
Fast elliptic-curve cryptography on the Cell
Broadband Engine

Neil Costigan1 and Peter Schwabe2 ?

1 School of Computing
Dublin City University, Glasnevin, Dublin 9, Ireland

neil.costigan@computing.dcu.ie
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
peter@cryptojedi.org

Abstract. This paper is the first to investigate the power of the Cell
Broadband Engine for state-of-the-art public-key cryptography. We pre-
sent a high-speed implementation of elliptic-curve Diffie-Hellman (ECDH)
key exchange for this processor, which needs 777000 cycles on one Syn-
ergistic Processor Unit for a scalar multiplication on a 255-bit elliptic
curve, including the costs for key verification and key compression. This
cycle count is independent of inputs therefore protecting against timing
attacks.

This speed relies on a new representation of elements of the underlying
finite field suited for the unconventional instruction set of this architec-
ture.

Furthermore we demonstrate that an implementation based on the multi-
precision integer arithmetic functions provided by IBM’s multi-precision
math (MPM) library would take at least 9660640 cycles.

Comparison with implementations of the same function for other archi-
tectures shows that the Cell Broadband Engine is competitive in terms
of cost-performance ratio to other recent processors such as the Core 2
for public-key cryptography.

Specifically, the state-of-the-art Galbraith-Lin-Scott ECDH software per-
forms 27370 scalar multiplications per second using all four cores of a
2.5GHz Intel Core 2 Quad Q9300 inside a $400 computer, while the new
software reported in this paper performs 24528 scalar multiplications
per second on a Playstation 3 that costs just $279. Both of these speed
reports are for high-security 256-bit elliptic-curve cryptography.

Keywords: Cell Broadband Engine, elliptic-curve cryptography (ECC),
efficient implementation

? The first author was supported by the Irish Research Council for Science, Engineering
and Technology (IRCSET). The second author was supported by the European
Commission through the ICT Programme under Contract ICT–2007–216499 CACE,
and through the ICT Programme under Contract ICT-2007-216646 ECRYPT II.
Permanent ID of this document: a33572712a64958c0bf522e608f25f0d. Date: Jan 7,
2009

2 Neil Costigan and Peter Schwabe

1 Introduction

This paper describes a high-speed implementation of state-of-the-art public-key
cryptography for the Cell Broadband Engine (CBE). More specifically we de-
scribe an implementation of the curve25519 function, an elliptic-curve Diffie-
Hellman key exchange (ECDH) function introduced in [3].

Implementations of this function have been achieving speed records for high-
security ECDH software on different platforms [3], [9]. Benchmarks of our im-
plementation show that the CBE is competitive (in terms of cost-performance
ratio) to other recent processors as the Intel Core 2 for public-key cryptography.

Our implementation needs 777000 cycles on one Synergistic Processor Unit
(SPU) of the CBE. This number includes not only scalar multiplication on the
underlying 255-bit elliptic curve, but furthermore key compression, key valida-
tion and protection against timing attacks. We plan to put our implementation
into the public domain to maximize reusability of our results.

We wish to thank Dan Bernstein, Tanja Lange, Ruben Niederhagen, and
Michael Scott for their invaluable feedback and encouragement. Neil Costigan
would also like to thank Lule̊a University of Technology, Sweden.

1.1 How these speeds were achieved

Elliptic-curve cryptography (ECC) is usually implemented as a sequence of arith-
metic operations in a finite field. IBM provides a multi-precision math (MPM)
library developed especially for the Cell Broadband Engine as part of the stan-
dard Cell Software Development Kit (SDK). The obvious approach for the im-
plementation of ECC on the CBE is thus to use this library for the underlying
finite field arithmetic.

However, we will show that the targeted performance cannot be achieved
following this approach, not even with optimizing some functions of the MPM
library for arithmetic in fields of the desired size.

Instead, the speed of our implementation is achieved by

• Parting with the traditional way of implementing elliptic-curve cryptography
which uses arithmetic operations in the underlying field as smallest building
blocks,
• Representing finite field elements in a way that takes into account the special

structure of the finite field and the unconventional SPU instruction set, and
• Careful optimization of the code on assembly level.

Related work Implementations of public-key cryptography for the Cell Broad-
band Engine have not yet been extensively studied. In particular we don’t know
of any previous implementation of ECC for the Cell Broadband Engine.

