0 is honest, i.e. for t < n
2 . At the same time the

CO privacy of all parties is guaranteed by functionality Jdes for t < n − ρ. Hence, we obtain a protocol with CO
privacy for t < n− ρ.

To maintain CO correctness for t ≥ n
2 (when the emulated party P0 is corrupted) additional measures are

needed: For t ≥ n
2 , functionality Jdes turns the P0-interface over to the adversary, who could manipulate the xem

i at
will, effectively manipulating the inputs xi to produce incorrect results. We solve this problem by using commit-
ments. So, in the following let commit and open denote the respective procedures for a UC secure IT hiding com-
mitment scheme (see [DN02], App. A). Then, πin

i may compute an IT hiding commitment (ci, oi) = commit(xem
i)

14 Providing extractability and equivocability by means of the crs.
15 Wlog, we assume a group structure with operation ⊕ over the input space. Assuming inputs from a finite field is a common convention

in MPC, or we may think of bitstrings, with XOR as operation.

14

to xem
i . Protocol πin

i inputs the commitment ci together with xem
i at the P0-interface of functionality Jdes while

entering the matching opening information oi togther with xdes
i at the I/O-interface of functionality Jdes. We then

have functionality Jdes check these commitments. In case a commitment fails to open correctly, we can abort the
computation. This construction achieves CO correctness because a CO adversary controlling the P0-interfaces can-
not open such a commitment incorrectly. At the same time, the unconditional privacy of the xem

i is unaffected as
the commitments ci are IT hiding.

Finally, we need to guarantee robustness for t ≤ ρ. Thus, we may not abort if a commitment ci fails to
open correctly. Instead, the functionality Jdes outputs a complaint, requesting that Pi directly inputs xi via the
I/O-interface of Jdes. This procedure does not affect privacy since commitments ci only fail to open correctly if
either Pi is corrupted or if the emulated party P0 is controlled by the adversary. In the first case, we need not
guarantee privacy to Pi. In the latter case, we have t ≥ n

2 , so we only need to guarantee CO privacy, which Jdes

already does. Correctness is maintained since privacy is maintained and a party can only replace its own input.
The fairness properties of Jdes are unaffected by the measures described above, so the resulting protocol is fair

whenever the emulated party P0 is honest, i.e. whenever t < n
2 .

Summarizing the measures above, we obtain an input protocol πin (Fig. 8) and a matching functionality J
to be run by functionality Jdes. Protocol πin takes care of sharing inputs, providing commitments and answering
complaints. Functionality J reconstructs the inputs, checks commitments, makes complaints, and finally evaluates
the target functionality F.

Protocol machine πin
i connects to the I/O- and P0-interfaces of Pi to functionality Jdes. In turn πin

i offers an I/O-interface to Pi. Protocol
machine πin

i then proceeds as follows:

1. On receiving an input on the I/O-interface: Choose xem
i uniformly at random and compute xdes

i := xi ⊕ xem
i . Using an IT hiding

commitment scheme compute [ci, oi] = commit(xem
i). Pass input (xem

i , oi) to the P0-interface and (xdes
i , ci) to the I/O-interface

of Jdes. Receive a complaint vector e on the I/O-interface of Jdes. If ei = 0 then input xi to the I/O-interface of Jdes.
2. On receiving an output on the I/O-interface of Jdes, forward y to the I/O-interface to Pi.

Fig. 8. The protocol machine πin
i .

Functionality J connects to the n I/O-interfaces of functionality F and in turn provides one P0-interface and one I/O-interface per
party Pi. Functionality J then proceeds as follows:

1. Run functionality F.
2. On receiving input on an I/O-interface in a given round: Parse inputs on the I/O-interfaces of the Pi as (xdes

i , ci). Parse inputs on

the P0-interfaces of the Pi as (xem
i , oi). Output a complaint vector e = (xem

i
?
= open(ci, oi))i∈[n] via the I/O-interfaces of the Pi.

For all i ∈ [n] where ei = 1 compute xi := xdes
i ⊕ xem

i . Take new inputs xi on the I/O-interfaces of Pi where ei = 0, default
to xi = ⊥ if no input is provided. Forward all inputs xi 6= ⊥ to functionality F.

3. On receiving an output y from F, forward y to the I/O-interfaces of the Pi.
4. Forward any messages from F to the adversary.

Fig. 9. The functionality J.

