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Abstract. Most protocols for distributed, fault-tolerant computation, or multi-party computation
(MPC), provide security guarantees in an all-or-nothing fashion: If the number of corrupted parties
is below a certain threshold, these protocols provide all specified security guarantees. Beyond this
threshold, they provide no security guarantees at all. Furthermore, most previous protocols achieve
either information-theoretic (IT) security, in which case this threshold is low, or they achieve only
computational security, in which case this threshold is high. In contrast, a hybrid-secure proto-
col provides different security guarantees depending on the set of corrupted parties and the com-
putational power of the adversary, without being aware of the actual adversarial setting. Thus,
hybrid-secure MPC protocols allow for graceful degradation of security.
We present a hybrid-secure MPC protocol that provides an optimal trade-off between IT robustness
and computational privacy: For any robustness parameter ρ < n

2
, we obtain one MPC protocol that

is simultaneously IT secure with robustness for up to t ≤ ρ actively corrupted parties, IT secure
with fairness (no robustness) for up to t < n

2
, and computationally secure with agreement on abort

(privacy and correctness only) for up to t < n − ρ. Our construction is secure in the universal
composability (UC) framework (based on a network of secure channels, a broadcast channel, and a
common reference string). It achieves the bound on the trade-off between robustness and privacy
shown by Ishai et al. [CRYPTO’06] and Katz [STOC’07], the bound on fairness shown by Cleve
[STOC’86], and the bound on IT security shown by Kilian [STOC’00], and is the first protocol that
achieves all these bounds simultaneously.
For example, in the special case ρ = 0 our protocol simultaneously achieves non-robust MPC for
up to t < n corrupted parties in the computational setting (like Goldreich et al. [STOC’87]), while
providing security with fairness in the IT setting for up to t < n

2
corrupted parties (like Rabin and

Ben-Or [STOC’89] though without robustness).

Keywords: Multi-party computation, information-theoretic security, computational secu-
rity, hybrid security, universal composability, party emulation.
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1 Introduction

1.1 Secure Multi-Party Computation

The goal of multi-party computation (MPC) is to perform a computation in a distributed, pri-
vate, and fault-tolerant way [Yao82]. For this purpose, a fixed set of n parties runs a protocol
that tolerates an adversary corrupting a subset of the participating parties. Actively corrupted
parties may deviate arbitrarily from the protocol, whereas passively corrupted parties follow the
protocol and, intuitively speaking, only try to violate privacy. Security requirements for MPC in
the literature (e.g. [Gol01]) include privacy, correctness, robustness, fairness, and agreement on
abort. Privacy is achieved if the adversary cannot learn more about the honest parties’ inputs
than what can be deduced from the inputs and outputs of the corrupted parties. Correctness
means that the protocol either outputs the intended value or no value at all. Privacy and cor-
rectness are the two basic requirements. Possible additional requirements are notions of output
guarantees, which we discuss in order of decreasing strength: A protocol achieves robustness if an
adversary cannot abort the computation, preventing the honest parties from obtaining output.
Fairness is achieved if the honest parties obtain at least as much information about the output
as the adversary. Agreement on abort means that all honest parties detect if one of them aborts
(and then generally make no output).

Goldreich et al. [GMW87] provide a first general solution to the MPC problem, based on
computational (CO) intractability assumptions and a broadcast (BC) channel. They achieve full
security against t < n

2 actively corrupted parties, or privacy and correctness only (no fairness
or robustness) against t < n actively corrupted parties. If no BC channel is available, privacy
and correctness against t < n actively corrupted parties can also be obtained using the BC
construction from [FHHW03]. Robust MPC without BC channel is possible if and only if t < n

3
parties are corrupted in both the CO and the IT setting [PSL80]. The protocols of both [BGW88]
and [CCD88] are IT secure, require no BC channel, and achieve this bound. When a BC channel
is available [RB89], or if no robustness but only fairness is required [FHHW03], the bound for
IT MPC can be improved to t < n

2 .
The adversarial setting is defined by the combination of the computational power of the

adversary and the cardinality of the set of corrupted parties. Impossibility proofs show that
most security guarantees can be achieved simultaneously (i.e. by a single protocol) only in a
subset of all adversarial settings. Cleve [Cle86] shows that fairness for general MPC can be
achieved only for t < n

2 actively corrupted parties. The same bound holds for IT security given
a broadcast channel [Kil00]. Ishai et al. [IKLP06] and Katz [Kat07] show that a protocol which
guarantees robustness for up to ρ corrupted parties can be secure with abort against at most n−ρ
corrupted parties, and describe CO secure protocols that match these bounds.

1.2 Hybrid Security and our Contribution

Conventional, non-hybrid MPC protocols distinguish only between adversarial settings in which
they provide all specified security guarantees, and settings in which they provide no security
guarantees at all. In contrast, MPC protocols with hybrid security provide different security
guarantees for each adversarial setting, without being aware of the actual setting. Hence, they
allow for graceful degradation of security.

Specifically, we discuss a protocol providing strong security guarantees for few corruptions
in the IT setting, and weaker security guarantees for many corruptions in the CO setting. More
precisely, for any robustness parameter ρ < n

2 and any static adversary actively corrupting t par-
ties, we describe an MPC protocol πρ that simultaneously provides IT security with robustness,
correctness and privacy for t ≤ ρ, IT security with fairness, correctness, and privacy for t < n

2 ,
and CO security with agreement on abort, correctness, and privacy for t < n − ρ. Hence, our
protocol is optimal under the bounds on fairness [Cle86], IT security [Kil00], and the trade-off
between robustness and privacy [IKLP06,Kat07].
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Our protocol is based on a complete network of synchronous secure channels, a synchronous
authenticated broadcast channel, and a common reference string (CRS). The security is proven
in the universal composability model [Can01]. In [Luc08,Rau10], we also present results for the
stand-alone setting without CRS.

Furthermore, we present a modified version of the protocol with weaker security guarantees,
which does not require a broadcast channel.

1.3 Related Work

Chaum [Cha89] sketches a protocol construction secure against passive adversaries that simul-
taneously guarantees CO privacy for any number of corrupted parties, and IT privacy for a
corrupted minority. In contrast to our work, [Cha89] does not discuss the active setting, and
hence does not guarantee correctness, fairness, or robustness in case of active corruptions. It
is not evident how this protocol would be extended to the active setting. A crucial technique
of both Chaum’s approach and ours is party emulation, which allows a set of parties to imple-
ment an additional virtual party for a higher level protocol. This technique was first used in
[Bra85] to improve the threshold of broadcast protocols in a setting where privacy is not rele-
vant. Damg̊ard et al. [DIK+08] extend the technique to improve the threshold of general MPC
protocols. In [HM00], this technique was discussed in the stand-alone setting for perfectly secure
MPC and applied to general adversary structures.

Fitzi et al. [FHHW03] improve upon [BGW88,CCD88] in the IT setting when no BC channel
is available by allowing for two thresholds tv and tc, where tv = 0 or tv + 2tc < n. For t ≤ tv
corrupted parties, fully secure MPC is achieved, while for tv < t ≤ tc corrupted parties, non-
robust (but fair) MPC is accomplished.

Another work by Fitzi et al. [FHW04] also combines IT and CO security: Up to a first
threshold tp, the security is IT. Between tp and a second threshold tσ, IT security is guaranteed
if the underlying PKI is consistent. Finally, between tσ and T , the protocol is as secure as
the signature scheme in use. Fitzi et al. show that their notion of hybrid MPC is achievable
for (2T + tp < n) ∧ (T + 2tσ < n), which they prove to be tight.

Both [FHHW03] and [FHW04] work in a setting without BC channel. When a BC channel
is provided, our results improve substantially upon those of [FHHW03,FHW04]. As [FHHW03]
only treats IT MPC and [FHW04] only treats robust MPC, both [FHHW03,FHW04] do not reach
beyond t < n

2 corrupted parties, nor are they easily extended. In contrast, we can guarantee CO
security with agreement on abort for t < n−ρ. In the setting without BC channel and for ρ > 0,
our results match those of [FHHW03] (which they prove optimal for this case). However, for
the special case that ρ = 0 (i.e., no robustness is required) our construction achieves IT fairness
for t < n

2 , and CO security with agreement on abort for t < n corrupted parties, which goes
beyond [FHHW03].

2 Security Definitions

2.1 Universal Composability

We follow the Universal Composability (UC) paradigm [Can01,BPW04], which uses a simulation-
based security model. Here, we only give a high-level overview of the paradigm, see [Can01] for
technical details. The security of a protocol (the real world) is defined with respect to a Trusted
Third Party or Ideal Functionality F that correctly performs all computations (the ideal world).
Informally, a protocol π is secure if whatever an adversary can achieve in the real world could
also be achieved in the ideal world.

More precisely, let P = {1, . . . , n} be the set of all parties. We only consider static corruptions
and use H ⊆ P to denote the set of honest parties, and A = P \ H to denote the set of
corrupted parties. In the real world, there is a given set of resources R to which, for each honest
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party i ∈ H, a protocol machine πi is connected. Apart from interacting with the resources,
protocol machines provide an interface to higher level protocols for input and output, called
an I/O-channel. Corrupted parties access the resources directly which models that they do not
adhere to the protocol. The complete real world is denoted by πH(R). In [Can01], resources are
modeled as ideal functionalities available in a hybrid model1 (e.g., authentic or secure channels,
broadcast channels). The ideal world consists of the ideal functionality F and an ideal adversary
(or simulator) σA connected to F via the interfaces of the corrupted parties A. This ideal world
is denoted by σA(F).

A protocol π is said to securely implement a functionality F if, for every possible set A of
corrupted parties, there is a simulator σA such that no distinguisher D can tell the real world
and the ideal world apart.2 For this purpose, the distinguisher directly interacts either with the
real or with the ideal world, by connecting to all open interfaces, and then outputs a decision
bit. This interaction is denoted by D(X), where X ∈ {πH(R), σA(F)}.

In [Can01], all protocol machines, simulators, ideal functionalities, and distinguishers are
modeled as interactive Turing machines (ITM). We define Σall as the set of all ITMs, and Σeff

as the set of polynomially bounded ITMs. Note that, in this paper, ITMs are specified on a higher
level of abstraction.

Definition 1. (Universally Composable (UC) Security) A protocol π UC securely implements
an ideal functionality F if ∀A ∃σA ∈ Σeff ∀D ∈ Σeff/all :

|Pr[D(σA(F)) = 1]− Pr[D(πH(R)) = 1]| ≤ ε(κ)
where ε(κ) denotes a negligible function in the security parameter κ. For D ∈ Σeff , the security
is computational (CO). For D ∈ Σall, the security is information-theoretic (IT).

