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Abstract

We present an efficient identity-based key management
scheme for group communications (ID-GC). ID-GC out-
performs all existing group key management schemes in
terms of reducing the communication overhead for group
management, e.g., adding or deleting group members. In
average cases, ID-GC requires O(log N) messages for
removing multiple members and 1 message for adding a
new group member, where N is the group size. ID-GC
scheme provides group forward/backward secrecy, and it
is resilience to colluding attackers.

I. Introduction
Media broadcast over the un-trusted networks, e.g.,

Internet, poses security issues. One problem is the ac-
cess control to a large number of clients in a public
broadcast group. Typical applications include but not
limited to: digital-TV, content distributions, on-line multi-
player games, video conferencing, and so on, where only
registered (or legitimated) users can reveal broadcasted
data content. In these application environments where the
group size is large, a common solution is to encrypt the
broadcast data and to disclose the symmetric group key
to groups users only. The main research challenge is how
to reduce the communication overhead invoked by group
membership management. Particularly, we notice that the
communication overhead is highly related to the number
of sub-groups each group member can directly participate
based on its predistributed secrets. Here, we illustrate
their relations using two special-case examples. Firstly, in
a group G of size N , each user ui processes keys for all
possible 2N−1 sub-groups that include ui; in other words,
each user belongs to 2N−1 sub-groups. When deleting a
set of users, noted by L, the group controller is required
to communicate with G\L group members to update the
group key. One updating message is required, since each
user u ∈ G \L stores the shared key of sub-group G \L.
On the other hand, if each user has two shared keys,
one is the pairwise shared key with the group controller,
the other is overall group key. Thus, each user belongs
to 1 sub-group, which only contains one group member.
To transmit an encrypted message to a sub-group G \ L,
it requires |G \ L| messages. From these two examples,

which represents two extreme cases, we can see that
the communication overhead of membership management
can be reduced by increasing the number of sub-groups
that each group member can directly participate.

The number of participating sub-groups for each user
is determined by their available storagespace. Many ex-
isting solutions are designed to balance the storage and
communication overhead [1], e.g., OFT [2], LKH [3],
and ELK [4]. These solutions utilize a tree structure to
organize keys for each user, hence reducing the storage
overhead to the order of O(log N). Based on the predis-
tributed keys, each group member can process or derive
log N sub-group keys. However, these solutions cannot
effectively minimize the communication overhead due to
the fact that the number of sub-groups each user belongs
to is not maximized.

The storage complexity of O(logN) is generally con-
sidered as an acceptable overhead for most modern com-
munication devices. Thus, based on this storage condition,
the research challenge is how to maximize the number of
sub-groups each user belongs to. In this paper, we propose
a novel identity-based key management scheme for group
communications (ID-GC). In ID-GC, the number of sub-
groups each user belongs to is maximized to N , given the
storage overhead log N . The construction of ID-GC takes
a new approach by using threshold secret sharing scheme
[?] and attribute-based encryption [5]. A group controller
(GC) is in charge of the group key distribution. To form
a group, the GC first assigns each group member (GM) a
unique n-bit ID. Then, a set of secret shares based on the
member’s ID is distributed to each GM, i.e., n = log N
private keys corresponding to each bit value in the ID are
distributed to each GM. Subgroups are defined in terms of
common bits in the ID and all GMs in a sub-group share
some common bits in their IDs. Note that, private keys
mapped to the same bit in the IDs for GMs are different.
ID-GC can effectively, in the complexity of O(log N),
handle the group key distribution for all possible sub-
groups given the storage overhead log N for each group
member.

To handle extremely large groups, ID-GC can be
decentralized by dividing the communication group into
multiple clusters and each cluster is controlled by the
Cluster Controller (CC). In summary, the main contribu-



tions of ID-GC are presented as follows:
• The communication overhead for revoking a GM or

multiple GMs is O(log N), as contrast to existing
schemes, e.g., OFT [2], LKH [3], and ELK [4],
which is bounded by O(L · log M), where L is the
number of GMs to be revoked and M is the number
of GMs in the group. To the best of our knowledge,
this is the most efficient group management scheme
proposed so far in the state of art.