Costigan and Scott investigate in [5] the use of IBM’s MPM library to ac-
celerate OpenSSL on a Sony Playstation 3. The paper reports benchmarks for

Fast elliptic-curve cryptography on the Cell Broadband Engine 3

RSA with different key lengths; RSA signature generation with a 2048 bit key
is reported to take 0.015636s corresponding to 50035200 cycles on one SPU.

An implementation of the Digital Signature Algorithm (DSA) supporting key
lengths up to 1024 bits is included in the SPE Cryptographic Library [15].

In [17] Shimizu et al. report 4074000 cycles for 1024-bit-RSA encryption or
decryption and 1331000 cycles for 1024-bit-DSA key generation. Furthermore
they report 2250000 cycles for 1024-bit-DSA signature generation and 4375000
cycles for 1024-bit-DSA signature verification.

The Cell Broadband Engine has recently demonstrated its power for crypt-
analysis of symmetric cryptographic primitives [19], [18],

Organization of the paper In Section 2 we will briefly review the features of
the CBE which are relevant for our implementations. Section 3 describes the
curve25519 function including some necessary background on elliptic-curve arith-
metic. Section 4 describes IBM’s MPM library including optimizations we ap-
plied to accelerate arithmetic in finite fields of the desired size. We show that an
implementation based on this library cannot achieve the targeted performance.
In Section 5 we detail our implementation of curve25519. We conclude the
paper with a discussion of benchmarking results and a comparison to ECDH
implementations for other architectures in Section 6.

2 The Cell Broadband Engine

When it became apparent that multi-core chip design rather than increased
frequency was the gateway to more efficient CPUs, IBM, Sony and Toshiba took
a novel approach: Instead of developing a chip with every core being the same,
they came up with the Cell Broadband Engine Architecture (CBEA). Currently
two different CBEA processors are available: the Cell Broadband Engine (CBE)
and the PowerXCell 8i processor. Both are multi-core processors consisting of
a traditional central processor and 8 specialized high performance processors
called Synergistic Processor Units (SPUs).

These units are combined across a high bandwidth (204 GB/s) [11] bus to
offer a multi-core environment with two instruction sets and enormous process-
ing power. Compared with the CBE the PowerXCell 8i processor has highly
increased double precision floating point performance. The implementation de-
scribed in this paper is optimized for the CBE, we will therefore in the following
focus on the description of this processor.

The Cell Broadband Engine can be found in the Sony Playstation 3 and the
IBM QS20 and QS21 blade server series. Note that the CBE in the Playstation 3
makes just 6 out of 8 SPUs available for general purpose computations. Toshiba
equips several laptops of the Qosmio series with the SpursEngine consisting of
4 SPUs intended for media processing. This SpursEngine can also be found in a
PCI Express card called WinFast pxVC1100 manufactured by Leadtek which is
currently available only in Japan.

The primary processor of the Cell Broadband Engine is a 64-bit Power Pro-
cessor Unit (PPU). This PPU works as a supervisor for the other cores. Currently

4 Neil Costigan and Peter Schwabe

operating at 3.2GHz, The PPU is a variant of the G5/PowerPC product line, a
RISC driven processor found in IBM’s servers and Apple’s PowerMac range.

2.1 The Cell’s SPU

The real power of the CBE is in the additional SPUs. Each SPU is a specialist
processor with a RISC-like SIMD instruction set and a 128-element array of 128-
bit registers. It has two pipelines (pipeline 0 and pipeline 1); each cycle it can
dispatch one instruction per pipeline. Whether or not the SPU really dispatches
two instructions in a given cycle is highly dependent on instruction scheduling
and alignment. This is subject to the following conditions:

• Execution of instructions is purely in-order.
• The two pipelines execute disjoint sets of instructions (i.e. each instruction

is either a pipeline-0 or a pipeline-1 instruction).
• The SPU has a fetch queue that can contain at most two instructions.
• Instructions are fetched into the fetch queue only if the fetch queue is empty.
• Instructions are fetched in pairs; the first instruction in such a pair is from

an even word address, the second from an odd word address.
• The SPU executes two instructions in one cycle only if two instructions are in

the fetch queue, the first being a pipeline-0 instruction and the second being
a pipeline-1 instruction and all inputs to these instructions being available
and not pending due to latencies of previously executed instructions.

Hence, instruction scheduling has to ensure that pipeline-0 and pipeline-1 in-
structions are interleaved and that latencies are hidden; instruction alignment
has to ensure that pipeline-0 instructions are at even word addresses and pipeline-
1 instructions are at odd word addresses.