Simulators must be efficient not only in the CO, but also in the IT setting, since otherwise,
IT security does not imply CO security. Our formalization of hybrid security uses ideal function-
alities that are aware of both the set of corrupted parties and the computational power of the
adversary. In other words, the behavior of the functionality, and hence the security guarantees,
varies depending on both parameters. A protocol π UC securely implements an ideal function-
ality F with hybrid-security if π securely implements F in both the CO and the IT setting. Note
that, in contrast to [Can01], we use a synchronous communication model with static corruption.
The bounds for MPC mentioned in Section 1.1 apply to this model.

In the UC setting, a strong composition theorem can be proven [Can01,BPW04]. This the-
orem states that wherever a protocol π is used, we can indistinguishably replace this protocol
by the corresponding ideal functionality F together with an appropriate simulator.3

2.2 Ideal Functionalities for MPC

MPC protocols implement ideal functionalities E that perform certain computations which are
described in some specified language. We describe computations as programs4, i.e. arbitrary
sequences of operations on values from a predefined finite field, where each operation is one of
input, addition, multiplication, or output.5 Given such a program C, an MPC functionality E [C]
evaluates the program operation-wise, and stores intermediate values internally in a vector of

1 Note that the term “hybrid model” is not related to the notion of hybrid security.
2 In this model, the adversary is thought of as being part of the distinguisher. Canetti [Can01] shows that

this model without adversary is essentially equivalent to a model with adversary, since the security definition
quantifies over all distinguishers.

3 This follows from the free interaction between the distinguisher and the system during the execution, which
implicitly models that outputs of the system can be used in arbitrary other protocols, even before the execution
ends. This is in contrast to a stand-alone definition of security where the distinguisher receives output only at
the end.

4 A computation could equivalently be modeled as a circuit.
5 It is out of scope of this paper how the program is determined. We simply assume that all entities “know”

what to do next.
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registers. Basically, it works as follows: In case of an input operation, E [C] receives an input from
a certain party over the corresponding I/O-channel and stores it internally in a new register. In
case of an addition operation, E [C] adds the two corresponding values internally, and stores the
result in a new register. The case of a multiplication operation is handled analogously. In case
of an output operation, E [C] retrieves the corresponding value from the register, and outputs it
to all parties.

The operations defined above capture only deterministic computations with symmetric out-
put. However, probabilistic computations with asymmetric output can be reduced to these oper-
ations [Blu81,CDG88]. Furthermore, note that such programs can also perform the computations
necessary for realizing an arbitrary protocol machine, thereby allowing for party emulation.

In our work, we are interested in ideal functionalities that evaluate programs with various
security guarantees (i.e. only with a subset of the security properties described in Section 1.1, but
generally at least encompassing privacy and correctness), depending on the adversarial setting.

Full Security implies privacy, correctness, and robustness. Hence, given a program C, an
ideal functionality evaluating C with full security follows the program without deviation.

Fair Security implies privacy, correctness, and fairness. Given a program C, an ideal func-
tionality evaluating C with fair security executes input, addition, and multiplication operations
without deviation. However, in case of an output operation, the functionality first requests an
output flag o ∈ {0, 1} from the adversary (default is o = 1 if the adversary makes no suitable in-
put). Then, for o = 1 the functionality executes the output operation with output to all parties,
for o = 0, the functionality halts.

Abort Security implies privacy, correctness, and agreement on abort. Given a program C, an
ideal functionality evaluating C with abort security executes input, addition, and multiplication
operations without deviation. In case of an output operation, the functionality first outputs the
corresponding value to the adversary and requests an output flag o ∈ {0, 1} from the adversary
(default is o = 1 if the adversary makes no suitable input). Then, for o = 1, the functionality
executes the output operation with output to all parties, for o = 0, the functionality halts.6

No Security: Given a program C, an ideal functionality evaluating C with no security
forwards all inputs from the honest parties to the adversary and lets the adversary determine all
outputs for honest parties. As a simulator σnoSec

A can use the inputs of honest parties to simulate
honest protocol machines, this already proves the following (rather trivial) lemma:

Lemma 1. Given a program C, any protocol π UC securely implements the ideal functionality
evaluating C with no security.

We therefore omit this case from the description of the simulators in this work.

3 A Protocol Overview

Our result for hybrid-secure MPC is formalized by the ideal functionality Ehyb
ρ [C]. This func-

tionality evaluates a program C with IT full security for t ≤ ρ corrupted parties, with IT fair
security for t < n

2 corrupted parties, and with CO abort security for t < n− ρ corrupted parties
(see Figure 1).

We present a protocol πρ that UC securely implements the functionality Ehyb
ρ [C] from an n-

party communication resource comn (consisting of a complete network of synchronous secure
channels and a synchronous authenticated n-party broadcast channel), and an n-party CRS crsn

drawn from a predefined distribution. A CRS (or an equivalent resource) is required to avoid
the impossibility results of [Can01,CF01]. It is possible to minimize the reliance on the crsn

such that our protocols tolerate an adversarially chosen crsn for few corrupted parties by ap-
plying techniques from [GK08,GO07] and a (t, 2t− 1)-combiner for commitments (e.g. [Her05]).

6 We could relax the definition further by allowing the adversary to send one output flag for each party, dropping
agreement on abort. However, all our protocols will achieve agreement on abort.
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Given a robustness parameter ρ < n
2

and a program C, the ideal functionality Ehyb
ρ [C] evaluates C according to

the number t of corrupted parties and according to the computational power of the adversary (CO or IT).

Setting Security Guarantees

t ≤ ρ IT/CO evaluate C with full security

ρ < t < n
2

IT/CO evaluate C with fair security
n
2
≤ t < n− ρ CO evaluate C with abort security

n
2
≤ t < n IT

evaluate C with no security
n− ρ ≤ t < n CO

Fig. 1. The ideal functionality Ehyb
ρ [C].

However, this construction is beyond the scope of this paper. In [Luc08,Rau10], we also discuss
results for the stand-alone setting without CRS.

The proof of Theorem 1 stating the security of the protocol πρ is an application of the UC
composition theorem to Lemma 2, Lemma 3, Corollary 1, and Lemma 5.

Theorem 1. Given a program C and a robustness parameter ρ < n
2 , protocol π

ρ UC securely

implements the ideal functionality Ehyb
ρ [C] evaluating C, from a complete and synchronous net-

work of secure channels and an authenticated broadcast channel comn, and a common reference
string crsn, in the presence of a static and active adversary.

3.1 Overview and Key Design Concepts

Basically, the protocol πρ consists of three protocol layers: On the lowest layer, the n parties use
a technique called party emulation to emulate another, (n+ 1)st party. The emulation of a party
makes it harder for the adversary to control this party: It is not sufficient to corrupt a single
party, but, in our case, it is necessary to corrupt at least n

2 real parties to control the emulated
party. Hence, more trust can be placed in this emulated party. On the middle layer, an (n+ 1)-
party MPC protocol is carried out among the n original parties and the emulated party. This
protocol provides IT guarantees given that a designated party is honest (this designated party
is the emulated party), and CO guarantees otherwise. While it already achieves the correctness,
robustness, and fairness requirements (both IT and CO), only the input of the designated party
is IT private. The remaining parties obtain only CO privacy. To additionally fulfill the privacy
requirement, on the highest layer, the parties exploit this asymmetry: Each party splits its input
into two halves, and provides one half as input via a regular party, and the other half as input
via the designated party. Additional techniques are required here to maintain correctness and
robustness.

More formally, the protocol πρ is modularized into three subprotocols: the emulation, the
designated party, and the input subprotocol. Each subprotocol implements an ideal functionality
on which the next subprotocol is based (see Figure 2).

The goal of the emulation subprotocol (Section 4) is to implement a protocol machine π∗

belonging to an (n+1)st party, as formalized by the ideal functionality emul[π∗] (Figure 4). This
subprotocol is based on the given resources comn and crsn. On the one hand, a protocol machine
performs certain computations that can be modeled as a program (see Section 2.2). On the
other hand, it communicates with given resources. As a consequence, the subprotocol for party
emulation is again modularized into two subprotocols πprog and πcon. The subprotocol πprog

implements an MPC functionality to evaluate the program of π∗ (Section 4.1). The subprotocol
πcon enables the interaction between the emulated π∗ and the resources comn+1 and crsn+1

(Section 4.2).
The designated party subprotocol πdes,ρ (Section 5) is basically an (n + 1)-party protocol

and implements the ideal functionality Edes,em
ρ [C′] that provides stronger security guarantees if

a designated party is honest. This subprotocol is based on emul[π∗]. While we think of protocol
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Ehybρ [C]

Edes,emρ [C ′]

emul[π∗]

E IT[C∗]

comncrsn comn

πprog

πcon

πdes,ρ

πin Input Subprotocol

where C ′ is C with a modified input operation

Designated Party Subprotocol

where π∗ = πdes,ρ0

Emulation Subprotocol

where C∗ = πcon0 (π∗)

Fig. 2. A visualization of the construction underlying our hybrid-secure MPC protocol πρ.

πdes,ρ as an n + 1 party protocol, one of the protocol machines (πdes,ρ
0 ) is actually emulated by

the ideal functionality emul[π∗], i.e. in fact we set the parameter π∗ = πdes,ρ
0 and run an n-party

protocol πdes,ρ
1 , . . . , πdes,ρ

n on a resource that emulates the (n+ 1)st party πdes,ρ
0 .

Finally, the input subprotocol πin (Section 6) implements the ideal functionality for hybrid

security, Ehyb
ρ [C], based on Edes,em

ρ [C′]. For this purpose, we define the program C′ evaluated by

Edes,em
ρ [C′] to be equivalent to the program C evaluated by Ehyb

ρ [C], however with a modified input
operation taking into account the input splitting and the techniques to preserve correctness and
robustness mentioned above.

4 Party Emulation

In this section, we describe a technique for party emulation. This technique allows to emulate an
arbitrary protocol machine π∗ and to employ it in a higher level protocol. A protocol machine
fulfills two tasks which we discuss separately: On the one hand, it performs certain computations
(discussed in Section 4.1), on the other hand, it sends and receives messages over its interfaces
(discussed in Section 4.2).

4.1 Protocol πprog: Emulating the Computation of π∗

A protocol machine π∗ internally performs certain computations. These computations can be
modeled as a program that can be evaluated by an MPC functionality, as discussed in Section 2.2.
For the purpose of achieving hybrid-secure MPC, we require the emulation of π∗ to be IT
full secure for t < n

2 corrupted parties. This security requirement is captured by the ideal
functionality E IT[C∗] evaluating a program C∗ (Figure 3). Note that in Section 4.2, we define
C∗ such that it contains not only the operations performed by π∗, but additional operations
enabling communication over the interfaces of π∗.

Given a program C∗, the ideal functionality E IT[C∗] evaluates C∗, according to the number t of corrupted parties:

Setting Security Guarantees

t < n
2

IT/CO evaluate C∗ with full security
n
2
≤ t IT/CO evaluate C∗ with no security

Fig. 3. The ideal functionality E IT[C∗].
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The subprotocol πprog has to implement the ideal functionality E IT[C∗] from a complete
network of synchronous secure channels and a BC channel. As stated in Lemma 2, the protocol
presented in [RB89] already fulfills all requirements.