Lemma 6. For any robustness parameter ρ < n
2 protocol πin UC securely implements Fρ against static adver-

saries from a designated party MPC functionality Jdes running functionality J.

6.1 Proof of Lem. 6

We have to show that the protocol πin implements Fρ from functionality Jdes for the choice of J described in Fig. 9.
We do so by providing an appropriate simulator Sin that renders the ideal model Sin ◦Fρ indistinguishable from the
real model πin

H ◦ Jdes. We treat the settings t < n
2 and n

2 ≤ t < n − ρ separately. For t ≥ n − ρ functionality Fρ

15

gives up, so there is nothing to show. For n
2 ≤ t < n− ρ, we have to show that protocol πin implements Fρ in the

CO setting. For t < n
2 , it suffices to show that protocol πin implements Fρ in the IT setting.

Proof of Lem. 6 for n
2

≤ t < n − ρ We show that, for n
2 ≤ t < n − ρ, there is a simulator Sin which renders

ideal model Sin ◦ Fρ indistinguishable from the real model πin
H ◦ Jdes in the CO setting.

In the CO setting, for n
2 ≤ t < n − ρ, functionality Jdes is correct and private for inputs at its I/O-interfaces,

but gives the adversary control over inputs at its P0-interfaces (we may consider the emulated party P0 corrupted)
and guarantees no robustness or fairness, only agreement on abort.

The simulator Sin is connected to the interfaces of the corrupted parties to the ideal functionality Fρ. In turn the
simulator Sin simulates the I/O-interfaces of functionality Jdes belonging to corrupted parties and the P0-interface
of functionality Jdes to the distinguisher.

For n
2 ≤ t < n− ρ, the simulator Sin then operates as follows:

1. When an honest party makes input to Fρ or the distinguisher makes input via the I/O-interface of a corrupted
party:
(a) For all honest parties Pi making input, choose x̃em

i at random and compute IT hiding commitments (ci, õi) =
commit(x̃em

i).
(b) Give the (x̃em

i , õi) as output to the distinguisher over the P0-interface.
(c) Receive some (xem

i , oi) from the distinguisher over the P0-interface.
(d) Receive some (xdes

i , ci) from the distinguisher over the I/O-interfaces of the Pi ∈ A.
(e) Output a complaint vector e = (xem

i
?= open(ci, oi))i∈[n] to the distinguisher via the I/O-interfaces.

(f) Receive an output flag o from the distinguisher, default to o = 1 if none is provided. In case o = 0,
forward o to Fρ and halt.

(g) For the Pi ∈ A where ei = 1 compute xi := xdes
i ⊕ xem

i .
(h) Take new inputs xi on the I/O-interfaces of the Pi ∈ A where ei = 0, default to xi = ⊥ if no input is

provided.
(i) Forward all inputs xi 6= ⊥ (i ∈ A) to functionality F.

2. When functionality Fρ makes output:
(a) Forward the output y of Fρ to the distinguisher via the I/O-interfaces of the Pi ∈ A
(b) Receive an output flag o from the distinguisher, default to o = 1 if no output flag is provided.
(c) Forward the output flag o to Fρ, and in case o = 0 halt.

We now argue that the simulator Sin indeed renders the ideal model Sin ◦ Fρ indistinguishable from the real
model πin

H ◦ Jdes.
When input is made by some party Pi, protocol machine πin

i in πin
H ◦ Jdes first splits its input into xi =

xdes
i ⊕ xem

i (where xem
i is uniformly random) and computes the IT hiding commitment (ci, oi) = commit(xem

i).
Then, πin

i provides (xem
i , oi) as input to functionality Jdes at the P0-interface which is controlled by the adversary.

Sin simulates this indistinguishably by providing random values (x̃em
i , õi) with appropriate opening information to

the distinguisher over the P0-interface.
Furthermore, protocol machine πin

i provides (xdes
i , ci) as input to Jdes via the I/O-interface. Functionality Jdes

then issues a boolean complaint vector e = (xem
i = open(ci, oi))i∈[n], indicating for which parties the opening

failed. The complaint vector e is first handed to the adversary and upon receipt of an output flag o = 1 to the
remaining parties. Functionality Jdes then allows these parties to answer the complaint with a new xi, and com-
putes xi = xdes

i ⊕ xem
i for the remaining parties. Sin simulates this behavior identically to the corrupted parties.