• The communication overhead of adding GMs is
Θ(1), i.e., only one broadcast message is required.

• The storage overhead for a GM is Θ(logN).
Paper Organization The rest of this paper is organized
as follows. Section II presents notations models used in
this paper. We present detailed ID-GC in Section III. In
section IV, we analyze the security of ID-GC. In Section
V, we discuss the performance of ID-GC scheme and
compared with several existing works. We review the
related works in VI. Finally, we conclude our work in
Section VII.

II. System Models

Attack Models The attackers’ goal is to reveal broad-
casted group data encrypted by the data encrypting key
(DEK). We assume that an attacker 1) can be a GM
or a non-GM (i.e., one to be revoked or one to join a
group); 2) can receive and stores all transmitted messages;
3) can be passive eavesdropper or active attacker; 4)
can collude with other GMs. We assume that attackers
cannot compromise cryptographic algorithms. The GC is
assumed to be trustable. In addition, our security analysis
will focus on forward secrecy, backward secrecy, and
colluding attacks.
Bilinear Pairing: is a bilinear map function e : G0 ×
G0 → G1, where G0 and G2 are groups with large prime
order p. Pairing has the following properties:
Bilinearity:

e(aP, bQ) = e(P, Q)ab, ∀P, Q ∈ G1,∀a, b ∈ Z∗p.

Nondegeneracy: If e(P, Q) = 1 for all the Q ∈ G1, then
P = O. Alternatively, for each P 6= Q there exists Q ∈
G1 such that ê(P, Q) 6= 1.
Computability: There exist a efficient algorithm to com-
pute the pairing.
Secret Sharing and Polynomial Interpolation t − n
secret sharing is used to divide a secret in n shares
and any t shares can collude to re-construct the secret,
while combining less than t shares will not disclose any
information about the secret. As introduced by Shamir at
el. in [6], in a t−1 degree polynomial, any t points on the
polynomial be used to reconstruct the secret. We define
the Lagrange coefficient ∆i,S for i ∈ Zp and a set, S, of
elements in Zp: ∆i,S(x) =

∏
(j∈S,j 6=i)

x−j
i−j .

Notations the notations used in this paper is listed below:

Symbols Descriptions
U the ID space
G the broadcasting group includes all GMs
J the set includes all joining GMs
L the set includes all leaving GMs
u one GM
N Size of ID space
n n = log N
M number of GMs in G
B bit-assignment

SB set of bit-assignment in ID
U universe of bit-assignment

III. Constructions of ID-GC
A. ID and Bit-assignment

Before presenting ID-GC, we first define the ID and
bit-assignment for a GM.
ID: ID-GC requires that each GM is identified by a
unique binary string ID: b0b1...bn−2bn−1, where b ∈
{0, 1} and n = log N . The ID is issued by the GC when
a GM joins the group and the ID should be unique in the
group. Once the GM leaves the group, his/her ID can be
re-assigned to other joining GMs.
Bit-Assignment: We define the bit-assignment Bb

i as the
bit-assignment at position i in the ID, where b ∈ {0, 1}.
Intuitively, bit-assignment means the i’th bit of an ID is b.
For a group with at most N = 2n GMs, the total number
of bit-assignments is 2n = 2 log N when the length of
an ID is n; that is, one bit position maps two values (one
for value 0 and one for value 1). We denote the set of
all the possible bit-assignments as the universe U . Each
GM u is uniquely identified by a set of bit-assignments:
SBu = {Bb0

0 , Bb1
1 , . . . , B

bn−1
n1 }, and |SBu| = n, SBu ⊂

U is, as illustrated in Figure 1. Also, multiple GMs may
share some sub-set of bits (however, their mapped secrets
are different).
Mapping Bit-Assignment to Integers: For simplicity of
the presentation, we use the following map m(Bb

j ) =
j ∗ 2 + b + 1 to map the universe U = {Bi = b| ∀j ∈
{0, 1, . . . , n−1}, b ∈ 0, 1} to {1, 2, . . . , 2n}, i.e., each bit-
assignment represents one positive integer less or equal to
2 log N . For example, in a system with 3 bit ID illustrated
in Fig. 1, B0

0 can be mapped to 1; B0 = 1 can be
mapped to 2, B2 = 1 can be mapped to 6, as in Fig.
1. For example, a GM u1’s ID is 000 and a GM u2’s
ID is 001, SBu1 = {1, 3, 5} and SBu2 = {1, 3, 6} and
SBu1

⋂
SBu2 = {1, 3}.