Both our implementation and the MPM library build the finite field arith-
metic on the integer arithmetic instructions of the SPU. This is due to the fact
that single-precision floating-point arithmetic offers a too small mantissa and
that double-precision floating-point arithmetic causes excessive pipeline stalls
on the SPU and is therefore very inefficient.

All integer arithmetic instructions (except shift and rotate instructions) are
SIMD instructions operating either on 4 32-bit word elements or on 8 16-bit
halfword elements or on 16 8-bit byte elements of a 128-bit register.

Integer multiplication constitutes an exception to this scheme: The integer
multiplication instructions multiply 4 16-bit halfwords in parallel and store the
32-bit results in the 4 word elements of the results register.

The following instructions are the most relevant for our implementation; for
a detailed description of the SPU instruction set see [13], for a list of instruction
latencies and associated pipelines see [12, Appendix B].

a: Adds each 32-bit word element of a register a to the corresponding word
element of a register b and stores the results in a register r.

Fast elliptic-curve cryptography on the Cell Broadband Engine 5

mpy: Multiplies the 16 least significant bits of each 32-bit word element of a
register a with the corresponding 16 bits of each word element of a register
b and stores the resulting four 32-bit results in the four word elements of a
register r.

mpya: Multiplies 16-bit halfwords as the mpy instruction but adds the resulting
four 32-bit word elements to the corresponding word elements of a register
c and stores the resulting sum in a register r.

shl: Shifts each word element of a register a to the left by the number of bits
given by the corresponding word element of a register b and stores the result
in a register r.

rotmi: Shifts of each word element of a register a to the right by the number
of bits given in an immediate value and stores the result in a register r.

shufb: Allows to set each of the result register r to either the value of an
arbitrary byte of one of two input registers a and b or to a constant value of
0, 0x80 or 0xff.

2.2 Computation micro-kernels for the SPU

Alvaro, Kurzak and Dongarra [1] introduce the idea of a computation micro-
kernel for the SPU where the restricted code and data size of the SPU become
important design criteria but issues such as inter-chip communication and syn-
chronization are not considered. The kernel focuses on utilization of the wide
registers and the instruction level parallelism. Furthermore, for security aware
applications such as those using ECC, there is an interesting security architec-
ture where an SPU can run in isolation mode, where inter-chip communications,
loading and unloading program code incur significant overhead. In this paper we
describe such a computation micro-kernel implementation running on one SPU
of the CBE.

3 ECDH and the curve25519 function

3.1 Elliptic-Curve Diffie-Hellman Key Exchange (ECDH)

Let F be a finite field and E/F an elliptic curve defined over F. Let E(F) denote
the group of F-rational points on E. For any P ∈ E(F) and k ∈ Z we will denote
the k-th scalar multiple of P as [k]P .

The Diffie-Hellman key exchange protocol [6] can now be carried out in the
group 〈P 〉 ⊆ E(F) as follows: User A chooses a random a ∈ {2, . . . , |〈P 〉| −
1}, computes [a]P and sends this to user B. User B chooses a random b ∈
{2, . . . , |〈P 〉| − 1}, computes [b]P and sends this to user A. Now both users can
compute Q = [a]([b]P) = [b]([a]P) = [(a · b)]P . The joint key for secret key
cryptography is then extracted from Q; a common way to do this is to compute
a hash value of the x-coordinate of Q.

6 Neil Costigan and Peter Schwabe

3.2 Montgomery Arithmetic

For elliptic curves defined by an equation of the form By2 = x3 + Ax2 + x,
Montgomery introduced in [16] a fast method to compute the x-coordinate of
a point R = P + Q, given the x-coordinates of two points P and Q and the
x-coordinate of their difference P −Q.

These formulas lead to an efficient algorithm to compute the x-coordinate of
Q = [k]P for any point P . This algorithm is often referred to as the Montgomery
ladder. In this algorithm the x-coordinate xP of a point P is represented as
(XP , ZP), where xP = XP /ZP ; for the representation of the point at infinity see
the discussion in Appendix B of [3]. See Algorithms 1 and 2 for a pseudocode
description of the Montgomery ladder.

Algorithm 1 The Montgomery ladder for x-coordinate-based scalar multipli-
cation on the elliptic curve E : By2 = x3 + Ax2 + x

Input: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Output: (X[k]P , Z[k]P) fulfilling x[k]P = X[k]P /Z[k]P

t = dlog2 k + 1e
X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← t− 1 downto 0 do

if bit i of k is 1 then
(X3, Z3, X2, Z2)← ladderstep(X1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end if
end for
return (X2, Z2)

Each “ladder step” as described in Algorithm 2 requires 5 multiplications, 4
squarings, 8 additions and one multiplication with the constant a24 = (A+ 2)/4
in the underlying finite field.