Finally the ideal functionality Jdes forwards the xi to F, which simulator Sin simulates by inputting the xi to Fρ.
This simulation is faithful as long as the adversary does not manage to open a commitment ci to a value other

than xem
i (which being CO bounded it cannot).16

16 The commitments to the xem
i and the complaint procedure guarantee that the computation is carried out with correct values xem

i . That is,
the input shares xdes

i and xem
i have the relation xdes

i ⊕ xem
i = xi. Otherwise, if the adversary controls the P0-interfaces (as is the case

here), he could manipulate the values xem
i leading to a computation with wrong inputs xi and hence to an incorrect result.

16

When output is made, functionality Jdes delivers the output y to the adversary and awaits an output flag deciding
output delivery to honest parties. Outputs are simply forwarded by πin

i . Functionality Fρ behaves identically and as
such the simulator Sin need only forward the messages in question.

Hence the protocol πin CO securely implements the functionality Fρ for n
2 ≤ t ≤ n− ρ.

Proof of Lem. 6 for t < n
2

We show that, for t < n
2 , there is a simulator Sin which renders ideal model Sin ◦ Fρ

indistinguishable from the real model πin
H ◦ Jdes in the IT setting.

In the IT setting for t < n
2 , functionality Jdes is fair, correct and private for inputs at its P0-interfaces (we

may consider the emulated party P0 honest) but forwards inputs at its I/O-interfaces to the adversary. For t ≤ ρ,
functionality Jdes is additionally robust.

The simulator Sin is connected to the interfaces of the corrupted parties to the ideal functionality Fρ. In turn
the simulator Sin simulates the I/O- and P0-interfaces of functionality Jdes belonging to corrupted parties to the
distinguisher.

For t < n
2 , the simulator Sin then operates as follows:

1. When an honest party makes input to Fρ or the distinguisher makes input via the I/O-interface of a corrupted
party:
(a) For all honest parties Pi making input, choose xdes

i and xem
i at random and compute IT hiding commit-

ments (ci, oi) = commit(xem
i).

(b) Give the (xdes
i , ci) as output to the distinguisher.

(c) Receive inputs (xem
i , oi) and (xdes

i , ci) from the distinguisher over the P0- and I/O-interfaces of the cor-
rupted parties Pi ∈ A respectively.

(d) For ρ < t < n
2 , request an output flag o from the distinguisher, default to o = 1 if none is provided. In

case o = 0, forward o to Fρ and halt.
(e) Output a complaint vector e = (xem

i
?= open(ci, oi))i∈[n] to the distinguisher via the I/O-interfaces.

(f) For the Pi ∈ A where ei = 1 compute xi := xdes
i ⊕ xem

i .
(g) Take new inputs xi on the I/O-interfaces of the Pi ∈ A where ei = 0, default to xi = ⊥ if no input is

provided.
(h) Forward all inputs xi 6= ⊥ (i ∈ A) to functionality F.

2. When functionality Fρ makes output
(a) For ρ < t < n

2 , request an output flag o from the distinguisher, default to o = 1 if none is provided.
Forward o to Fρ and, in case o = 0, halt.

(b) Forward the output y of Fρ to the distinguisher via the I/O-interfaces of the Pi ∈ A.

We now argue that the simulator Sin indeed renders the ideal model Sin ◦ Fρ indistinguishable from the real
model πin

H ◦ Jdes.
When input is made by some party Pi, protocol machine πin

i in πin
H ◦ Jdes first splits its input into xi =

xdes
i ⊕ xem

i (where xem
i is uniformly random) and computes the IT hiding commitment (ci, oi) = commit(xem

i).
Then, πin

i provides (xem
i , oi) and (xdes

i , ci) as input to Jdes via the P0- and the I/O-interface of Pi to Jdes respectively.
In the current context, for t < n

2 in the IT setting, Jdes forwards (xdes
i , ci) to the adversary. Sin simulates this

indistinguishably by providing random values (xdes
i , ci) to the distinguisher. Here it is important to note that ci is a

hiding commitment, and as such really independent of xem
i .

Functionality Jdes requests an output flag o and for o = 1 issues a boolean complaint vector e = (xem
i =

open(ci, oi))i∈[n], indicating for which parties the opening failed. Functionality Jdes then allows these parties to
answer the complaint with a new xi, and computes xi = xdes

i ⊕ xem
i for the remaining parties. Note that for t < n

2
no honest party will ever receive a complaint when trying to give input. Sin simulates this behavior identically to
the corrupted parties. Finally the ideal functionality Jdes forwards the xi to F, which simulator Sin simulates by
inputting the xi to Fρ.