Lemma 2 ([RB89,CDD+99,Can01]). Given an arbitrary program C∗, there is a protocol that
UC securely implements the ideal functionality E IT[C∗] from a complete network of synchronous
secure channels and a BC channel comn, in the presence of a static and active adversary.

4.2 Protocol πcon: Connecting π∗ to the Resources

In the previous section, we described a protocol πprog that emulates the computations of a
protocol machine π∗. In this section, we describe a protocol πcon that enables the communication
over the interfaces of the emulated π∗. This communication includes the interaction with the
resources (i.e. a complete network of synchronous secure channels and a BC channel for n + 1
parties, denoted by comn+1, and an (n + 1)-party CRS crsn+1), as well as the input from and
output to the emulating parties. Before we present the protocol πcon, we give a formal description
of the ideal functionality emul[π∗] implemented by πcon.

The Ideal Functionality for Emulated Parties We now give a description of the ideal
functionality emul[π∗] (summarized in Figure 4). Basically, emul[π∗] internally emulates the
resources comn+1 and crsn+1, and a protocol machine π∗. This protocol machine is given to
emul[π∗] as a parameter, and is an arbitrary protocol machine with the condition that it has
a comn+1 and a crsn+1 interface, and n I/O-channels (instead of a single one as usual). These
n I/O-channels belong to the n parties emulating π∗. Accordingly, the interface of emul[π∗] for
each party consists of three subinterfaces: Each party has access to its corresponding interfaces of
comn+1 and crsn+1, and may provide input to and receive output from π∗ over its corresponding
I/O-channel to π∗.

For t < n
2 corrupted parties, emul[π∗] internally emulates the ideal functionalities comn+1 and

crsn+1, and the protocol machine π∗, and connects them accordingly. In this setting, the protocol
machine π∗ works according to its specification, i.e. can be considered honest. We denote this
behavior of emul[π∗] with [crsn+1, comn+1, π∗].

For t ≥ n
2 , emul[π∗] transfers control over the (emulated) protocol machine π∗ to the adver-

sary. Hence, emul[π∗] only emulates comn+1 and crsn+1, and gives the adversary access not only
to the interfaces of comn+1 and crsn+1 belonging to corrupted parties, but also to the interfaces
belonging to the emulated protocol machine π∗. Furthermore, the I/O-channels from honest
parties to π∗ are directly connected to the adversary. We denote this behavior of emul[π∗] with
[crsn+1, comn+1].

Given a protocol machine π∗, the ideal functionality emul[π∗] evaluates a program either for [crsn+1, comn+1, π∗]
or for [crsn+1, comn+1], according to the number t of corrupted parties:

Setting Security Guarantees

t < n
2

IT/CO evaluate the program for [crsn+1, comn+1, π∗] with full security
n
2
≤ t IT/CO evaluate the program for [crsn+1, comn+1] with full security

Fig. 4. The ideal functionality emul[π∗].

Protocol πcon Here, we describe a protocol πcon that implements the ideal functionality
emul[π∗], based on the ideal functionalities E IT[C∗] (evaluating a program C∗ to be defined below),
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comn, and crsn.7 The task of πcon is twofold: On the one hand, it turns the n-party resources
comn and crsn into resources for n + 1 parties. On the other hand, it connects the emulated
protocol machine π∗ (running as part of C∗ on E IT[C∗]) to these resources. The protocol πcon

consists of the n protocol machines πcon
1 , . . . , πcon

n run by the real parties, and an additional pro-
tocol machine denoted by πcon

0 that runs as part of C∗ on E IT[C∗]. In fact, πcon
0 is a wrapper for

π∗, and we parametrize E IT[C∗] with the program that emulates πcon
0 connected to all interfaces

of π∗, which we denote by C∗ = πcon
0 (π∗).

Each protocol machine πcon
i (i ∈ {1, . . . , n}) is connected to the resources comn, crsn and

E IT[C∗]. In turn, via its I/O-channel to higher level protocols, πcon
i provides access to a comn+1,

a crsn+1, and one I/O-channel of π∗. The protocol machine πcon
0 is connected to all interfaces of

π∗. Furthermore, each one of the n interfaces of E IT[C∗] (the ideal functionality evaluating C∗ =
πcon

0 (π∗)) serves as a secure channel between πcon
0 and a protocol machine πcon

i (i ∈ {1, . . . , n}).
Using these secure channels, protocol πcon enables the interaction between π∗ and the resources
comn and crsn, and thereby extends these resources to (n+ 1)-party resources.

Basically, the protocol machines πcon
i only receive messages and forward them on the correct

interface and with the correct label. For broadcast messages and the CRS, consensus among all
parties is guaranteed by additionally performing a majority vote on messages relating to πcon

0 .
Given that t < n

2 parties are corrupted, this results in a correct (n + 1)-party broadcast and
CRS. For t ≥ n

2 corrupted parties, π∗ is controlled by the adversary and it is not necessary to
securely extend the resources. Figures 5 and 6 provide a technical description of the protocol
machines πcon

0 and πcon
i (i ∈ {1, . . . , n}), respectively.

Lemma 3. Protocol πcon UC securely implements emul[π∗] from comn, crsn, and the function-
ality E IT[C∗] evaluating C∗ = πcon

0 (π∗), in the presence of a static and active adversary.

Proof. In order to prove Lemma 3, we need to provide a simulator σcon
A such that the ideal

model σcon
A (emul[π∗]) becomes IT indistinguishable from the real model πcon

H (comn ‖ E IT[C∗] ‖
crsn). The simulator σcon

A connects to all interfaces of emul[π∗] associated with corrupted par-
ties. The interface exposed by emul[π∗] to an honest party consists of a subinterface to the
network comn+1, a subinterface to the crsn+1, and a subinterface to one I/O-interface of the
protocol machine π∗ (all these machines are internally emulated by emul[π∗]). The interface
provided to the simulator depends on the number of corrupted parties. In case t < n

2 , the in-
terfaces for the corrupted parties are identical to the interfaces provided to honest parties. In
case t ≥ n

2 , intuitively speaking, the emulation of π∗ fails and is controlled by the adversary.
Hence, in addition to the previously mentioned interfaces, the I/O-channels to π∗ belonging to
honest parties are connected to the simulator σcon

A . Furthermore, σcon
A has access to the comn+1-

and crsn+1-interfaces belonging to party 0.

The simulator σcon
A internally simulates an instance c̃omn of comn, an instance c̃rsn of crsn,

and copies π̃con
i of πcon

i for the honest parties i ∈ H. Furthermore, for t < n
2 , σcon

A internally

simulates a copy π̃con
0 of πcon

0 . Note that π̃con
0 is not connected to a protocol machine π̃∗, i.e. in

addition to the usual n interfaces to the πcon
i (i ∈ [n]), π̃con

0 has interfaces corresponding to the
n I/O-interfaces, the comn+1 and the crsn+1 of π∗.

These simulated machines are connected as in protocol πcon, i.e. each π̃con
i is connected to

c̃omn and c̃rsn. The simulator σcon
A uses the (unconnected) I/O-interface of the π̃con

i for the

simulation. The (unconnected) interfaces of c̃omn and c̃rsn belonging to corrupted parties are
exposed to the distinguisher. For t < n

2 , the channels from π̃con
0 towards the honest πcon

i are

connected to the simulated π̃con
i (i ∈ H). The corresponding channels towards the corrupted

πcon
i are exposed to the distinguisher. The interfaces of π̃con

0 to the I/O-channels of π∗ belonging
to corrupted parties are connected to the corresponding subinterfaces of emul[π∗]. The interfaces

7 As stated in Theorem 1, we assume a single resource comn. However, for the emulation subprotocol, we require
two independent copies of comn, which can be achieved by multiplexing the given comn.
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of π̃con
0 to the I/O-channels of π∗ belonging to honest parties are left unconnected (we argue

below why there are no messages over these channels). The simulator σcon
A uses the (unconnected)

interface of π̃con
0 to the comn+1- and crsn+1-interface of π∗ for the simulation. If t ≥ n

2 , there is no

π̃con
0 , and the channels from π̃con

i towards πcon
0 are exposed to the distinguisher. Furthermore, as

mentioned above, emul[π∗] connects the I/O-channels to π∗ belonging to honest parties directly
to σcon

A , which in turn forwards them to the distinguisher.

At the beginning of the simulation, the simulator σcon
A retrieves the CRS from emul[π∗] and

sets the simulated c̃rsn to the same value. Now, when a (private or BC) message m is received
from an honest party i via comn+1 (i ∈ H), the simulator σcon

A inputs m over the I/O-interface

to the simulated π̃con
i , which in turn will send corresponding messages over the simulated c̃omn

and/or to πcon
0 . On the other hand, when a π̃con

i outputs a (private or BC) message m from
a corrupted party j on the I/O-interface, this means party j has sent the message m and
simulator σcon

A forwards m to comn+1 via the interface of party j.

For t < n
2 , (private and BC) messages on the comn+1-interface of π̃con

0 towards π∗ are handled

in the same way as for honest parties. Messages on the crsn+1-interface of π̃con
0 towards π∗ are

ignored. Now we argue why there are no messages on the interfaces of π̃con
0 to the I/O-channels

of π∗ belonging to honest parties. In the real world, messages from honest parties to the I/O-
interace of π∗ are first input to the corresponding πcon

i , from there forwarded to πcon
0 and further

onwards to π∗ (or the other way round). In the ideal world, the simulator does not obtain these
messages. Hence, these interfaces are unused (indistinguishability is maintained, see below).

For t ≥ n
2 , the simulator connects both the channels from π̃con

0 (i ∈ H) towards πcon
0 , as well

as the I/O-channels from honest parties towards π∗ (provided by emul[π∗] for t ≥ n
2 ) directly to

the distinguisher (note that this is perfectly indistiguishable from the real world).

It is fairly straightforward to see that the real and the ideal world are perfectly indistin-
guishable. All information that is revealed to the adversary in the real world, is revealed to the
simulator in the ideal world. Therefore, the simulation consists only of copying and duplicating
the messages on the corresponding channels (as described by the protocol πcon). Note that this
observation holds also for messages sent and received by party 0 in the case t < n

2 . For private and
BC messages, the argument is identical as for honest parties. The I/O-channels to π∗ belonging
to corrupted parties in the ideal world are connected identically as in the real world. Note that
messages over I/O-channels to π∗ belonging to honest parties are not simulated. As described
above, in the real world, these messages pass through the system without the adversary noticing
it (in the same sense as for secret messages between honest parties). Hence, a simulation is not
necessary.

5 MPC with a Designated Party

In this section, we present an (n+1)-party protocol πdes,ρ that implements an ideal functionality
Edes
ρ [C′] for designated party MPC from a common reference string crsn+1 and an (n+ 1)-party

communication resource comn+1. The behavior (and hence the provided security guarantees) of
the ideal functionality Edes

ρ [C′] depend in particular on a designated party. For ease of notation,
we assume that this designated party is party 0, and that the remaining parties are numbered
1, . . . , n.