3.3 The curve25519 function

Bernstein proposed in [3] the curve25519 function for elliptic-curve Diffie-Hellman
key exchange. This function uses arithmetic on the elliptic curve defined by the
equation E : y2 = x3 + Ax2 + x over the field Fp, where p = 2255 − 19 and
A = 486662; observe that this elliptic curve allows for the x-coordinate-based
scalar multiplication described above.

The elliptic curve and underlying finite field are carefully chosen to meet
high security requirements and to allow for fast implementation, for a detailed
discussion of the security properties of curve25519 see [3].

The curve25519 function takes as input two 32-byte strings, one representing
the x-coordinate of a point P and the other representing a 256-bit scalar k. It

Fast elliptic-curve cryptography on the Cell Broadband Engine 7

Algorithm 2 One “ladder step” of the Montgomery ladder
const a24 = (A + 2)/4 (A from the curve equation)
function ladderstep(XQ−P , XP , ZP , XQ, ZQ)

t1 ← XP + ZP

t6 ← t21
t2 ← XP − ZP

t7 ← t22
t5 ← t6 − t7
t3 ← XQ + ZQ

t4 ← XQ − ZQ

t8 ← t4 · t1
t9 ← t3 · t2
XP+Q ← (t8 + t9)2

ZP+Q ← XQ−P · (t8 − t9)2

X[2]P ← t6 · t7
Z[2]P ← t5 · (t7 + a24 · t5)
return (X[2]P , Z[2]P , XP+Q, ZP+Q)

end function

gives as output a 32-byte string representing the x-coordinate xQ of Q = [k]P .
For each of these values curve25519 is assuming little-endian representation.

For our implementation we decided to follow [3] and compute xQ by first
using Algorithm 1 to compute (XQ, ZQ) and then computing xQ = Z−1

Q ·XQ.

4 The MPM library and ECC

4.1 Implementation hierarchy

Implementations of elliptic-curve cryptography are often described as a hierarchy
of operations. In [10, Section 5.2.1] Hankerson, Menezes and Vanstone outline a
hierarchy of operations in ECC as protocols, point multiplication, elliptic-curve
addition and doubling, finite-field arithmetic. Fan, Sakiyama & Verbauwhede
expand this in [7] to describe a 5-layer pyramid of

1. Integrity, confidentially, authentication,
2. Elliptic-curve scalar multiplication [k]P ,
3. Point addition and doubling,
4. Modular operations in Fp,
5. Instructions of a w-bit core.

4.2 Fp arithmetic using the MPM library

In Section 3 we described how the upper 3 layers of this hierarchy are handled.
Hence, the obvious next step is to look at efficient modular operations in Fp

and how these operations can be mapped to the SIMD instructions on 128-bit
registers of the SPU.

8 Neil Costigan and Peter Schwabe

For this task of mapping operations on large integers to the SPU instruction
set, IBM provides a vector-optimized multi-precision math (MPM) library [14]
as part of the software development kit (SDK) offered for the Cell Broadband
Engine.

This MPM library is provided in source code and its algorithms are generic
for arbitrary sized numbers. They operate on 16-bit halfwords as smallest units,
elements of our 255-bit field are therefore actually handled as 256-bit values.

As our computation is mostly bottlenecked by costs for multiplications and
squarings in the finite field we decided to optimize these functions for 256-bit
input values.

At a high level the original MPM multiplication function is structured by
an array declaration section, then array initialization via loop dictated by the
input sizes, a main body consisting of calculating partial products inside nested
loops (again determined by the input sizes), and finally a gather section where
the partial products feed into the result.

We optimized this pattern for fixed 256-bit input and 512-bit output values
by using the large register array to remove the implicit array calls and then fully
unrolling the loops.

The MPM library supplies a specialized function for squaring where signif-
icant optimizations should be made over a general multiply by reusing partial
products. However our timings indicate that such savings are not achieved until
the size of the multi-precision inputs exceeds 512-bits. We therefore take the
timings of a multiplication for a squaring.