When output is made, functionality Jdes for ρ < t < n
2 requests an output flag o from the distinguisher,

defaulting to o = 1 if none is provided. In case o = 0, functionality Jdes halts. Otherwise Jdes delivers the output y

17

to all parties, Outputs are simply forwarded by πin
i . Functionality Fρ behaves identically, so the simulator Sin need

only forward the messages in question.
Hence the protocol πin IT securely implements the functionality Fρ for t < n

2 .

7 The Security of the Stand-Alone Protocol πρ
SA

Having shown the UC security of protocol πρ as claimed in Thm. 1, we now prove the SA security of protocol πρ
SA

as claimed in Thm. 2. Thus, we have to show that the protocol πρ
SA = πin ◦πdes,ρ

SA ◦πem ◦πpm stand-alone securely
implements the hybrid MPC functionality Fρ from an n party network netn.

The SA secure protocol πρ
SA differs from the UC secure protocol πρ only with respect to the subprotocol πdes,ρ.

In πρ
SA we use a variation πdes,ρ

SA of subprotocol πdes,ρ, which we construct from the protocol of [GMW87] instead
of [CLOS02] as described in Sec. 5. As protocol πdes,ρ is the only subprotocol of protocol πρ relying on the CRS
we obtain a hybrid MPC protocol πρ

SA which is only SA secure, but does not rely on a CRS.
Because the emulation of a party as implemented by the subprotocols πpm and πem remains unmodified, it is

sufficient to prove that the subprotocols πin and πdes,ρ
SA stand-alone securely implement the hybrid MPC function-

ality Fρ from an emulated party functionality Pem
0 running the emulated party protocol π0 = πdes,ρ

SA,0 .

We have shown in Sec. 5 that protocol πdes,ρ
SA stand-alone securely implements functionality Jdes from an

emulated party functionality Pem
0 running the emulated party protocol π0 = πdes,ρ

SA,0 . Moreover, we have seen in
Sec. 6 that protocol πin UC securely and thus stand-alone securely implements the hybrid MPC functionality Fρ

from functionality Jdes.
Protocol πin relies on a single instance of the functionality Jdes as its only resource. By sequential composition

for stand-alone secure protocols as in [Gol04] it follows that protocol πin ◦ πdes,ρ
SA securely implements the hybrid

MPC functionality Fρ from an emulated party functionality Pem
0 running the emulated party protocol π0 = πdes,ρ

SA,0 :

By Lem. 5 for any adversary A we have a SA simulator Sdes
SA for πdes,ρ

SA such that Sdes
SA (A)Jdes is CO SA indis-

tinguishable from πdes,ρ
SA,H ◦ Pem

0 ◦ A We can construct a stand-alone simulator SSA = Sin ◦ Sdes
SA by taking the UC

simulator Sin from Sec. 6.1 and combining it with the simulator Sdes
SA . As the UC simulator Sin simulates an in-

stance of functionality Jdes to the distinguisher, and as the simulator Sdes
SA expects to interact with functionality Jdes,

we may directly connect simulator Sdes
SA to the distinguisher (adversary) interfaces of simulator Sin. We obtain a

simulator SSA = Sin ◦ Sdes
SA which renders the ideal model SSA(A) ◦ Fρ stand-alone indistinguishable from the real

model πin
H ◦ πdes,ρ

SA,H ◦ Pem
0 ◦ A for any adversary A.

Thus, we have that πρ
SA = πin ◦ πdes,ρ

SA ◦ πem ◦ πpm stand-alone securely implements the hybrid MPC function-
ality Fρ from an n party network netn, as claimed.

8 Protocols Without Broadcast Channel

We now describe what can be achieved without assuming a BC channel. As our protocol relies on a BC channel, we
have to implement one from pairwise secure channels. We make use of the IT secure BC with extended consistency
and validity detection bcextCons of [FHHW03]. For two thresholds tv and tc, where tv ≤ tc and either tv = 0
or tv + 2tc < n, bcextCons delivers a robust BC for t ≤ tv and a BC with fairness (but without robustness)
for tv < t ≤ tc. Actually, bcextCons performs a detectable precomputation which either establishes a setup for a
robust BC (for t ≤ tv always) or aborts with agreement on abort.