In Fig. 1, the GMs can be organized in a tree structure
with each non-leaf node marked with a bit-assignment.
Note that there are only 2n different nodes in the tree
and each level have 2 different nodes. This is different
from existing tree-based schemes, where there are 2N−2
different internal nodes and the level d contains 2d

different nodes. The bit assignments for a GM can be
represented by links from the root down to the leave.
Thus, each GM will have at least one bit-assignment,
which is different from other GMs.
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Fig. 1. An illustration of bit-assignments for
a 3-bit ID space.

B. Group Setup

In this section, we describe the procedures that GC
performs before setting up the broadcast group:

1) chooses a bilinear group G0 of prime order p with
generator g.

2) chooses a publicly known one-way function H .
3) chooses two random numbers α, β ∈ Zp.
4) For each i ∈ U , GC chooses a random num-

ber yi ∈ Zp. We denote the set of 2 log n ran-
dom numbers by YB . If we map the 2 log n bit-
assignment to {1, . . . , 2 log N}, we can write YB =
{y1, y2, . . . , y2 log N}. In Fig. 2, we depicted a ex-
ample of distribution of YB , supposing ID length
is 3.

The group public parameter is published as
GP = {G0, e, g,H}. The group master key:
MK = {β, gα gβ , e(g, g)α} is well guarded by
GC.

Fig. 2. Random distribution of YB; a 2-
degree polynomial passing {y1, y4, y6}; a
1-degree polynomial (doted line) passing
{y2, y3}.

Algorithm 1 KeyGen(MK,SBu)
Randomly select r ∈ Zp;
Compute g

α+r
β ;

for each integer i ∈ SBu do
Compute gryi ;

end for
return
SKu : {D = g

α+r
β ,∀i ∈ SAu : Di = gryi};

C. Join the Broadcast Group and Key
Generation

When GM u joins the group, they need to setup
a secure channel with the GC, who checks whether
each GM is authorized to join. GC assigns a unique
ID bu

n−1b
u
n−2...b

u
0 and a set of bit assignments SBu =

{Bbu
i

i | i ∈ {0, 1, . . . , n − 1}} to the new GM. As
mentioned above, SBu is mapped to a set of integers.

To preserve group backward secrecy, i.e., the joining
u should not have access to data that were transmitted
before he/she joined the group, GC renews the DEK to
another random key DEK ′ and broadcast {DEK ′}DEK .

Then the GC runs SKa = KeyGen(MK, SBu) in
Algorithm 1, where MK is the group master key and
SBu is the set of bit-assignments in u’ ID. The KeyGen
algorithm generates a private key components,i.e., blinded
secret shares, for each bit-assignment ∈ SBu. All the
private key components are blinded by the same random
number r.

Finally, GC sends the private key SKu and DEK ′

to the new GM u through a secure channel. In the join
operation, GC only needs to broadcast one message,
i.e., {DEK ′}DEK, for any number of simultaneously
joining GMs.

D. Broadcasting Encryption for a Sub-
Group users

In this section, we introduce a novel mechanism that
GC can encrypt a message and broadcast it, such that
only a sub-group of GMs with certain set of common
bit-assignments can decrypt the message. We note that:
• Only GC can perform encryption, and GM can only

perform decryption;
• The decryption is based on pre-distributed private

keys, which is presented in section III-C.
• the ciphertext can be decrypted by multiple GMs,

given that their IDs satisfy the bit-assignments asso-
ciated with the ciphertext.