4.3 What speed can we achieve using MPM?

The Montgomery ladder in the curve25519 computation consists of 255 ladder
steps, hence, computation takes 1276 multiplications, 1020 squarings, 255 mul-
tiplications with a constant, 2040 additions and one inversion in the finite field
F2255−19. Table 1 gives the number of CPU cycles required for each of these oper-
ations (except inversion). Multiplication and squaring are implemented as a call
to mpm mul and a subsequent call to mpm mod, addition is implemented as a call
to mpm add and a conditional call (mpm cmpge) to mpm sub. For multiplication we
include timings of the original MPM functions and of our optimized versions.
The original MPM library offers a number of options for each operation. We
select the inlined option with equal input sizes for fair comparison.

Operation Number of cycles

Addition/Subtraction 86

Multiplication (original MPM) 4334

Multiplication (optimized) 4124

Table 1. MPM performance for arithmetic operations in a 256-bit finite field

Fast elliptic-curve cryptography on the Cell Broadband Engine 9

From these numbers we can compute a lower bound of 9660640 cycles (1276M
+ 1020S + 2040A, where M, S and A stand for the costs of multiplication,
squaring and addition respectively) required for the curve25519 computation
when using MPM. Observe that this lower bound still ignores costs for the
inversion and for multiplication with the constant.

The high cost for modular reduction in these algorithms results from the
fact, that the MPM library cannot make use of the special form of the modulus
2255 − 19; an improved, specialized reduction routine would probably yield a
smaller lower bound. We therefore investigate what lower bound we get when
entirely ignoring costs for modular reduction. Table 2 gives numbers of cycles
for multiplication and addition of 256-bit integers without modular reduction.
This yields a lower bound of 934080 cycles. Any real implementation would, of
course, take significantly more time as it would need to account for operations
not considered in this estimation.

Operation Number of cycles

Addition/Subtraction 52

Multiplication (original MPM) 594

Multiplication (optimized) 360

Table 2. MPM performance for arithmetic operations on 256-bit integers

5 Implementation of curve25519

As described in Section 3 the computation of the curve25519 function consists
of two parts, the Montgomery ladder computing (XQ, ZQ) and the inversion of
ZQ.

We decided to implement the inversion as an exponentiation with p − 2 =
2255 − 21 using the the same sequence of 254 squarings and 11 multiplications
as [3]. This might not be the most efficient algorithm for inversion, but it is
the easiest way to implement an inversion algorithm which takes constant time
independent of the input.

Completely inlining all multiplications and squarings would result in an ex-
cessive increase of the overall code size. We therefore implement multiplication
and squaring functions and use calls to these functions.

However for the first part—the Montgomery ladder—we do not use calls
to these functions but take one ladder step as smallest unit implemented in a
function. This allows for a higher degree of data-level parallelism, especially in
the modular reductions, and thus yields a significantly increased performance.

For the speed-critical parts of our implementation we use the qhasm pro-
gramming language [2], which offers us all flexibility for code optimization on
the assembly level, while still supporting a more convenient programming model

10 Neil Costigan and Peter Schwabe

than plain assembly. We extended this language to also support the SPU of the
Cell Broadband Engine as target architecture.

In the description of our implementation we will use the term “register vari-
able”. Note that for qhasm (unlike C) the term register variable refers to variables
that are forced to be kept in registers.

5.1 Fast arithmetic

In the following we will first describe how we represent elements of the finite field
F2255−19 and then detail the three algorithms that influence execution speed of
curve25519 most, namely finite field multiplications, finite field squaring and a
Montgomery ladder step.

5.2 Representing elements of F2255−19

We represent an element a of F2255−19 as a tuple (a0, . . . , a19) where

a =
19∑

i=0

ai2d12.75ie. (1)

We call a coefficient ai reduced if ai ∈ [0, 213 − 1]. Analogously we call the
representation of an element a ∈ F2255−19 reduced if all its coefficients a0, . . . , a19

are reduced.

As described in section 2 the Cell Broadband Engine can only perform 16-bit
integer multiplication, where one instruction performs 4 such multiplications in
parallel. In order to achieve high performance of finite field arithmetic it is crucial
to properly arrange the values a0, . . . a19 in registers and to adapt algorithms for
field arithmetic to make use of this SIMD capability.

Multiplication and Squaring in F2255−19 As input to field multiplication
we get two finite field elements (a0, . . . , a19) and (b0, . . . , b19). We assume that
these field elements are in reduced representation. This input is arranged in 10
register variables a03, a47, a811, a1215, a1619, b03, b47, b811, b1215 and b1619
as follows: Register variable a03 contains in its word elements the coefficients
a0, a1, a2, a3, register variable a47 contains in its word elements the coefficients
a4, a5, a6, a7, and so on.