For a robustness bound ρ > 0 we let tv = ρ < n
3 and tc = dn−tv

2 e − 1. This achieves IT full security (with
robustness) for t ≤ ρ and IT fair security (no robustness) for t < n−ρ

2 . Unfortunately these results do not (and
cannot) go beyond those of [FHHW03] which they have proven optimal for this case.

However, for robustness bound ρ = 0, we let tv = ρ = 0 and tc = n. In this case we achieve IT fair security
(no robustness) for t < n

2 and CO abort security for t < n. This result is new and actually matches the result
for ρ = 0 according to Thm. 1 in the case where a BC channel is provided. We refer to πρ for ρ = 0, running with
the above BC implementation as π0 and have:

18

Theorem 3. Let F be an ideal n party functionality and let ρ < n
2 be a robustness parameter. Let a crs setup

and a complete and synchronous network of secure channels (without BC channel) be given. Protocol π0 then
implements functionality Fρ UC securely against static adversaries corrupting any number t of parties. That is, π0

implements the ideal functionality F

1. with IT full security, given that t = 0,
2. with IT fair security (as formalized by Ffair), given that t < n

2 , and
3. with CO abort security (as formalized by Fab), always.

9 Conclusions

We describe a hyrbid secure MPC protocol πρ that provides a flexible and optimal trade-off between IT full security
(with robustness), IT fair security (no robustness), and CO abort security (no fairness). More precisely, for an
arbitrarily chosen robustness parameter ρ < n

2 , the hybrid-secure MPC protocol πρ is IT full secure for t ≤ ρ, IT
fair secure for t < n

2 , and CO abort secure for t < n − ρ actively and statically corrupted parties. These results
are optimal with respect to the bounds stated in [Cle86,Kat07,IKLP06]. On the technical side, we provide a first
formal treatment of player emulation in the UC setting.

We prove the UC security of πρ in the synchronous secure channels model with broadcast (BC) and a crs. We
also show a simple variation πρ

SA of protocol πρ that relies on [GMW87] instead of [CLOS02] and is stand-alone
secure in the synchronous secure channels model with BC without a crs.

Furthermore we discuss the synchronous secure channels model without BC. Here we find that for robustness
parameter ρ > 0 the results of [FHHW03] are already optimal, but for ρ = 0 our protocol achieves the same results
as in the case where BC is provided, indicating that a BC channel is only helpful if one aims for robustness.

References

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In STOC’88, pages 1–10. ACM, 1988.

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general composition theorem for secure reactive systems. In
TCC’04, volume 2951 of LNCS, pages 336–354. Springer, 2004.

[Can01] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. FOCS’01, pages 136–145, 2001.
[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols. In STOC’88, pages 11–19.

ACM, 1988.
[CDD+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient multiparty computations secure

against an adaptive adversary. In EUROCRYPT’99, volume 1592 of LNCS, pages 311–326. Springer-Verlag, 1999.
[CDG88] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multiparty computations ensuring privacy of each party’s input and

correctness of the result. In CRYPTO’87, pages 87–119. Springer, 1988.
[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO’01, pages 19–40. Springer, 2001.
[Cha89] David Chaum. The spymasters double-agent problem: Multiparty computations secure unconditionally from minorities and

cryptographically from majorities. In CRYPTO’89, pages 591–602. Springer, 1989.
[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In STOC’86, pages 364–369, New York,

NY, USA, 1986. ACM Press.
[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-party secure

computation. In STOC’02, pages 494–503. ACM, 2002.
[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable commitment schemes with

constant expansion factor. In CRYPTO’02, volume 2442 of LNCS, pages 581–596. Springer, 2002.
[FHHW03] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger. Two-threshold broadcast and detectable multi-party

computation. In EUROCRYPT’03, volume 265 of LNCS, pages 51–67. Springer, 2003.
[FHW04] Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party computation with hybrid security. In EUROCRYPT’04,

volume 3027 of LNCS, pages 419–438. Springer, 2004.
[GK08] Vipul Goyal and Jonathan Katz. Universally composable multi-party computation with an unreliable common reference string.

In TCC’08, volume 4948 of LNCS, pages 142–154. Springer, 2008.
[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness theorem for protocols

with honest majority. In STOC’87, pages 218–229. ACM, 1987.
[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In CRYPTO’07, volume 4622 of LNCS, pages

323–341. Springer, 2007.