For the sake of simplicity, we describe the designated party protocol as a usual (n+ 1)-party
protocol, without taking into account that one of the parties is emulated. The security of the
corresponding subprotocol in our construction can easily be derived from the security of this
(n+ 1)-party protocol, and is stated in Corollary 1.
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πcon
0 connects to all interfaces of protocol machine π∗, i.e. to the comn+1 interface, the crsn+1 interface and to

the n I/O-interfaces. In turn, πcon
0 makes direct use of the n interfaces of E IT[C∗] as secure channels to the πcon

i

(i ∈ {1, . . . , n}). πcon
0 then processes messages as follows:

Secure Channels: Messages from πcon
i that are labeled as secret message from party i are forwarded to the

comn+1-interface of π∗. Messages for party i from the comn+1-interface of π∗ are labeled as secret message
from the emulated party and sent to πcon

i .
I/O for π∗: Messages from πcon

i labeled as input to π∗ are forwarded to the protocol machine π∗ as input to
the I/O-interface of party i. Outputs from π∗ on the I/O-interface of party i are labeled as such and sent
to πcon

i .
Broadcasts: Messages labeled as broadcast messages from party j, if received identically from more than n

2

protocol machines πcon
i , are forwarded to the comn+1-interface of π∗ as broadcast messages from party j.

Otherwise, they are ignored. Broadcast messages from the comn+1-interface of π∗ are labeled as broadcast
messages from the emulated party and sent to all πcon

i (i ∈ {1, . . . , n}).
CRS: A message labeled as CRS, if received identically from more than n

2
protocol machines πcon

i , is forwarded
to the crsn+1 interface of π∗. Otherwise, it is ignored.

Fig. 5. The protocol machine πcon
0 .

πcon
i connects to the interfaces of comn, crsn and E IT[C∗] belonging to party i. The interface to E IT[C∗] serves as

a secure channel to πcon
0 . Via its I/O-channel, πcon

i provides access to a comn+1, a crsn+1, and one I/O-channel
of π∗. πcon

i then processes messages as follows:

Secure Channels: Messages arriving on the I/O-channel labeled as secret messages for party j (j ∈ {1, . . . , n})
are forwarded to comn. Messages from party j arriving on the comn-interface are output over the I/O-
channel as messages from party j. Messages arriving on the I/O-channel labeled as secret messages for π∗

are forwarded to πcon
0 . Messages from πcon

0 labeled as secret message from π∗ to party i are output over the
I/O-channel as messages from π∗.

I/O for π∗: Messages arriving on the I/O-channel labeled as inputs to π∗ are forwarded to πcon
0 . In turn,

messages from πcon
0 labeled as outputs from π∗ are output over the I/O-channel.

Broadcasts from party i ∈ {1, . . . , n}: Broadcast messages arriving on the I/O-channel are forwarded
to comn and to πcon

0 , labeled as broadcast messages from party i. Broadcast messages from party j ar-
riving on the comn-interface (unless labeled as originating from π∗) are both output over the I/O-channel
and forwarded to πcon

0 , labeled as broadcast from party j.
Broadcasts from π∗: Messages from πcon

0 labeled as broadcast messages from π∗ are forwarded as broadcast
messages to comn (including the label). Broadcast messages arriving on the comn-interface labeled as
originating from π∗, if received identically from more than n

2
parties j, are output over the I/O-channel as

broadcast message from π∗.
CRS: On first activation, πcon

i retrieves the CRS from the crsn functionality, labels it accordingly, and both
outputs it over the I/O-channel and sends it to πcon

0 .

Fig. 6. The protocol machine πcon
i .

5.1 The Ideal Functionality for Designated Party MPC

The ideal functionality Edes
ρ [C′] for n+ 1 parties evaluates an arbitrary program C′ and provides

stronger security guarantees if the designated party 0 is honest. In the following descriptions,
the number t of corrupted parties always pertains to the parties 1, . . . , n, and never includes
the designated party 0, which is treated separately. If the designated party 0 is honest, func-
tionality Edes

ρ [C′] guarantees IT security with correctness and fairness for all parties, as well as
IT privacy for the input from party 0, against any number of corrupted parties. Additionally, it
guarantees IT robustness against t ≤ ρ corrupted parties. If the designated party 0 is corrupted,
functionality Edes

ρ [C′] still provides CO security with correctness and privacy to the honest parties

against t < n− ρ corrupted parties. The functionality Edes
ρ [C′] is described in Figure 7.

5.2 A Designated Party MPC Protocol

We now describe a designated party MPC protocol πdes,ρ which implements the (n + 1)-party
functionality Edes

ρ [C′] for designated party MPC from a common reference string crsn+1 and
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Given a robustness parameter ρ < n
2

and a program C′, the ideal functionality Edes
ρ [C′] evaluates C′ according to

the computational power of the adversary (CO or IT), the honesty of party 0, and the number t of corrupted
parties in {1, . . . , n}. Edes

ρ [C′] provides one interface to each party i ∈ {1, . . . , n}, and n interfaces to party 0.

Setting Security Guarantees
IT/CO Party 0 t Priv. party 0 Priv. party i Cor. Fair. Rob.

IT
honest

t ≤ ρ yes no yes8 yes yes
ρ < t ≤ n yes no yes8 yes no

corrupted 0 ≤ t ≤ n (corrupted) no no no no

CO
honest

t ≤ ρ yes yes yes yes yes
ρ < t ≤ n yes yes yes yes no

corrupted
t < n− ρ (corrupted) yes yes no no

n− ρ ≤ t ≤ n (corrupted) no no9 no no

Addition and multiplication operations are always executed without deviation. In contrast, the execution of
input and output operations depend on the security guarantees:
Privacy for party j ∈ {0, . . . , n}: Execute input operations for party j without deviation.
No privacy for party j ∈ {0, . . . , n}: The input is additionally sent to the adversary.
Robustness: Execute output operations without deviation.
No robustness but fairness: In case of an output operation, request an output flag o ∈ {0, 1} from the
adversary (default is o = 1 if the adversary makes no suitable input). Then, for o = 1, execute the output
operation with output to all parties, for o = 0 halt.
No fairness but correctness: In case of an output operation, output the corresponding value to the adversary
and request an output flag o ∈ {0, 1} from the adversary (default is o = 1 if the adversary makes no suitable
input). Then, for o = 1, execute the output operation with output to all parties, for o = 0 halt.
No correctness: Receive a value from the adversary and output this value to all parties.

Fig. 7. The ideal functionality Edes
ρ [C′].

an n+ 1 party communication resource comn+1. We obtain protocol πdes,ρ by adapting the CO
MPC protocol of [CLOS02] to our needs.

The protocol in [CLOS02] evaluates programs consisting of input, addition, multiplication,
and output operations (see Section 2.2). During an input operation, the party providing input
commits to its input and shares it among all parties according to a predefined secret sharing
scheme. In [CLOS02], this is a simple XOR n-out-of-n sharing, but as described in [Gol04] a
different sharing can be used to trade privacy for robustness. Addition operations are evaluated
locally. To evaluate a multiplication operation, [CLOS02] uses oblivious transfer (OT) primitives.
All intermediate results are computed as sharings, and each party is committed to its shares.
To achieve security against active adversaries, each party proves the correctness of the messages
it sends using zero-knowledge (ZK) proofs. During output operations, each party opens the
commitment to its share of the final result, which can then be reconstructed locally.

Essentially, to achieve the asymmetric security guarantees of Edes
ρ [C′], we need to provide

IT security guarantees to the designated party, without compromising the original CO security
guarantees for the remaining parties. In the following, we describe how the components in
[CLOS02] can be modified accordingly.

Summary of Modifications. The protocol in [CLOS02] is based on three primitives: OT,
commitment, and ZK proofs. Basically, these primitives are two-party primitives, and each one
can be implemented such that one of the two parties obtains IT security guarantees, while
the other party still has CO guarantees. Below, a detailed discussion of suitable primitives can
be found. Hence, in each invocation between the designated party and a normal party, the

8 Correctness is maintained in the sense that the ideal functionality still performs the desired computation.
However, the adversary may make inputs dependent on the inputs of honest parties in the current and previous
input phases.

9 Our protocol πdes,ρ could be modified to achieve correct and input-independent non-interactive MPC in this
case. For our subsequent results, though, we need not demand correctness here.
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designated party can be protected against an IT adversary. Using such primitives is merely a
refinement of [CLOS02], so, in the CO setting, the original security guarantees are still valid.

Furthermore, we need to modify the sharing scheme and the output reconstruction in [CLOS02]
in order to meet the robustness and fairness requirements. We have to robustly tolerate t ≤ ρ
corruptions among the parties i ∈ {1, . . . , n}, while preserving the unconditional privacy of
party 0. This can be accomplished by modifying the underlying sharing of [CLOS02] as de-
scribed in [Gol04, Section 7.5.5]. We use a sharing scheme where any set M of n− ρ+ 1 parties
that includes party 0 is qualified, i.e., can reconstruct. Such a sharing can efficiently be imple-
mented using a (2n − ρ)-out-of-(2n) Shamir-sharing where party 0 receives n shares and each
remaining party i obtains a single share. Here, we inherently trade privacy for robustness: Any
qualified set M of parties can reconstruct the input of the remaining parties. So, on the one
hand, any qualified set M of honest parties can recover the input of up to ρ corrupted par-
ties i ∈ {1, . . . , n}. This ensures robustness, when t ≤ ρ corrupted parties try to disrupt the
computation. On the other hand, any such qualified set M of corrupted parties can violate the
privacy of the remaining parties.

Finally, we have to guarantee fairness whenever party 0 is honest. As noted in [Gol04], a party
can violate fairness only if it holds the last share required for reconstruction and all other parties
already opened their commitments. In our case, party 0 is always required for reconstruction.
Hence, if we specify that party 0 opens last and only if it can contribute sufficiently many shares
such that all parties can reconstruct the result, then the resulting protocol πdes,ρ is fair in the
IT setting as long as party 0 is honest.

Primitives Providing IT Security for a Designated Party. We discuss suitable CO prim-
itives for [CLOS02], namely OT, commitments, (perfectly) zero-knowledge arguments of knowl-
edge (ZK-AoK), and CO zero-knowledge proofs of knowledge (cZK-PoK) which IT protect the
designated party 0.

Oblivious Transfer. As shown in [CLOS02, Section 4.1.1] the OT protocol of [GMW87,Gol04,
pp. 640–643] is UC secure. Furthermore, it is easy to see that it IT protects the receiver. The
[CLOS02] protocols make no restriction as to which participant of an OT execution acts as
sender or receiver. So we may use said OT protocol and still IT protect party 0 by making
party 0 the receiver in every invocation of OT involving party 0. Alternatively, a UC secure
OT protocol that IT protects the sender can be obtained by “turning around” the above OT as
shown in [Wul07, Theorem 4.1]. Thus, security for party 0 is guaranteed in any OT invocation,
even with an IT adversary.