Fast elliptic-curve cryptography on the Cell Broadband Engine 11

The idea of multiplication is to compute coefficients r0, . . . , r38 of r = ab
where:

r0 =a0b0

r1 =a1b0 + a0b1

r2 =a2b0 + a1b1 + a0b2

r3 =a3b0 + a2b1 + a1b2 + a0b3

r4 =a4b0 + 2a3b1 + 2a2b2 + 2a1b3 + a0b4

r5 =a5b0 + a4b1 + 2a3b2 + 2a2b3 + a1b4 + a0b5

r6 =a6b0 + a5b1 + a4b2 + 2a3b3 + a2b4 + a1b5 + a0b6

r7 =a7b0 + a6b1 + a5b2 + a4b3 + a3b4 + a2b5 + a1b6 + a0b7

r8 =a8b0 + 2a7b1 + 2a6b2 + 2a5b3 + a4b4 + 2a3b5 + 2a2b6 + 2a1b7 + a0b8

...

This computation requires 400 multiplications and 361 additions. Making
use of the SIMD instructions, at best 4 of these multiplications can be done in
parallel, adding the result of a multiplication is at best for free using the mpya
instruction, so we need at least 100 instructions to compute the coefficients
r0, . . . , r38. Furthermore we need to multiply some intermediate products by 2,
an effect resulting from the non-integer radix 12.75 used for the representation
of finite field elements. As we assume the inputs to have reduced coefficients, all
result coefficients ri fit into 32-bit word elements.

We will now describe how the coefficients r0, . . . , r38 can be computed using
145 pipeline-0 instructions (arithmetic instructions). This computation requires
some rearrangement of coefficients in registers using the shufb instruction but
with careful instruction scheduling and alignment these pipeline-1 instructions do
not increase the number of cycles needed for multiplication. From the description
of the arithmetic instructions it should be clear which rearrangement of inputs
is necessary.

First use 15 shl instructions to have register variables
b03s1 containing b0, b1, b2, 2b3,
b03s2 containing b0, b1, 2b2, 2b3,
b03s3 containing b0, 2b1, 2b2, 2b3,
b47s1 containing b4, b5, b6, 2b7 and so on.

Now we can proceed producing intermediate result variables
r03 containing a0b0, a0b1, a0b2, a0b3 (one mpy instruction),
r14 containing a1b0, a1b1, a1b2, 2a1b3 (one mpy instruction),
r25 containing a2b0, a2b1, 2a2b2, 2a2b3 (one mpy instruction),
r36 containing a3b0, 2a3b1, 2a3b2, 2a3b3 (one mpy instruction),
r47 containing a4b0 +a0b4, a4b1 +a0b5, a4b2 +a0b6, a4b3 +a0b7 (one mpy and one
mpya instruction),
r58 containing a5b0 + a1b4, a5b1 + a1b5, a5b2 + a1b6, 2a5b3 + 2a1b7 (one mpy and
one mpya instruction) and so on. In total these computations need 36 mpy and
64 mpya instructions.

12 Neil Costigan and Peter Schwabe

As a final step these intermediate results have to be joined to produce the
coefficients r0, . . . r38 in the register variables r03, r47,. . . r3639. We can do
this using 30 additions if we first combine intermediate results using the shufb
instruction. For example we join in one register variable the highest word of r14
and the three lowest words of r58 before adding this register variable to r47.

The basic idea for squaring is the same as for multiplication. We can make
squaring slightly more efficient by exploiting the fact that some intermediate
results are equal.

For a squaring of a value a given in reduced representation (a0, . . . , a19),
formulas for the result coefficients r0, . . . , r38 are the following:

r0 =a0a0

r1 =2a1a0

r2 =2a2a0 + a1a1

r3 =2a3a0 + 2a2a1

r4 =2a4a0 + 4a3a1 + 2a2a2

r5 =2a5a0 + 2a4a1 + 4a3a2

r6 =2a6a0 + 2a5a1 + 2a4a2 + 2a3a3

r7 =2a7a0 + 2a6a1 + 2a5a2 + 2a4a3

r8 =2a8a0 + 4a7a1 + 4a6a2 + 4a5a3 + a4a4

...