19

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University Press, 2001.
[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge University Press, 2004.
[Her05] Amir Herzberg. On tolerant cryptographic constructions. In CT-RSA’05, volume 3376 of LNCS, pages 172–190. Springer,

2005.
[HM00] Martin Hirt and Ueli Maurer. Player simulation and general adversary structures in perfect multiparty computation. Journal of

Cryptology, 13(1):31–60, 2000. Extended abstract in Proc. 16th of ACM PODC ’97.
[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy with guaranteed output delivery in

secure multiparty computation. In CRYPTO’06, volume 4117/2006, pages 483–500. Springer, 2006.
[Kat07] Jonathan Katz. On achieving the “best of both worlds” in secure multiparty computation. In STOC’07, pages 11–20. ACM,

2007.
[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation. In STOC’00, pages 316–324. ACM, 2000.
[KMQR09] Robin Künzler, Jörn Müller-Quade, and Dominik Raub. Secure computability of functions in the IT setting with dishonest

majority and applications to long-term security. In TCC’09, volume 5444 of LNCS, pages 238–255. Springer, 2009.
[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure reactive systems. In ACM CCS’00,

pages 245–254, 2000.
[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In STOC’89, pages 73–85.

ACM, 1989.
[Wul07] Jürg Wullschleger. Oblivious-Transfer Amplification. PhD thesis, ETH Zürich, 2007.
[Yao82] Andrew C. Yao. Protocols for secure computations (extended abstract). In FOCS’82, pages 160–164. IEEE, 1982.

A Perfecly Hiding or Perfectly Binding UC Commitments

We describe a UC secure one-to-many commitment schemes implementing the one-to-many commitment func-
tionality FCom,1:M that can be either perfectly hiding or perfectly binding. Our one-to-many commitment scheme
is derived from the perfectly hiding or perfectly binding UC secure commitment schemes of [DN02].

Functionality FComH,1:M formalizes perfectly hiding UC secure one-to-many commitment schemes, function-
ality FComB,1:M formalizes perfectly binding UC secure one-to-many commitment schemes.

Functionality FComH,1:M operates as follows:

1. If the committer C is honest or in the CO setting:
(a) On receipt of a message m from the committer C, output committed to all receivers Ri.
(b) On receipt of open from the committer C, output m to all receivers Ri.

2. If the committer C is corrupted in the IT setting, turn control over to the adversary.

Functionality FComB,1:M operates as follows:

1. For honest receivers Ri or in the CO setting for all receivers Ri:
(a) On receipt of a message m from the committer C, output committed to the receiver Ri.
(b) On receipt of open from the committer C, output m to the receiver Ri.

2. For corrupted receivers Ri in the IT setting,
(a) On receipt of a message m from the committer C, directly output m to the receiver Ri.
(b) On receipt of open from the committer C, output open to the receiver Ri.

We no show how to extend the commitment scheme of [DN02] to implement the functionalities FComH,1:M

and FComB,1:M.

A.1 Mixed Commitments

The construction of our UC commitment scheme is based on the mixed commitment scheme commitK described in
[DN02]. A mixed commitment scheme is parametrized by a system key N with an associated X-trapdoor tN which
determines keyspace KN and message space MN . Both KN and MN are additive groups. The keyspace KN is
partitioned into subsetsKX of X-keys (for extractability),KE of E-keys (for equivocability), andKR of remaining
keys. An overwhelming fraction of keys in KN are X-keys in KX . One can efficiently generate random system
keys N , random keys in KN , random X-keys in KX , and random E-keys in KE . All X-keys K ∈ KX have a
common trapdoor tN that can efficiently be generated together with the system key N . In contrast, all E-keys K ∈

20

KE have their own trapdoor tK that can efficiently be generated together with the key itself. Furthermore, random
keys, X-keys, and E-keys are CO indistinguishable.

The commitment scheme commitK with key K ∈ KN is equivocable for K ∈ KE and extractable for K ∈
KX . So, on the one hand, for a commitment c = commitK(m, r) where K ∈ KX one can efficiently determine m
from c, K, N , and the trapdoor tN (extractability). On the other hand, given K ∈ KE and the associated E-
trapdoor tK one can efficiently generate a commitment c that is equivocable, i.e. it is efficiently possible to generate
randomness r such that c = commitK(m, r) for any m ∈MN . Note that extractability and equivocability together
with the CO indistinguishability of random keys, X-keys, and E-keys imply that the mixed commitment scheme
commitK is CO binding and hiding. More details on mixed commitments can be found in [DN02].