First, we describe a broadcasting encryption algorithm
CT = ENC(GP, MK, SB, M) in Algorithm 2, which
takes inputs of MK - the system master key, GP - the
group parameter, SB - a set of bit-assignments, M - the
message, and returns the ciphertext CT . Let d = |SB|
denote the size of SB, it is easy to find a d − 1 degree
polynomial q that goes through each yBb

i
, where Bb

i ∈
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Algorithm 2 Enc(MK,SB, M)
Let d = |SB|, i.e., the size of the SB;
Find the d-1 degree polynomial fSB pass all {yi|∀i ∈
SB};
Compute fSB(0);
Randomly select s ∈ Zp;
Compute sfSB(0);
Compute C0 = Me(g, g)αsfSB(0);
Compute C1 = gβsfSB(0);
Compute C2 = gs;
return
CT : {SB, C0 = Me(g, g)αsfSB(0), C1 =
gβsfSB(0), C2 = gs};

SB. For example, suppose SB = {1, 4, 6}, then we can
find a 2 degree polynomial f going through {y1, y4, y6}
as illustrated in Fig. 2.

On receiving the CT, GMs whose ID satisfied the bit-
assignments associated with the ciphertext, can decrypt
the CT with their private keys SK using the decryption
algorithm M = DEC(GP, SK,CT ) presented in Algo-
rithm 3.

Algorithm 3 DEC(GP, SK,CT )
if SBu! ⊆ CT.SB then

return ⊥;
end if
for each i ∈ CT.SB do

Compute gryi∆i,SB(0);
end for
Compute

∏
i∈SB gryi∆i,SB(0) = grfSB(0);

Compute e(C1, D) = e(g, g)(α+r)sfSB(0) = A1

Compute e(C2, g
rfSB(0), D) = e(g, g)rsfSB(0) = A2

Compute A1/A2 = A3 = e(g, g)αsfSB(0)

Compute C0/A3 = M
return M ;

E. Leave the Multicast Group

We present a key update scheme that updates all
the remaining GMs’ private keys. Then we present ID-
GC leave scheme and show how it works with Boolean
Function Minimization (BFM) [7].

1) Key Update: For a set of leaving GMs, denoted by
L, GC needs to update the {MK,DEK} as well as the
private keys for each remaining GM u ∈ G\L. However,
in our design, these operations can be done efficiently.
To perform key updates, GC first changes MK ′ =
{β, gα′ , e(g, g)α′}, where α′ is randomly selected in Zp.
Then, GC broadcasts an encrypted key updating factor
kuf = g

α′−α
β . Note that kuf is encrypted and should

NOT be decrypted by any u ∈ L. How to encrypt the key
updating factor is presented in the following Sections.

Each u ∈ G \L updates its private key SKu based on
the key updating factor g

α′−α
β . The original private key

is SK = (D = g(α+r)/β ;∀i ∈ SAu : Di = gryi . The
update factor only affects D. The new D can be updated
by the following method:

D · g α′−α
β = g

α+r
β · g α′−α

β = g
α+r+α′−α

β = g
α′+r

β

In this way, each u ∈ G\L update their DEK K ′ simply
by compute K ′ = H(g

α′−α
β ).

2) Single Leave: We first consider that only one GM
leaves the group. The key updating factor is encrypted
with the bit-assignments that are complementary to the
ones of the departing member. We assume that the leaving
GM u’s ID is bu

n−1b
u
n−2...b

u
1bu

0 . We can define the com-
plementary set of u to be those GMs who have at least one
different bit assignments with u. GC can encrypt the key
updating factor with each one SB ∈ {{i}|∀i ∈ U \SBu}
and broadcast log N encrypted key update factors. If GC
knows all the IDs that are not currently assigned, the
number of encrypted key update factors may be reduced.

For example, we assume that the departing GM u’s ID
is 101. Therefore, it possesses a set of bit-assignments
SBu = {2, 3, 6}. The key updating message is encrypted
with each one of the {1} {4} {5}, i.e., {kuf}{1},
{kuf}{4}, {kuf}{5} and is broadcasted to the entire
group. If ID 100 is not assigned {kuf}{1} is not nec-
essary. Although the departing member receives all the
messages, it cannot decrypt them, since every message
is encrypted with a bit-assignment that the departing
member does not possess. It also guarantees that all other
GMs of the group can decrypt at least one message.