The main part of the computation only requires 60 multiplications (24 mpya
and 36 mpy instructions). However, some partial results have to be multiplied by
4; this requires more preprocessing of the inputs, we end up using 35 instead of
15 shl instructions before entering the main block of multiplications. Squaring
is therefore only 20 cycles faster than multiplication.

During both multiplication and squaring, we can overcome latencies by in-
terleaving independent instructions.

5.3 Reduction

The task of the reduction step is to compute from the coefficients r0, . . . r38 a
reduced representation (r0, . . . , r19). Implementing this computation efficiently
is challenging in two ways: In a typical reduction chain every instruction is
dependent on the result of the preceding instruction. This makes it very hard to
vectorize operations in SIMD instructions and to hide latencies.

We will now describe a way to handle reduction hiding most instruction
latencies but without data level parallelism through SIMD instructions.

The basic idea of reduction is to first reduce the coefficients r20 to r38 (pro-
ducing a coefficient r39), then add 19r20 to r0, 19r21 to r1 and so on until adding
19r39 to r19 and then reduce the coefficients r0 to r19.

Fast elliptic-curve cryptography on the Cell Broadband Engine 13

Multiplications by 19 result from the fact, that the coefficient a20 stands for
a20 · 2255 (see equation (1)). By the definition of the finite field F2255−19, 2255a20

is the same as 19a20. Equivalent statements hold for the coefficients a21, . . . , a39.
The most speed critical parts of this reduction are the two carry chains from

r20 to r39 and from r0 to r19. In order to overcome latencies in these chains we
break each of them into four parallel carry chains, Algorithm 3 describes this
structure of our modular reduction algorithm.

Algorithm 3 Structure of the modular reduction
Carry from r20 to r21, from r24 to r25, from r28 to r29 and from r32 to r33

Carry from r21 to r22, from r25 to r26, from r29 to r30 and from r33 to r34

Carry from r22 to r23, from r26 to r27, from r30 to r31 and from r34 to r35

Carry from r23 to r24, from r27 to r28, from r31 to r32 and from r35 to r36

Carry from r24 to r25, from r28 to r29, from r32 to r33 and from r36 to r37

Carry from r25 to r26, from r29 to r30, from r33 to r34 and from r37 to r38

Carry from r26 to r27, from r30 to r31, from r34 to r35 and from r38 to r39

Carry from r27 to r28, from r31 to r32 and from r35 to r36

Add 19r20 to r0, add 19r21 to r1, add 19r22 to r2 and add 19r23 to r3

Add 19r24 to r4, add 19r25 to r5, add 19r26 to r6 and add 19r27 to r7

Add 19r28 to r8, add 19r29 to r9, add 19r30 to r10 and add 19r31 to r11

Add 19r32 to r12, add 19r33 to r13, add 19r34 to r14 and add 19r35 to r15

Add 19r36 to r16, add 19r37 to r17, add 19r38 to r18 and add 19r39 to r19

Carry from r16 to r17, from r17 to r18, from r18 to r19 and from r19 to r20

Add 19r20 to r0

Carry from r0 to r1, from r4 to r5, from r8 to r9 and from r12 to r13

Carry from r1 to r2, from r5 to r6, from r9 to r10 and from r13 to r14

Carry from r2 to r3, from r6 to r7, from r10 to r11 and from r14 to r15

Carry from r3 to r4, from r7 to r8, from r11 to r12 and from r15 to r16

Carry from r4 to r5, from r8 to r9, from r12 to r13 and from r16 to r17

Carry from r5 to r6, from r9 to r10, from r13 to r14 and from r17 to r18

Carry from r6 to r7, from r10 to r11, from r14 to r15 and from r18 to r19

Carry from r7 to r8, from r11 to r12 and from r15 to r16

Each of the carry operations in Algorithm 3 can be done using one shufb,
one rotmi and one a instruction. Furthermore we need 8 masking instructions
(bitwise and) for each of the two carry chains.

In total, a call to the multiplication function (including reduction) takes 444
cycles, a call to the squaring function takes 424 cycles. This includes 144 cycles
for multiplication (124 cycles for squaring), 244 cycles for reduction and some
more cycles to load input and store output. Furthermore the cost of a function
call is included in these numbers.

14 Neil Costigan and Peter Schwabe

Montgomery ladder step For the implementation of a Montgomery ladder
step we exploit the fact that we can optimize a fixed sequence of arithmetic
instructions in F2255−19 instead of single instructions. This makes it much easier
to make efficient use of the SIMD instruction set, in particular, for modular
reduction.