Commitment. For [CLOS02], we use the UC secure, one-to-many IT hiding and IT binding
commitment schemes in the CRS-model described in Appendix A. For our purpose, we employ
the IT binding variation for commitments issued by the parties i ∈ {1, . . . , n}, and the IT
hiding variation for commitments issued by the designated party 0. Thus we obtain a UC secure
realization of the one-to-many commitment functionality FCom,1:M that guarantees security for
party 0 against any IT adversary.

ZK proofs. [CLOS02, Prop. 9.4] shows how to UC securely implement the ZK functionality
FZK,1:M from the commitment functionality FCom,1:M without use of further CO assumptions.10

The one-to-many ZK protocol of [CLOS02] is based on the two party protocol of [CF01, Sec-
tion 5]. This protocol in turn is based on the Hamiltonian Cycles ZK proof. Hence, on the one
hand, when using an IT binding commitment scheme, we obtain cZK-PoKs. On the other hand,
when using an IT hiding commitment scheme, we obtain ZK-AoKs. The one-to-many property

10 Actually, this protocol is secure against adaptive adversaries. For static adversaries a non-interactive protocol
might be used. However, for ease of discussion, we directly use the adaptive protocol.
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is obtained by repeating the two-party protocol with each party over the broadcast channel. In
addition, the proof is accepted only if the transcripts of all invocations constitute valid proofs.
Now, if party 0 is the prover, we instantiate the one-to-many commitment functionality FCom,1:M

with the IT hiding scheme described above. Otherwise, we instantiate FCom,1:M with the IT
binding scheme. Thus we obtain a protocol that is always secure for party 0, even against any
IT adversary.

Commit-and-Prove. Instead of directly working with commitment and ZK functionalities (as
[GMW87] does), [CLOS02] introduces a new primitive called one-to-many commit-and-prove
FCP,1:M. [CLOS02, Section 7.1] provides a protocol implementing the two-party11 functional-
ity FCP secure against static adversaries, which relies only on FZK and a standard commitment
scheme C (together with the corresponding computational assumptions). Since this protocol is
non-interactive, it can easily be extended into a one-to-many protocol by having the sender
broadcast all messages and use FZK,1:M instead of FZK. Furthermore, we modify the implemen-
tation of FCP,1:M to use the functionality FZK,1:M as described above, and (standard) IT hiding
(party 0) or IT binding (parties 1, . . . , n) commitments for C to IT protect the designated
party 0. Further CO assumptions are not required. Thus, we can implement the commit-and-
prove functionality FCP,1:M UC securely for party 0, even against any IT adversary.

5.3 The Security of the Designated Party Protocol

The modifications to the protocol from [CLOS02] result in a protocol πdes,ρ that provides the
designated party 0 with IT security guarantees, while protecting the remaining parties with CO
security.

Lemma 4. Given an arbitrary program C′ and a robustness parameter ρ < n
2 , protocol π

des,ρ

UC securely implements the ideal functionality Edes
ρ [C′] evaluating C′, from a complete and syn-

chronous network of secure channels and an authenticated broadcast channel comn+1, and a
common reference string crsn+1, in the presence of a static and active adversary.

Proof. We will now show that the modified version of [CLOS02] described in Section 5.2 fulfills
the security requirements formalized by the ideal functionality Edes

ρ [C′] (Figure 7).

Case 1: CO security with robustness for t ≤ ρ and fairness beyond, party 0 honest. This claim
follows immediately from the IT security guarantees of protocol πdes,ρ shown in Case 3, and the
CO security guarantees shown in Case 2.

Case 2: CO security with abort for t < n−ρ corrupted parties, party 0 corrupted. CO correctness
and privacy are already implied by [CLOS02]. Our modifications to CO primitives and opening
procedures are within the limits of the original protocol and only apply restrictions as to what
kinds of primitives are used in specific situations. The modification to the sharing can be treated
as in [Gol04]. The shares observed by corrupted parties are still uniformly random for t < n− ρ
corrupted parties. Therefore, the modifications to the simulator described in [CLOS02] remain
trivial, and the proof in [CLOS02] remains applicable with minimal modifications. In summary,
we obtain a CO secure implementation of the ideal functionality in this case.

Note that agreement on abort is achieved: The only way to make a party abort is to send
an incorrect message (one for which the zero-knowledge proof does not hold). However, since
the message together with the proof is sent over a BC channel, this will be noted by all honest
parties and they will all abort.

11 The one-to-many protocol presented in [CLOS02, Prop. 9.5] encompasses adaptive adversaries.
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Case 3: IT security for an honest party 0 with robustness for t ≤ ρ, and with fairness for
t < n − ρ. We sketch a simulator to demonstrate that [CLOS02], tweaked as described above,
UC securely implements the ideal functionality Edes

ρ [C′] in the given setting. That means, the
protocol guarantees correctness, privacy for party 0, and fairness for an IT adversary corrupting
t < n−ρ parties (not including party 0), and additionally guarantees robustness for t ≤ ρ (again
not including party 0).

The simulator receives the inputs of all honest parties except party 0 from the ideal function-
ality Edes

ρ [C′]. It then simulates the protocol machine of the (honest) party 0 on arbitrary input

x′0, and the protocol machines of the remaining honest parties on the input received by Edes
ρ [C′].

Furthermore corrupted parties have to commit to their input using binding UC commitments12,
so by extractability the simulator can extract their inputs and forward them to Edes

ρ [C′]. The
simulation then proceeds up to the point where an output y is opened, i.e. where the simulator
receives a y from Edes

ρ [C′]. Recall that party 0, which is honest by assumption and thus simulated
internally by the simulator, is supposed to broadcast its opening information last, and only if
sufficiently many (i.e. n − ρ) parties have broadcasted their opening information correctly, in
order to guarantee correct reconstruction of y.

We first consider the case where ρ < t ≤ n− ρ parties are corrupted. Thus, we only need to
guarantee fairness. If at least t − ρ corrupted parties broadcast their opening information cor-
rectly, then the simulator makes use of the equivocability of commitments to have the internally
simulated party 0 open the commitments to its shares of the output such that the value y is
reconstructed, and sets the output flag to o = 1. If less then t− ρ corrupted parties open their
commitments, the simulator only sets the output flag to o = 0 and halts.

Given that t ≤ ρ parties are corrupted, the adversary can no longer prevent the honest
parties from reconstructing the output. Hence, party 0, regardless of the shares distributed by
the adversary, opens the output to y, again making use of the equivocability of commitments.

The behavior of the simulator is IT indistinguishable from the real protocol. Note that the
only distinguishable difference is the value of the input of party 0. As in the real protocol,
the designated party 0 in the simulation only converses with the other parties by means of
hiding commitments, ZK proofs and OT invocations IT protecting party 0. Furthermore, the
sharing scheme is such that without cooperation of the designated party 0, which is honest by
assumption, no information can be recovered. As such no information whatsoever is disseminated
by the designated party 0 to the corrupted parties until reconstruction takes place in an opening
phase. Therefore, the simulated input of party 0 x′0 cannot be distinguished from the real input
x0.

Case 4: IT, party 0 corrupted (t ≥ n
2 ), no security guarantees. As we make no security guarantees

in this case, indistinguishability follows from Lemma 1.

Computational assumptions sufficient for implementing the necessary primitives for proto-
col πdes,ρ, in particular perfectly hiding or perfectly binding UC secure commitments [DN02],
are, for instance, the p-subgroup assumption or the decisional composite residuosity assumption.
A similar approach, where all parties use primitives that IT disclose no undesired information
is used in [KMR09] to achieve long-term security for specific functions.

5.4 The Ideal Functionality Edes,em
ρ [C′]

The protocol πdes,ρ does not fit directly into the setting of the overall protocol πρ: On the one
hand, in protocol πρ, there are only n parties running a protocol based on the functionality
emul[π∗] emulating π∗ = πdes,ρ

0 and the resources comn+1 and crsn+1. On the other hand, these

n parties have to implement the ideal functionality Edes,em
ρ [C′], and not Edes

ρ [C′], where the only

12 Providing extractability and equivocability by means of the crsn, see Appendix A.
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difference is that Edes,em
ρ [C′] is specialized for a setting where the designated party 0 is emulated.

That means, the security guarantees provided by Edes,em
ρ [C′] do not depend on the honesty of

party 0, but on the bound t < n
2 for a correct emulation (see Section 4.1). More to the point,

IT privacy, correctness and fairness can be violated only by a corrupted majority. Furthermore,
the input for party 0 is provided by the n real parties. For this purpose, Edes,em

ρ [C′] provides a
second interface to each party, corresponding to one of the n interfaces of party 0 to Edes

ρ [C′].
Inputs over these interfaces are treated as input from party 0 when evaluating the program C′.
That is, the privacy of these inputs is guaranteed even against IT adversaries.

A formal description of Edes,em
ρ [C′] is obtained by replacing the condition on the honesty of

party 0 in Figure 7 by the bound t < n
2 , and adjusting the interfaces accordingly (see Figure 8).

Given a program C′, the ideal functionality Edes,em
ρ [C′] evaluates C′ according to the computational power of

the adversary (CO or IT), and the number t of corrupted parties. Edes,em
ρ [C′] provides each party i with two

interfaces. One interface is the regular interface that is equivalent to the interface provided by Edes
ρ [C′] to party i.

The other interface is called the party-0-interface and corresponds to one of the n interfaces provided by Edes
ρ [C′]

to party 0.

Setting Security Guarantees
IT/CO t Privacy party-0-interfaces Privacy regular interface i Cor. Fair. Rob.

IT
t ≤ ρ yes no yes8 yes yes

ρ < t < n
2

yes no yes8 yes no
n
2
≤ t ≤ n no no no no no

CO

t ≤ ρ yes yes yes yes yes
ρ < t < n

2
yes yes yes yes no

n
2
≤ t < n− ρ no yes yes no no

n− ρ ≤ t ≤ n no no no9 no no

Addition and multiplication operations are always executed without deviation. In contrast, the execution of
input and output operations depend on the security guarantees:
Privacy for party-0-interface or regular interface i: Execute input operations over this interface without
deviation.
No privacy for a regular interface: Input over this interface is additionally sent to the adversary.
No privacy for a party-0-interface: The input is sent to the adversary, who might replace it. In other words,
in that case, the party-0-interfaces are controlled by the adversary.
Robustness: Execute output operations without deviation.
No robustness but fairness: In case of an output operation, request an output flag o ∈ {0, 1} from the
adversary (default is o = 1 if the adversary makes no suitable input). Then, for o = 1, execute the output
operation normally (with output to all parties), for o = 0 halt.
No fairness but correctness: In case of an output operation, output the corresponding value to the adversary
and request an output flag o ∈ {0, 1} from the adversary (default is o = 1 if the adversary makes no suitable
input). Then, for o = 1, execute the output operation normally (with output to all parties), for o = 0 halt.
No correctness: Receive a value from the adversary and output this value to all parties.