3) Multiple Leave: In this section, we focus on how
GC securely broadcasts the encrypted key update message
to sets of remaining GMs when multiple GMs leave the
group. First, we define some of the terms used in the
following presentations.
• Literal: A variable or its complement, e.g., B1, B1,

B2, B2, etc.
• Product Term: Series of literals related by AND

gates, e.g., B2B1B0.
• Sum Term: Series of literals related by OR gates,

e.g., B2 + B1 + B0.
• Sum-of-Product Expression (SOPE): Series of prod-

uct terms related by OR gates, e.g., B2B1B0 +B21.
We define the boolean membership functions

F (B0, B1, . . . , Bn−2, Bn−1), which is in the form
of SOPE and each of the n = log N variables is a
bit-assignment. For example, if the set of leaving GMs
L = {001, 010, 101} and G \ L = {011, 111}, the
F (B0, B1, B2) = B0B1B2 + B0B1B2. The following
properties of membership functions hold:

F (bu
0 , bu

1 , . . . , bu
n−2, b

u
n−1) =

{
0 iff u ∈ CG/L

1 iff u ∈ G/L

The GC runs the Quine-McCluskey algorithm [7] to
reduce F to minimal SOPE Fmin = E0 + . . . + EL,
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Fig. 3. Leave of Multiple GMs.

in which the term E uses product term. In each of
the computations, we can allow do not care values on
the U/G, which further reduces the size of Fmin. For
example, in Fig. 3, {000, 010} are leaving GMs, and
{001, 011, 100, 101, 110} are remaining GMs, and {111}
is not assigned (i.e., do not care). With the consid-
erations of do not care values, F can be reduced to
F (B0, B1, B2)min = X0 + X2. We can find that Fmin

contains 2 literals and 2 product term.
Since Fmin is in the form of SOPE, GC can encrypt

the key updating factor for each product term and the total
number of encrypted key updating factor equals to the
number of product terms in Fmin. For each product term,
a SB contains all the bit-assignments in the product term
is used to encrypt the key updating factor. For example,
following form F (X0, X1, X2)min = X0X1X2+X0X1,
GC can broadcast kuf{0,4,6} and kuf{2,3}.

F. Clustering for Scalability
In the previous sections, we introduce the basic con-

struction of ID-GC, where the size of max group members
is limited by the size of ID space. Also, since the problem
of boolean function minimization is NP-hard, the number
of bits in ID cannot be very large. If the ID space is
restricted by 10 bits, the size of the overall group is
limited to 1024. To accommodate small ID spaces, we
can divide the broadcasting group into several clusters and
each cluster has a cluster controller (CC). The dynamic
membership of CC is managed by GC; GC and CCs will
setup a shared key K1, which is only known to GC and
CCs. On the other hand, each cluster is managed by its
CC and dynamic membership is handled locally. Beside
the DEK shared by the entire group, GMs and CC in
the same cluster will share a cluster key Kc. In Fig. 4,
we depict the clustering of ID-GC and the allocation of
shared keys.
Add/Delete GMs: When a GM joins the group, it will be
assigned to a cluster and its CC will perform the group
member addition operations described in III-C to issue
the GM a unique ID and private keys, and update the
DEK. Note that ID-GC requires to have a unique cluster
ID in addition to the GM ID. In this way, the GMs’

Fig. 4. Illustration of clustering

IDs are local effective and GMs in different clusters may
possess same GM IDs. The deletion of GMs is identical
to the section III-E, except that the new DEK needs to
be updated by each CC.
Add/Delete Clusters: Dynamically adding and deleting a
cluster is performed identical to the addition and deletion
of GMs in previous section. When adding a cluster, a
cluster controller (CC) is selected and assigned a unique
cluster ID, a cluster private key and the K1 shared with
the GC. When deleting a cluster, GC communicate will
all remaining CCs to update their private keys and the
DEK for all group members. Note that the deletion of
CC means all the GMs in the cluster is excluded from
the broadcasting group.

IV. Security Analysis of ID-GC
ID-GC scheme provides the following security prop-

erties:
Proposition 1(Backward Secrecy): ID-GC provides
group backward secrecy.