A.2 The CRS

UC commitments require a stronger setup than a broadcast channel [CF01]. We will use a common random string
(CRS) that is sampled from a prescribed distribution by a trusted functionality.

Our CRS will be crs = (N,KX ,KE , K̄1, . . . , K̄n, crs′). The first part of the crs, encompassing the n + 3
keys N,KX ,KE , K̄1, . . . , K̄n, stems from the original protocol in [DN02]. In accordance to this protocol, N is
a random system key for our mixed commitment, KX ∈ KX is a random X-key and KE , K̄1, . . . , K̄n ∈ KE

are random E-keys. The second part of the crs, i.e. crs′, is a CRS for one-to-many commitments according to
[CLOS02,CF01]. This part is only needed for the one-to-many extension of the commitment scheme discussed
here.

A.3 The UC Commitment Protocol

Wlog let C = P1 be the committer and the remaining parties be the receivers Ri = Pi (i ∈ 2, . . . , n). Furthermore,
let (commit′, open′) denote the one-to-many commitment scheme according to [CLOS02,CF01]. The UC one-to-
many commitment protocol then works as follows:

Commit phase:

C.1 On input m, committer C draws a random K1 ∈ KN and random opening information r1, and broadcasts c1 =
commitK̄1

(K1, r1).
R.1 The receivers Ri run a coin toss protocol in order to sample a random key K2:

R.1.a Each receiver Ri draws a random si ∈ KN , computes (c′i, o
′
i) = commit′(si, crs

′), and broadcasts c′i.
R.1.b Each receiver Ri broadcasts (si, oi).
R.1.c All parties compute K2 =

∑
i si for the si where si = open′(c′i, o

′
i).

C.2 Committer C computes K = K1 + K2, draws random opening information r2, r3, and
– for an IT hiding commitment draws m̄ and broadcasts c2 = commitK(m̄+m, r2), c3 = commitKE

(m̄, r3)
– for an IT binding commitment broadcasts c2 = commitK(m, r2), c3 = commitKX

(m, r3)
R.2 Each receiver Ri upon receiving c2 and c3 outputs commited

Opening phase:

C.1 On input open, committer C broadcasts
– for an IT hiding commitment (m, m̄, r2, r3)
– for an IT binding commitment (m, r2, r3)

R.1 Each receiver Ri verifies that
– for an IT hiding commitment c2 = commitK(m̄ + m, r2), c3 = commitKE

(m̄, r3),
– for an IT binding commitment c2 = commitK(m, r2), c3 = commitKX

(m, r3)
and if so, outputs m.

Note that this protocol is a simple adaption of [DN02] to multiple receivers. We simply replace round R.1 of
[DN02] where the single receiver of [DN02] chooses a random K2 with a CO secure cointoss among our multiple
receivers.

21

A.4 Security of the UC Commitment Protocol

We prove security by providing simulators for the IT hiding and the IT binding case separately. The argument why
these simulators achieve indistinguishability does not change substantially and we refer the reader to [DN02].

IT Hiding We now show that the perfectly hiding variation of the scheme above indeed implements functional-
ity FComH,1:M. We consider three cases for which we provide different simulators, namely:

1. the adversary is CO or IT, leaves the committer C honest (and corrupts any number of receivers Ri).
2. the adversary is CO, corrupts the committer C (and any number of receivers Ri),
3. the adversary is IT, corrupts the committer C (and any number of receivers Ri).

In the first two cases the commitment functionality FComH,1:M operates as expected and described in [CF01].
Simulator Sit

R is used in case 1 where C is honest, but any number of receivers Ri are IT or CO corrupted (the
simulator works in both cases). First, Sit

R produces a regular crs with E-key KE and E-trapdoor tE . During the
commit phase, Sit

R emulates C on random input to the corrupted Ri. Indistinguishability is preserved because
all commitments are equivocable and thus independent of their “content”. In the opening phase, Sit

R receives the
correct m? from Fh

com. Now, Sit
R opens the KE commitment c3 to m′

3 = m? ⊕m2 using tE .
Finally, simulator Sco

C is used in case 2 where C and any number of receivers are CO corrupted. First, Sco
C

produces a fake c̃rs with interchanged keys: On one hand, in c̃rs, KX is an equivocable key taken from KE ,
together with trapdoor tKX

for equivocability. On the other hand, in c̃rs, KE is an extractable key taken from KX .
Note that KE has trapdoor tN for extractability. For a CO adversary, the fake c̃rs is indistinguishable from a real
crs. Furthermore, Sco