Fig. 8. The ideal functionality Edes,em
ρ [C′].

Basically, the following corollary is only a technical modification of Lemma 4 to our needs:

Corollary 1. Given an arbitrary program C′ and a robustness parameter ρ < n
2 , the protocol

machines πdes,ρ
1 , . . . , πdes,ρ

n UC securely implement the ideal functionality Edes,em
ρ [C′] evaluating C′,

from the ideal functionality emul[π∗] parametrized with π∗ = πdes,ρ
0 , in the presence of a static

and active adversary.

6 Realizing Hybrid-Secure MPC

In this section, we describe an n-party protocol πin implementing a hybrid-secure MPC func-
tionality Ehyb

ρ [C] (Figure 1) based on the designated party MPC functionality Edes,em
ρ [C′] (see
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Section 5.4), and the program C′ to be evaluated by Edes,em
ρ [C′]. We introduce one by one the

three techniques used to (1) fulfill the privacy requirement of Ehyb
ρ [C], while (2) preserving the

correctness and (3) the robustness provided by Edes,em
ρ [C′].

(1) The functionality Ehyb
ρ [C] specifies IT privacy for t < n

2 and CO privacy for t < n − ρ.
The protocol πin achieves this requirement by having πin

i share any input xi as xi = xit
i ⊕ xco

i ,

where xit
i is chosen uniformly at random over the input space.13 Recall that Edes,em

ρ [C′] provides
each party with two interfaces: a regular one, and one that corresponds to one of the n interfaces
of the designated party 0 (called party-0-interface). The protocol machine πin

i inputs xco
i at its

regular interface to functionality Edes,em
ρ [C′], while entering the share xit

i via its party-0-interface

to functionality Edes,em
ρ [C′]. Functionality Edes,em

ρ [C′] guarantees IT privacy for inputs over a
party-0-interface for t < n

2 , and CO privacy for inputs over a regular interface for t < n − ρ.
The input splitting combines the two privacy guarantees and, hence, accomplishes the privacy
requirements of Ehyb

ρ [C].
(2) To preserve CO correctness for t ≥ n

2 , additional measures are needed: For t ≥ n
2 , the

party-0-interfaces are controlled by the adversary, who could manipulate the input xit
i at will,

effectively manipulating the inputs xi to produce incorrect results. This adversarial behavior
can be prevented using commitments: Let commit and open denote the respective procedures of
a UC secure IT hiding commitment scheme (see [DN02], Appendix A). First, πin

i computes an
IT hiding commitment to xit

i together with its opening information (ci, oi) = commit(xit
i ). Then,

it inputs the commitment ci together with xco
i at its regular interface to functionality Edes,em

ρ [C′],
while entering the matching opening information oi together with xit

i at its party-0-interface to

functionality Edes,em
ρ [C′]. Functionality Edes,em

ρ [C′] checks these commitments. The case where a
commitment fails to open correctly is treated in the next paragraph. This construction achieves
CO correctness, because a CO adversary controlling the party-0-interfaces cannot open such a
commitment incorrectly. At the same time, the unconditional privacy of the xit

i is unaffected as
the commitments ci are IT hiding.

(3) Finally, we need to preserve IT robustness for t ≤ ρ. Essentially, this means that Edes,em
ρ [C′]

may not simply abort if a commitment ci fails to open correctly. Instead, it outputs a complaint,
requesting that party i inputs xi directly via its regular interface to Edes,em

ρ [C′]. This procedure
does not affect privacy, since commitments ci fail to open correctly only if either party i is
corrupted or if the party-0-interfaces are controlled by the adversary. In the first case, we need
not guarantee privacy to party i. In the latter case, we have t ≥ n

2 corrupted parties, so we only

need to guarantee CO privacy of xi, which Edes,em
ρ [C′] already does. Correctness is maintained

since privacy is maintained and a party can only replace its own input.

The IT fairness properties of Edes,em
ρ [C′] are unaffected by the measures described above, so

the resulting protocol is fair whenever t < n
2 parties are corrupted, i.e. whenever the designated

party 0 is honest.

Summarizing the measures above, we obtain a protocol πin (Figure 9) and a matching pro-

gram C′ (Figure 10) to be evaluated by functionality Edes,em
ρ [C′]. Protocol πin takes care of sharing

inputs, providing commitments and answering complaints. The program C′ is merely a slight
adaption of the (target) program C evaluated by Ehyb

ρ [C]. It additionally reconstructs the inputs,
checks commitments, makes complaints, and only then evaluates C.

Lemma 5. Given an arbitrary program C and a robustness parameter ρ < n
2 , protocol π

in UC

securely implements the ideal functionality Ehyb
ρ [C] evaluating C, from a designated party MPC

functionality Edes,em
ρ [C′], in the presence of a static and active adversary.

13 As mentioned in Section 2.2, we assume a field structure with operation ⊕ over the input space.
14 Note that the output of the complaint bit is a regular output. If robustness is not guaranteed, the adversary

might interrupt the computation at this point.
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Protocol machine πin
i connects over the regular and the party-0-interface belonging to party i to the function-

ality Edes,em
ρ [C′]. In turn πin

i offers an I/O-interface to higher level protocols. The protocol machine πin
i then

proceeds as follows:

1. On receiving an input on the I/O-interface: Choose xit
i uniformly at random and compute xco

i := xi ⊕ xit
i .

Using the IT hiding commitment scheme compute [ci, oi] = commit(xit
i ). Pass input (xco

i , ci) to the regular
interface and (xit

i , oi) to the party-0-interface of Edes,em
ρ [C′]. Receive a complaint bit e on the regular interface

of Edes,em
ρ [C′]. If e = 1, then input xi to the regular interface of Edes,em

ρ [C′].
2. On receiving an output y on the regular interface of Edes,em

ρ [C′], output y on the I/O-interface.

Fig. 9. The protocol machine πin
i .

The program C′ is identical to the (target) program C except for the input operations. Addition, multiplication
and output operations are executed unmodified.
In case of an input operation for party i in program C, program C′ takes an input (xco

i , ci) over the regular
interface to party i, and an input (xit

i , oi) over the party-0-interface to party i. If xit
i 6= open(ci, oi), it outputs

a complaint bit e = 1 to all parties, and takes a new input xi over the regular interface to party i (default
to xi = ⊥ if no input is provided). Otherwise, it outputs e = 0 and computes xi := xco

i ⊕ xit
i .

14

Fig. 10. The program C′ to be evaluated by Edes,em
ρ [C′].

Proof. We have to show that the protocol πin implements the ideal functionality Ehyb
ρ [C] based

on the ideal functionality Edes,em
ρ [C′] running the program C′ described in Figure 10. We do so by

providing an appropriate simulator σin
A that renders the ideal model σin

A (Ehyb
ρ [C]) indistinguishable

from the real model πin
H(Edes,em

ρ [C′]). We treat the CO (n2 ≤ t < n−ρ) and the IT (t < n
2 ) setting

separately. For t ≥ n − ρ, functionality Ehyb
ρ [C] does not provide any security guarantees, and

indistinguishability follows from Lemma 1.

Case 1: The CO setting for n
2 ≤ t < n− ρ. We show that, for any corruption set A where n

2 ≤
t < n − ρ, there is a simulator σin

A which renders the ideal model σin
A (Ehyb

ρ [C]) indistinguishable

from the real model πin
H(Edes,em

ρ [C′]) in the CO setting.

In the CO setting, for n
2 ≤ t < n−ρ, functionality Edes,em

ρ [C′] is correct and private for inputs
at its regular interfaces, but gives the adversary control over inputs at its party-0-interfaces (we
may consider the emulated party 0 corrupted) and guarantees no robustness or fairness, only
agreement on abort.

The simulator σin
A is connected to the interfaces of the corrupted parties to the ideal function-

ality Ehyb
ρ [C]. In turn the simulator σin

A simulates the regular interfaces of functionality Edes,em
ρ [C′]

belonging to corrupted parties and the party-0-interfaces of functionality Edes,em
ρ [C′] to the dis-

tinguisher.

For n
2 ≤ t < n− ρ, the simulator σin

A then operates as follows:

1. When an honest party i makes input to Ehyb
ρ [C]:

(a) Choose x̃it
i at random and compute an IT hiding commitment (ci, õi) = commit(x̃it

i ).

(b) Give (x̃it
i , õi) as output to the distinguisher over the party-0-interface.

(c) Receive (xit
i , oi) from the distinguisher over the party-0-interface.

(d) If xit
i 6= open(ci, oi), set the complaint bit e = 1, otherwise set e = 0. Output the complaint

bit e to the distinguisher.

(e) Receive an output flag o from the distinguisher, default to o = 1 if none is provided. In

case o = 0, forward o to Ehyb
ρ [C] and halt.

(f) Simulate the output of the complaint bit e to all parties.

2. When the distinguisher makes input via the regular interface of a corrupted party j:

(a) Receive (xit
j , oj) from the distinguisher over the party-0-interface.

(b) Receive (xco
j , cj) from the distinguisher over the regular interface of party j.
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(c) If xit
j 6= open(cj , oj), set the complaint bit e = 1, otherwise set e = 0. Output the

complaint bit e to the distinguisher.

(d) Receive an output flag o from the distinguisher, default to o = 1 if none is provided. In

case o = 0, forward o to Ehyb
ρ [C] and halt.

(e) Simulate the output of the complaint bit e to all parties.

(f) If e = 1 take a new input xj on the regular interface of party j, default to xj = ⊥ if no
input is provided.
Otherwise, compute xj := xco

j ⊕ xit
j .

(g) Forward input xj to functionality Ehyb
ρ [C].

3. When functionality Ehyb
ρ [C] makes output:

(a) Forward the output y of Ehyb
ρ [C] to the distinguisher.

(b) Receive an output flag o from the distinguisher, default to o = 1 if no output flag is
provided.

(c) Forward the output flag o to Ehyb
ρ [C], and in case o = 0 halt.

(d) Simulate the output of the value y to all parties.

We now argue that the simulator σin
A indeed renders the ideal model σin

A (Ehyb
ρ [C]) indistin-

guishable from the real model πin
H(Edes,em

ρ [C′]).
When input is made by some honest party i, protocol machine πin

i in πin
H(Edes,em

ρ [C′]) first
splits its input into xi = xco

i ⊕ xit
i (where xit

i is uniformly random) and computes the IT hiding

commitment (ci, oi) = commit(xit
i ). Then, πin

i provides (xit
i , oi) as input to functionality Edes,em

ρ [C′]
at the party-0-interface which is controlled by the adversary. σin

A simulates this indistinguishably
by providing a random value with appropriate opening information (x̃it

i , õi) to the distinguisher
over the (simulated) party-0-interface.