When new GMs join the group, a new random DEK
K ′ is encrypted ({K ′}K), and then it is distributed
through broadcasting. Also, suppose the private keys of
joining GMs are generated under α′. All the previous
key updating messages are encrypted using e(g, g)α},
i.e. α′ is another random number other than α. Given
1) randomness of K ′ and α′; 2) security of symmetric
encryption and Discrete Logarithm (DL) [8] problem
on G0 and G1, the new joining group member cannot
derive previous DEK. Thus, the group backward secrecy
is satisfied.
Proposition 2:(Forward Secrecy) ID-GC provides group
forward secrecy.

When GMs leave the group, the GC updates the
system parameters to MK ′ using a new random α′ and
broadcast the encrypted g

α′−α
β to all the GMs in G\L. All

remaining GMs will update their private keys and DEK
using the key updating factor g

α′−α
β . The leaving GMs

cannot decrypt future encrypted messages since DEK has
been changed. Even if a leaving GM stores all encrypted
key-updating messages and join the group again, he or
she cannot decrypt any previous key updating message,
since these messages are encrypted under different master
keys, which is unknown to the GM. Moreover, using the
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TABLE I. Comparison of communication overhead and computation overhead in different group
key management schemes.

Scheme Communication Overhead Computation Overhead
join single leave multiple leave encryption decryption

ID-GC Θ(1) O(log N) ≈O(log N) O(log N) O(log N)
FT Θ(log N) O(log N) ≈ O(log N) – –

Subset-Diff – O(t · log2(t) · log m) O(t · log2(t) · log M) – –

BGW – O(M
1
2 ) O(M

1
2 ) O(M) O(M)

ACP Θ(M) Θ(M) Θ(M) Θ(M2) Θ(1)
Tree Θ(1) Θ(log M) O(L · log M) – –

N : the ID space; M : the number of group members; L: the number of leaving members; t: maximum number of colluding users to
compromise the ciphertext.

key updating factor g
α′−α

β to derive gα and β is hard due
to the DL problem.
Proposition 3:(Collusion Resistance) Leaving GMs can-
not collude to decrypt broadcasted messages targeted to
other GMs.

We refer to the collusion attack as any combinations
of GMs attempting to derive other GM’s private key by
combining their private keys. We first show that any two
GMs cannot collude using their private keys. Given the
private keys of two attackers a1 and a2, SKa1 = {D =
g

α+ra1
β ,∀i ∈ SAa1 : DA = gra1yi}, SKa2 = {D =

g
α+ra2

β ,∀j ∈ SAa2 : DA = gra2yj}, the problem of
deriving SKv = {D = g

α+rv
β ,∀k ∈ SAv : DA =

grvyk}, where SAv ⊆ SAa1

⋃
SAa2 and SAv 6= SAa1

SAv 6= SAa2 , can be reduced to the DL problem on
G0. Furthermore, adding more colluding attackers will
not help due to the hardness of DL problem.

V. Performance Assessments
We analyze the performance of ID-GC scheme and

compare it with several previous solutions: flat table
scheme (FT) [9], [10], subset-difference broadcast en-
cryption scheme (Subset-Diff) [11], BGW broadcasting
encryption [12], access control polynomial (ACP) scheme
[13], and tree-based schemes (e.g., OFT [2], LKH [3], and
ELK [4]). The performance assessments are assessed in
terms of storage overhead (group data to be stored on
the GC and GM), communication overhead (number of
messages to be broadcasted for join and leave operations),
and computation overhead (number of cryptographic op-
erations needed in encryption and decryption operations).
We denote the group size be N , the number of current
GMs in each cluster to be M , the number of clusters
to be C, the number of leaving GMs to be L. Also, for
the Subset-Diff scheme, t denotes the maximum number
of colluding users to compromise the ciphertext. The
summary of comparative results is presented in Table I.

A. Storage Overhead

In ID-GC, the storage overhead for GC is Θ(C) (GC
stores the IDs of all current CCs) and for CC is Θ(M)
(CC stores the IDs of all GMs in its cluster ). The storage
overhead is Θ(log N) for GC, since GM stores a private
key component for each bit in its ID.