C internally runs the protocol of honest Ri which can be perfectly simulated since they do
not require any input. During the simulation, Sco

C simply forwards all messages among the (internally simulated)
honest Ri and the corrupted parties, i.e. C and corrupted Ri. After the commit phase, Sco

C uses the known system
trapdoor N to extract m3 from c3 (X-key by choice of the CRS) and m2 for c2 (X-key with overwhelming
probability in the regular protocol) and inputs m? = m3 ⊕m2 to Fh

com. In the opening phase, Sco
C sends an open

message to Fh
com if and only if C provides correct opening information for m?.

In the last case, committer C and any number of receivers are IT corrupted. By definition of IT hiding commit-
ments, the functionality Fh

com collapses in this context and turns over control to the simulator Sit
C . Our simulator Sit

C

first produces a regular crs. Then, Sit
C internally runs the protocol of the honest Ri to the I/O-interface of which it

has access via the ideal functionality. During the simulation, Sit
C simply forwards all messages among the (inter-

nally simulated) honest Ri and the corrupted parties, i.e. C and corrupted Ri.
As noted above, the indistinguishability arguments of [DN02] apply, and we refer the reader there for further

detail.

IT Binding We now show that the perfectly binding variation of the scheme above indeed implements functional-
ity FComB,1:M. Once again, we consider three cases for which we provide different simulators, namely:

1. the adversary is CO or IT, corrupts the committer C and any number of receivers Ri,
2. the adversary is CO, leaves the committer C honest and corrupts any number of receivers Ri,
3. the adversary is IT, leaves the committer C honest and corrupts any number of receivers Ri.

In the first two cases the commitment functionality operates as expected and described in [CF01]. Simulator Sit
C

is used in case 1 where C and any number of receivers are IT or CO corrupted. First, Sit
C produces a regular crs

with X-key KX and X-trapdoor tN . Furthermore, Sit
C internally runs the protocol of honest Ri which can be

perfectly simulated since they do not require any input. During the simulation, Sit
C simply forwards all messages

among the (internally simulated) honest Ri and the corrupted parties, i.e. C and corrupted Ri. After the commit
phase, Sit

C extracts the message m from c3 using the trapdoor tN , and enters it into Fb
com. In the opening phase, Sit

C

sends an open message to Fb
com if and only if C provides correct opening information for m.

Simulator Sco
R is used in case 2 where C is honest, but any number of receivers Ri is CO corrupted. First, Sco

R

produces a fake c̃rs with interchanged keys: On one hand, in c̃rs, KX is an equivocable key taken fromKE , together

22

with trapdoor tKX
for equivocability. On the other hand, in c̃rs, KE is an extractable key taken from KX . Note

that KE has trapdoor tN for extractability. For a CO adversary, the fake c̃rs is indistinguishable from a real crs. In
the commit phase in step C.1, Sco

R uses the trapdoor tK̄C
of E-key K̄C to produce an equivocable commitment c1.

Hence, C is not committed to the first part K1 of the key K. Then, in step C.2, Sco
R opens c1 to a value K ′

1 such that
K = K ′

1⊕K2 is a random E-key with known trapdoor tKE
. Usually, this would be an X-key with overwhelming

probability. For the opening phase, Sco
R receives the correct m from Fh

com. Then, Sco
R opens the commitment c3

and the commitment c2 to m′
3 = m′

2 = m. By choice of the c̃rs, the commitment c3 was constructed with
the equivocable E-key KX and trapdoor tKX

. By choice of K ′
1, the commitment c2 was constructed with the

equivocable E-key K = K ′
1 ⊕K2 and trapdoor tK . Hence, Sco

R can efficiently open both commitments as needed.
In the last case, committer C is honest, but any number of receivers Ri is IT corrupted. By definition of IT

binding commitments, the ideal functionality Fb
com then directly leaks the committed message m to IT corrupted

receivers. Honest Ri still receive m from Fb
com on opening as usual. We use a simulator Sit

R that exploits this.
First, Sit

R produces a regular crs. Then, it internally runs the protocol of C on input m, and the protocols of
honest Ri, which do not need any input, towards the corrupted Ri.

As noted above, the indistinguishability arguments of [DN02] apply, and we refer the reader there for further
detail.