Furthermore, protocol machine πin
i provides (xco

i , ci) as input to Edes,em
ρ [C′] via the regular

interface. Functionality Edes,em
ρ [C′] then issues a boolean complaint bit e, indicating whether the

opening failed. The complaint bit e is first handed to the adversary and upon receipt of an
output flag o = 1 to the remaining parties (or halts on o = 0). If the opening failed, func-

tionality Edes,em
ρ [C′] allows party i to answer the complaint with a new xi. Otherwise, it com-

putes xi = xco
i ⊕xit

i . σin
A simulates this behavior identically to the distinguisher for input by both

corrupted and honest parties. Finally, the ideal functionality Edes,em
ρ [C′] processes xi as input.

In case of input by a corrupted party, the simulator σin
A simulates this step indistinguishably by

inputting the xi to Ehyb
ρ [C].

This simulation is indistinguishable as long as the adversary does not manage to open a
commitment ci to a value other than xit

i . Since we are in the CO setting, security needs to be
guaranteed only for computationally bounded adversaries that, by assumption, cannot break
the CO binding property of the commitment. The commitments to the xit

i and the complaint
procedure guarantee that the computation is carried out with correct values xit

i . That is, the
input shares xco

i and xit
i have the relation xco

i ⊕ xit
i = xi. Otherwise, if the adversary controls

the party-0-interfaces (as is the case here), he could manipulate the values xit
i leading to a

computation with wrong inputs xi and hence to an incorrect result.

When output is made, functionality Edes,em
ρ [C′] delivers the output y to the adversary and

awaits an output flag deciding output delivery to honest parties. Outputs are simply forwarded
by πin

i . Functionality Ehyb
ρ [C] behaves identically and as such the simulator σin

A only needs to
forward the messages in question.

Hence the protocol πin CO securely implements the functionality Ehyb
ρ [C] for n

2 ≤ t ≤ n− ρ.

Case 2: The IT setting for t < n
2 . We show that, for any corruption set A where t < n

2 , there

is a simulator σin
A which renders the ideal model σin

A (Ehyb
ρ [C]) indistinguishable from the real

model πin
H(Edes,em

ρ [C′]) in the IT setting.
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In the IT setting for t < n
2 , functionality Edes,em

ρ [C′] is fair, correct and private for inputs at
its party-0-interfaces (we may consider the emulated party 0 honest) but forwards inputs at its

regular interfaces to the adversary. For t ≤ ρ, functionality Edes,em
ρ [C′] is additionally robust.

The simulator σin
A is connected to the interfaces of the corrupted parties to the ideal func-

tionality Ehyb
ρ [C]. In turn the simulator σin

A simulates the regular and party-0-interfaces of func-

tionality Edes,em
ρ [C′] belonging to corrupted parties to the distinguisher.

For t < n
2 , the simulator σin

A then operates as follows:

1. When an honest party i makes input to Ehyb
ρ [C]:

(a) Choose xco
i and xit

i at random and compute an IT hiding commitment (ci, oi) = commit(xit
i ).

(b) Give (xco
i , ci) as output to the distinguisher.

(c) If ρ < t < n
2 , receive an output flag o from the distinguisher, default to o = 1 if none is

provided. In case o = 0, forward o to Ehyb
ρ [C] and halt.

(d) Simulate the output of a complaint bit e = 0 to all parties.
2. When the distinguisher makes input via the regular interface of a corrupted party j:

(a) Receive input (xit
j , oj) and (xco

j , cj) from the distinguisher over the regular and party-0-
interfaces of party j, respectively.

(b) If ρ < t < n
2 , receive an output flag o from the distinguisher, default to o = 1 if none is

provided. In case o = 0, forward o to Ehyb
ρ [C] and halt.

(c) If xit
j 6= open(cj , oj), simulate the output of a complaint bit e = 1 to all parties via

the regular interfaces. Take a new input xj on the regular interface of party j, default
to xj = ⊥ if no input is provided.
Otherwise, simulate the output of e = 0 and compute xj := xco

j ⊕ xit
j .

(d) Forward the input xj to functionality Ehyb
ρ [C].

3. When functionality Ehyb
ρ [C] makes output

(a) If ρ < t < n
2 , receive an output flag o from the distinguisher, default to o = 1 if none is

provided. Forward o to Ehyb
ρ [C] and, in case o = 0, halt.

(b) Forward the output y from Ehyb
ρ [C] to the distinguisher via the regular interfaces of the

corrupted parties i ∈ A.

We now argue that the simulator σin
A indeed renders the ideal model σin

A (Ehyb
ρ [C]) indistin-

guishable from the real model πin
H(Edes,em

ρ [C′]).
When input is made by an honest party i, protocol machine πin

i in πin
H(Edes,em

ρ [C′]) first splits
its input into xi = xco

i ⊕ xit
i (where xit

i is uniformly random) and computes the IT hiding com-
mitment (ci, oi) = commit(xit

i ). Then, πin
i provides (xco

i , ci) and (xit
i , oi) as input via the regular

and the party-0-interface belonging to party i to Edes,em
ρ [C′], respectively. In the current context,

for t < n
2 in the IT setting, Edes,em

ρ [C′] forwards (xco
i , ci) to the adversary. σin

A simulates this
indistinguishably by providing random values (xco

i , ci) to the distinguisher. Here it is important
to note that ci is an IT hiding commitment, and as such independent of xit

i .

Then, Edes,em
ρ [C′] computes a boolean complaint bit e, indicating whether the opening failed,

and requests an output flag o from the distinguisher, defaulting to o = 1 if none is provided. In
case o = 0, functionality Edes,em

ρ [C′] halts. In case o = 1, Edes,em
ρ [C′] outputs e to all parties. If

e = 1, Edes,em
ρ [C′] allows party i to answer the complaint with a new xi. Otherwise, for e = 0, it

computes xi = xco
i ⊕ xit

i . Note that for t < n
2 no honest party will ever receive a complaint when

trying to give input. σin
A simulates this behavior identically to the distinguisher for input by both

corrupted and honest parties. Finally, the ideal functionality Edes,em
ρ [C′] processes xi as input.

In case of input by a corrupted party, the simulator σin
A simulates this step indistinguishably by

inputting the xi to Ehyb
ρ [C].

When output is made, for ρ < t < n
2 , the ideal functionality Edes,em

ρ [C′] first requests an
output flag o from the distinguisher, defaulting to o = 1 if none is provided. In case o = 0,
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functionality Edes,em
ρ [C′] halts. Otherwise Edes,em

ρ [C′] delivers the output y to all parties. Outputs

are simply forwarded by πin
i . Functionality Ehyb

ρ [C] behaves identically, so the simulator σin
A only

needs to forward the messages in question.
Hence the protocol πin IT securely implements the functionality Ehyb

ρ [C] for t < n
2 .

7 Protocols Without Broadcast Channel

In this section, we discuss a protocol for hybrid secure MPC in a setting without BC channel. To
be able to use our protocol πρ (which relies on a BC channel), we implement a BC channel from
a complete network of synchronous secure channels. For this purpose, we use the construction
from [FHHW03] that provides an IT secure BC channel bcextCons with extended consistency and
validity detection. For two thresholds tv and tc, where tv ≤ tc and either tv = 0 or tv + 2tc < n,
bcextCons delivers a robust BC for t ≤ tv and a BC with fairness (but without robustness)
for tv < t ≤ tc. The construction of bcextCons is based on a detectable precomputation, which
either establishes a setup for a robust BC (for t ≤ tv always) or aborts with agreement on abort
(for t ≤ tc).

For a robustness bound ρ > 0, we let tv = ρ < n
3 and tc = dn−tv2 e − 1. This choice of param-

eters achieves IT full security (with robustness) for t ≤ ρ and IT fair security (no robustness)
for t < n−ρ

2 . Unfortunately, these results do not (and cannot) go beyond those of [FHHW03],
which they have proven optimal for this case.

However, for robustness bound ρ = 0, we let tv = ρ = 0 and tc = n. In this case we achieve
IT fair security (no robustness) for t < n

2 and CO abort security for t < n. This choice of
parameters yields a protocol that extends the existing results and actually matches the result
in Theorem 1 for ρ = 0 in the case where a BC channel is provided. This construction, where
protocol πρ is run with ρ = 0 on the BC implementation above, is denote by π0.

Theorem 2. Given an arbitrary program C, protocol π0 UC securely implements the ideal func-
tionality Ehyb

0 [C] evaluating C, from a complete and synchronous network of secure channels
(without BC channel), and a common reference string, in the presence of a static and active
adversary. Let t be the number of corrupted parties. Then π0 evaluates C with IT fair security
for t < n

2 , and with CO abort security, for t < n corrupted parties.

Proof. As described above, protocol π0 denotes protocol πρ with ρ = 0, run on the BC imple-
mentation of [FHHW03] with parameters tv = ρ = 0 and tc = n. The BC implementation of
[FHHW03] is based on a detectable IT secure precomputation. If the precomputation fails, this
is jointly detected by all honest parties, and the protocol execution is aborted. If the precompu-
tation succeeds, [FHHW03] shows that the resulting BC protocol is IT secure and robust. Hence,
[FHHW03] preserves all security properties except for robustness. Yet, for ρ = 0, protocol πρ

has no robustness guarantee. Therefore, protocol π0 is IT fair secure for t < n
2 , and CO abort

secure for t < n corrupted parties.

8 Conclusions

We describe a hybrid secure MPC protocol that provides a flexible and optimal trade-off between
IT full security (with robustness), IT fair security (no robustness), and CO abort security (no
fairness). More precisely, for an arbitrarily chosen robustness parameter ρ < n

2 , the protocol is
IT full secure for t ≤ ρ, IT fair secure for t < n

2 , and CO abort secure for t < n − ρ actively
and statically corrupted parties. These results are optimal with respect to the bounds stated
in [Cle86,Kil00,Kat07,IKLP06]. We provide a security proof of the protocol in the UC setting
based on synchronous secure channels, a broadcast channel, and a CRS.

Furthermore, we discuss the synchronous secure channels model without BC. Here we find
that for robustness parameter ρ > 0 the results of [FHHW03] are already optimal, but for ρ = 0
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our protocol achieves the same results as in the case where a BC is provided, indicating that a
BC channel is required only for robustness.
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A Perfectly Hiding or Perfectly Binding UC Commitments

We describe a UC secure one-to-many commitment schemes implementing the one-to-many
commitment functionality FCom,1:M that can be either perfectly hiding or perfectly binding. Our
one-to-many commitment scheme is derived from the perfectly hiding or perfectly binding UC
secure commitment schemes of [DN02].15

Functionality FComH,1:M formalizes perfectly hiding UC secure one-to-many commitment
schemes, functionality FComB,1:M formalizes perfectly binding UC secure one-to-many commit-
ment schemes.

Functionality FComH,1:M operates as follows:

1. If the committer C is honest or in the CO setting:

(a) On receipt of a message m from the committer C, output committed to all receivers Ri.

(b) On receipt of open from the committer C, output m to all receivers Ri.