B. Communication Overhead

The communication overhead for the dynamic mem-
bership is the most important evaluating factor. In ID-GC,
the communication overhead is Θ(1) for join operation
since only {DEK ′}DEK is broadcasted when new GMs
join the group.

Here, our discussion focuses on the complexity of
leave operation. In Subset-Diff scheme, the communica-
tion overhead grows linearly with the maximum number
of colluding users to compromise the ciphertext. For
BGW scheme, the message size is O(M

1
2 ) as reported

in [12]. In ACP scheme, the size of message depends on
the degree of access control polynomial, which equals to
the number of current GMs plus the number of joining
GMs or the number of current GMs minus the number
leaving GMs. Thus, the message size is Θ(M). For tree-
based schemes, the communication overhead for a GM
leaving depends on the number of keys in the tree that
need to be updated [14], [4]. Some tree-based schemes
tried to optimize the number of messages to update all
the affected keys in the case of multiple leaves. In ELK
[4], which is known to be one of the most efficient tree-
based schemes, the communication overhead for multiple
leaves is Θ(a − L), where a is the number of affected
keys and L is the number of leaving GMs. Since there
are log M (or log N in the case of full tree) nodes on
the path from root to leaf in the tree structure, the total
number of affected keys when L GMs leave the group is
O(L · log M).

We first show that, in the worst cases, ID-GC out-
performs all the tree-based schemes. Then, we analyze the
average case. Since ID-GC shares some properties with
the Flat Table scheme, we utilize some of the performance
results from [9].

Lemma 1 (Worst case of removal of 2 GMs [9]):
When removing 2 GMs from a group with N = 2n

GMs, the number of key updating messages is at most n.
The worst case is achieved when the Hamming distance
between 2 GMs is n.
In this case, the number of keys to be updated is 2n− 1,
thus ELK requires 2n−3 messages while ID-GC requires
n messages.

Lemma 2 (worst case of removal multiple GMs [9]):
The worst case of removal multiple GMs happens when
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Fig. 5. Simulation of multiple GMs leave for
a group with 1024 GMs

both of following conditions hold: 1) there are N/2
GMs to be removed; 2) the Hamming distance between
IDs of any two remaining GMs is at least 2. In the worst
case, the number of key updating message is N/2.

In this case, the number of keys to be updated is N −
N/2 = N/2, since there are N non-leaf keys to be
updated and the number of leaving GMs is N/2. We can
see that, in the worst case, ID-GC’s performance is same
as ELK approach.

Now, we move on to show are in the average cases,
ID-GC greatly out-performs all existing solutions. Using
ID-GC, the number of messages for leaving operations
depends on the number of product terms in the SOPE.
In [15], the authors derived an upper bound and lower
bound on the average number of products to minimize
SOPE, which can be directly used to model the aver-
age performance of ID-GC. We first show an average
case example in Fig. 3, where {000, 010} are leaving
GMs, and {001, 011, 100, 101, 110} are remaining GMs,
and {111} is not assigned (i.e., do not care). In this
example, ID-GC requires 2 messages while tree-based
schemes needs at least 3 messages. Then, we derive an
approximate bound of the average case using simulation.
In the simulation, leaving GMs are randomly selected
from a group with 1024 GMs and a group with 512
GMs, where the simulation results are shown in Fig. 5
and Fig. 6, respectively. In each case, we consider 5%,
25%, 50% IDs are not assigned (i.e., do not care value).
We repeat 100 times for each sub-group construction to
average the results. As a comparison, we plotted one line
for the complexity of number of messages equals number
of leaving GMs and one line for O(log N). From the
result, we can see that ID-GC performs better than all
the existing tree-based group key management schemes
and achieves O(log N) complexity, where the constant
factor is about 20 for the 1024-member group and 9 for
the 512-member group.