2. If the committer C is corrupted in the IT setting, turn control over to the adversary.

Functionality FComB,1:M operates as follows:

1. For honest receivers Ri or in the CO setting for all receivers Ri:

(a) On receipt of a message m from the committer C, output committed to the receiver Ri.

(b) On receipt of open from the committer C, output m to the receiver Ri.

2. For corrupted receivers Ri in the IT setting,

(a) On receipt of a message m from the committer C, directly output m to the receiver Ri.

(b) On receipt of open from the committer C, output open to the receiver Ri.

We no show how to extend the commitment scheme of [DN02] to implement the functional-
ities FComH,1:M and FComB,1:M.

A.1 Mixed Commitments

The construction of our UC commitment scheme is based on the mixed commitment scheme commitK
described in [DN02]. A mixed commitment scheme is parametrized by a system key N with an
associated X-trapdoor tN which determines keyspace KN and message space MN . Both KN
and MN are additive groups. The keyspace KN is partitioned into subsets KX of X-keys (for
extractability), KE of E-keys (for equivocability), and KR of remaining keys. An overwhelming
fraction of keys in KN are X-keys in KX . One can efficiently generate random system keys N ,
random keys in KN , random X-keys in KX , and random E-keys in KE . All X-keys K ∈ KX have
a common trapdoor tN that can efficiently be generated together with the system key N . In con-
trast, all E-keys K ∈ KE have their own trapdoor tK that can efficiently be generated together
with the key itself. Furthermore, random keys, X-keys, and E-keys are CO indistinguishable.

The commitment scheme commitK with key K ∈ KN is equivocable for K ∈ KE and ex-
tractable for K ∈ KX . So, on the one hand, for a commitment c = commitK(m, r) where K ∈ KX
one can efficiently determine m from c, K, N , and the trapdoor tN (extractability). On the
other hand, given K ∈ KE and the associated E-trapdoor tK one can efficiently generate a
commitment c that is equivocable, i.e. it is efficiently possible to generate randomness r such
that c = commitK(m, r) for any m ∈ MN . Note that extractability and equivocability together
with the CO indistinguishability of random keys, X-keys, and E-keys imply that the mixed
commitment scheme commitK is CO binding and hiding. More details on mixed commitments
can be found in [DN02].

15 Note that, in this section, we describe the protocol as an n-party protocol. This variable n is not related to the
variable n in the rest of the paper. It is only for the sake of simplicity that we use the same symbol. In fact, we
use the protocol described here in the (n+ 1)-party protocol πdes,ρ, where n is the number of parties running
protocol πρ.
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A.2 The CRS

UC commitments require a stronger setup than a broadcast channel [CF01]. We will use a
common random string (CRS) that is sampled from a prescribed distribution by a trusted
functionality.

Our CRS will be crsn = (N,KX ,KE , K̄1, . . . , K̄n, crs
n′). The first part of the crsn, encom-

passing the n + 3 keys N,KX ,KE , K̄1, . . . , K̄n, stems from the original protocol in [DN02]. In
accordance to this protocol, N is a random system key for our mixed commitment, KX ∈ KX
is a random X-key and KE , K̄1, . . . , K̄n ∈ KE are random E-keys. The second part of the crsn,
i.e. crsn′, is a CRS for one-to-many commitments according to [CLOS02,CF01]. This part is only
needed for the one-to-many extension of the commitment scheme discussed here.

A.3 The UC Commitment Protocol

Without loss of generality, let C = P1 be the committer and the remaining parties be the
receivers Ri = Pi (i ∈ 2, . . . , n). Furthermore, let (commit′, open′) denote the one-to-many
commitment scheme according to [CLOS02,CF01]. The UC one-to-many commitment protocol
then works as follows:

Commit phase:

C.1 On input m, committer C draws a random K1 ∈ KN and random opening information r1,
and broadcasts c1 = commitK̄1

(K1, r1).

R.1 The receivers Ri run a coin toss protocol in order to sample a random key K2:

R.1.a Each receiver Ri draws a random si ∈ KN , computes (c′i, o
′
i) = commit′(si, crs

n′), and
broadcasts c′i.

R.1.b Each receiver Ri broadcasts (si, oi).

R.1.c All parties compute K2 =
∑

i si for the si where si = open′(c′i, o
′
i).

C.2 Committer C computes K = K1 +K2, draws random opening information r2, r3, and

– for an IT hiding commitment draws m̄ and broadcasts c2 = commitK(m̄ + m, r2), c3 =
commitKE (m̄, r3)

– for an IT binding commitment broadcasts c2 = commitK(m, r2), c3 = commitKX (m, r3)

R.2 Each receiver Ri upon receiving c2 and c3 outputs committed

Opening phase:

C.1 On input open, committer C broadcasts
– for an IT hiding commitment (m, m̄, r2, r3)
– for an IT binding commitment (m, r2, r3)

R.1 Each receiver Ri verifies that
– for an IT hiding commitment c2 = commitK(m̄+m, r2), c3 = commitKE (m̄, r3),
– for an IT binding commitment c2 = commitK(m, r2), c3 = commitKX (m, r3)

and if so, outputs m.

Note that this protocol is a simple adaption of [DN02] to multiple receivers. We simply replace
round R.1 of [DN02] where the single receiver of [DN02] chooses a random K2 with a CO secure
cointoss among our multiple receivers.

A.4 Security of the UC Commitment Protocol

We prove security by providing simulators for the IT hiding and the IT binding case separately.
The argument why these simulators achieve indistinguishability does not change substantially
and we refer the reader to [DN02].
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IT Hiding We now show that the perfectly hiding variation of the scheme above indeed imple-
ments functionality FComH,1:M. We consider three cases for which we provide different simulators,
namely:

1. the adversary is CO or IT, leaves the committer C honest (and corrupts any number of
receivers Ri).

2. the adversary is CO, corrupts the committer C (and any number of receivers Ri),
3. the adversary is IT, corrupts the committer C (and any number of receivers Ri).

In the first two cases the commitment functionality FComH,1:M operates as expected and
described in [CF01]. Simulator σit

R is used in case 1 where C is honest, but any number of
receivers Ri are IT or CO corrupted (the simulator works in both cases). First, σit

R produces a
regular crsn with E-key KE and E-trapdoor tE . During the commit phase, σit

R emulates C on
random input to the corrupted Ri. Indistinguishability is preserved because all commitments
are equivocable and thus independent of their “content”. In the opening phase, σit

R receives the
correct m? from Fhcom. Now, σit

R opens the KE commitment c3 to m′3 = m? ⊕m2 using tE .
Finally, simulator σco

C is used in case 2 where C and any number of receivers are CO corrupted.
First, σco

C produces a fake c̃rsn with interchanged keys: On one hand, in c̃rsn, KX is an equivocable
key taken from KE , together with trapdoor tKX for equivocability. On the other hand, in c̃rsn,KE

is an extractable key taken from KX . Note that KE has trapdoor tN for extractability. For a
CO adversary, the fake c̃rsn is indistinguishable from a real crsn. Furthermore, σco

C internally
runs the protocol of honest Ri which can be perfectly simulated since they do not require any
input. During the simulation, σco

C simply forwards all messages among the (internally simulated)
honest Ri and the corrupted parties, i.e. C and corrupted Ri. After the commit phase, σco

C uses
the known system trapdoor N to extract m3 from c3 (X-key by choice of the CRS) and m2

for c2 (X-key with overwhelming probability in the regular protocol) and inputs m? = m3⊕m2

to Fhcom. In the opening phase, σco
C sends an open message to Fhcom if and only if C provides

correct opening information for m?.
In the last case, committer C and any number of receivers are IT corrupted. By definition of

IT hiding commitments, the functionality Fhcom collapses in this context and turns over control
to the simulator σit

C . Our simulator σit
C first produces a regular crsn. Then, σit

C internally runs
the protocol of the honest Ri to the I/O-interface of which it has access via the ideal function-
ality. During the simulation, σit

C simply forwards all messages among the (internally simulated)
honest Ri and the corrupted parties, i.e. C and corrupted Ri.

As noted above, the indistinguishability arguments of [DN02] apply, and we refer the reader
there for further detail.

IT Binding We now show that the perfectly binding variation of the scheme above indeed
implements functionality FComB,1:M. Once again, we consider three cases for which we provide
different simulators, namely:

1. the adversary is CO or IT, corrupts the committer C and any number of receivers Ri,
2. the adversary is CO, leaves the committer C honest and corrupts any number of receivers Ri,
3. the adversary is IT, leaves the committer C honest and corrupts any number of receivers Ri.

In the first two cases the commitment functionality operates as expected and described in
[CF01]. Simulator σit

C is used in case 1 where C and any number of receivers are IT or CO cor-
rupted. First, σit

C produces a regular crsn with X-key KX and X-trapdoor tN . Furthermore, σit
C

internally runs the protocol of honest Ri which can be perfectly simulated since they do not
require any input. During the simulation, σit

C simply forwards all messages among the (inter-
nally simulated) honest Ri and the corrupted parties, i.e. C and corrupted Ri. After the commit
phase, σit

C extracts the message m from c3 using the trapdoor tN , and enters it into Fbcom. In
the opening phase, σit

C sends an open message to Fbcom if and only if C provides correct opening
information for m.
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Simulator σco
R is used in case 2 where C is honest, but any number of receivers Ri is CO

corrupted. First, σco
R produces a fake c̃rsn with interchanged keys: On one hand, in c̃rsn, KX

is an equivocable key taken from KE , together with trapdoor tKX for equivocability. On the
other hand, in c̃rsn, KE is an extractable key taken from KX . Note that KE has trapdoor tN
for extractability. For a CO adversary, the fake c̃rsn is indistinguishable from a real crsn. In the
commit phase in step C.1, σco

R uses the trapdoor tK̄C of E-key K̄C to produce an equivocable
commitment c1. Hence, C is not committed to the first part K1 of the key K. Then, in step
C.2, σco

R opens c1 to a value K ′1 such that K = K ′1 ⊕ K2 is a random E-key with known
trapdoor tKE . Usually, this would be an X-key with overwhelming probability. For the opening
phase, σco

R receives the correct m from Fhcom. Then, σco
R opens the commitment c3 and the

commitment c2 to m′3 = m′2 = m. By choice of the c̃rsn, the commitment c3 was constructed
with the equivocable E-key KX and trapdoor tKX . By choice of K ′1, the commitment c2 was
constructed with the equivocable E-key K = K ′1⊕K2 and trapdoor tK . Hence, σco

R can efficiently
open both commitments as needed.

In the last case, committer C is honest, but any number of receivers Ri is IT corrupted.
By definition of IT binding commitments, the ideal functionality Fbcom then directly leaks the
committed message m to IT corrupted receivers. Honest Ri still receive m from Fbcom on opening
as usual. We use a simulator σit

R that exploits this. First, σit
R produces a regular crsn. Then, it

internally runs the protocol of C on input m, and the protocols of honest Ri, which do not need
any input, towards the corrupted Ri.

As noted above, the indistinguishability arguments of [DN02] apply, and we refer the reader
there for further detail.