Fig. 6. Simulation of multiple GMs leave for
a group with 512 GMs

C. Computation Overhead

There are two main factors to affect the computa-
tion performance. First, the asymmetric cryptographic
operations are considered to be more expensive than
symmetric-key-based solutions. Second, bigger group
may require more computation powers. In ACP scheme,
the author reports that the encryption needs O(M2) finite
field operations when the sub-group size if M ; in the
BGW scheme, the encryption and decryption require
O(M) operations on the bilinear group, e.g., a group of
Elliptic curve points, which is heavier than finite field
operations [16], [17]. In ID-GC, the encryption produce
O(log N) messages and each requires 3 operations on
the bilinear groups, and the decryption requires O(log N)
operations on the bilinear groups and 2 pairings. Although
the problem of minimizing SOPE is NP-hard, efficient
approximations are widely known. Thus, ID-GC is much
more efficient than ACP and BGW when the size of group
goes larger.

VI. Related Work
Group key management (GKM) has been investigated

intensively in centralized group key distribution schemes
and decentralized (contributory) key agreement schemes.
Due to the richness of related research, we cannot list all
the related work in this area. We refer to [18], [19] as
two excellent surveys.

Particularly, the construction of our key management
scheme is similar to the following described work. Tree-
based rekey algorithms have gained popularity, including,
notably, Logical Key Hierarchy (LKH) [3], One- Way
Function Tree (OFT) [2], One-way Function Chain Tree
[20], Hierarchical α-ary Tree with Clustering [1] and Effi-
cient Large-Group Key (ELK) [4]. These algorithms pro-
vide different tradeoffs among storage, computation and
communication overheads. Compared to these schemes,
flat table (FT) scheme achieves high efficiency in terms
of storage, computation and communication overheads.
In FT schemes [9], [10], there are total 2 log N KEKs:
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{ki,b|i ∈ {0, 1, . . . , 2 log N − 1}, b ∈ {1, 0}} and log N
symmetric KEKs are distributed to each GM, with each
KEK corresponding to one bit in ID. Despite its effi-
ciency, FT scheme is vulnerable to collusion attacks. In
[11], the authors first formally explored the broadcasting
encryption. They presented a solution for M users, which
is secure against collusion attacks of t users. The com-
munication overhead of this scheme is O(t log2 t log M).
In [12], Boneh et al. proposed a collusion-resistant broad-
casting encryption scheme. In this approach, the storage,
communication and computation overhead grows linearly
with the increase of the number of users.

The strategy of ID-GC reducing communication over-
head for GM leaving is similar to that of the Flat Table
(FT) scheme, which is very efficient but vulnerable to col-
lusion attacks. Flat Table (FT) key management schemes
[9], [10] map the set of pre-distributed secret keys for
each GM to the bit positions in the GM’s ID, in order to
reduce communication overheads. However, FT solutions
simply adopt the shared key solutions and thus are subject
to collusion attacks. For example, GMs 001 and 010 can
decrypt ciphertexts destined to other GMs, e.g., 011, 000,
by combining their secret keys that are mapped to their
bit positions. To prevent the collusion attacks, Cheung
et al. [21] proposed CP-ABE-FT to implement the FT
using CP-ABE. CP-ABE-FT utilizes a periodic refresh-
ment mechanism to ensure forward secrecy. However, it
has several drawbacks: 1) if the ID of a revoked GM
is re-assigned to another GM before the refreshment,
the revoked GM can regain the access to group data
and then the group forward secrecy is compromised;
2) outsiders can impersonate GC to disturb the rekey
process by sending CP-ABE [5] ciphertexts. However,
the drawbacks of [21] is that the size of message is too
large and communication overhead is log N log M . In our
construction, ID-GC is resistant to collusion attacks and
communication overhead is further reduced to log N .

VII. Conclusion and Future Work

In this paper, we proposed a novel ID-GC scheme.
By utilizing the basic construction of ciphertext pol-
icy attribute-based encryption and flat table identity
management, ID-GC greatly improved performance in
communication (O(log N) for bulk deletions), storage
(O(log N) for each group member), and computation
(O((log N)(log M)) for both encryption and decryption),
where N is the ID space size and M is the number of
GMs in the group. Moreover, ID-GC scheme provides
group forward/backward secrecy, and it is resilience to
colluding attacks.

Based on the proposed solution, future work would
focus on extending ID-GC scheme to support dynamic
conference without losing efficiency. Particularly, we will
investigate distributed group management infrastructure
to improve the robustness of the ID-GC.
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