The idea is to arrange the operations in F2255−19 into blocks of 4 equal or
similar instructions, similar meaning that multiplications and squarings can be
grouped together and additions and subtractions can be grouped together as
well. Then these operations can be carried out using the 4-way parallel SIMD
instructions in the obvious way; for example for 4 multiplications r = a · b,
s = c · d, t = e · f and u = g · h we first produce register variables aceg0
containing in its word elements a0, c0, e0, g0 and bdgh0 containing b0, d0, e0, g0

and so on. Then the first coefficient of r, s, t and u can be computed by applying
the mpy instruction on aceg0 and bdfh0. All other result coefficients of r, s, t
and u can be computed in a similar way using mpy and mpya instructions.

This way of using the SIMD capabilities not only makes multiplication slightly
faster (420 arithmetic instructions instead of 576 for 4 multiplications), it also
allows for much faster reduction: The reduction algorithm described above can
now be applied to 4 results in parallel, reducing the cost of a reduction by a
factor of 4.

In Algorithm 4 we describe how we divide a Montgomery ladder step into
blocks of 4 similar operations. In this algorithm the computation of ZP+Q in
the last step requires one multiplication and reduction which we carry out as
described in the previous section. The computation of a ladder step again requires
rearrangement of data in registers using the shufb instruction. Again we can
hide these pipeline-1 instructions almost entirely by interleaving with arithmetic
pipeline-1 instructions.

One remark regarding subtractions occurring in this computation: As reduc-
tion expects all coefficients to be larger than zero, we cannot just compute the
difference of each coefficient. Instead, for the subtraction a − b we first add 2p
to a and then subtract b. For blocks containing additions and subtractions in
Algorithm 4 we compute the additions together with additions of 2p and perform
the subtraction in a separate step.

In total one call to the ladder-step function takes 2433 cycles.

6 Results and Comparison

6.1 Benchmarking Methodology

In order to make our benchmarking results comparable and verifiable we use
the SUPERCOP toolkit, a benchmarking framework developed within eBACS,
the benchmarking project of ECRYPT II [4]. The software presented in this
paper passes the extensive tests of this toolkit showing compatibility to other
curve25519 implementations, in particular the reference implementation in-
cluded in the toolkit.

Fast elliptic-curve cryptography on the Cell Broadband Engine 15

Algorithm 4 Structure of a Montgomery ladder step (see Algorithm 2) opti-
mized for 4-way parallel computation

t1 ← XP + ZP

t2 ← XP − ZP

t3 ← XQ + ZQ

t4 ← XQ − ZQ

Reduce t1, t2, t2, t3

t6 ← t21
t7 ← t22
t8 ← t4 · t1
t9 ← t3 · t2
Reduce t6, t7, t8, t9

t10 = a24 · t6
t11 = (a24− 1) · t7

t5 ← t6 − t7
t4 ← t10 − t11
t1 ← t8 − t9
t0 ← t8 + t9
Reduce t5, t4, t1, t0

Z[2]P ← t5 · t4
XP+Q ← t20
X[2]P ← t6 · t7
t2 ← t21
Reduce Z[2]P , XP+Q, X[2]P , t2

ZP+Q ← XQ−P · t2
Reduce ZP+Q

For scalar multiplication software, SUPERCOP measures two different cy-
cle counts: The crypto scalarmult benchmark measures cycles for a scalar
multiplication of an arbitrary point; the crypto scalarmult base benchmark
measures cycles needed for a scalar multiplication of a fixed base point.
We currently implement crypto scalarmult base as crypto scalarmult; faster
implementations would be useful in applications that frequently call
crypto scalarmult base

Two further benchmarks regard our curve25519 software in the context of
Diffie-Hellman key exchange: The crypto dh keypair benchmark measures the
number of cycles to generate a key pair consisting of a secret and a public key.
The crypto dh benchmark measures cycles to compute a joint key, given a secret
and a public key.

16 Neil Costigan and Peter Schwabe

6.2 Results

We benchmarked our software on a computer named hex01, a QS21 blade at
the Chair for Operating Systems at RWTH Aachen University. It contains two
3200MHz Cell Broadband Engine processors (revision 5.1); measurements used
one SPU of one CBE:

SUPERCOP benchmark on hex01 number of cycles
crypto scalarmult 777000
crypto scalarmult base 777000
crypto dh keypair 804000
crypto dh 780720

We furthermore benchmarked the software on a computer named node033,
a QS22 blade at the Research Center Jülich. It contains two PowerXCell 8i
processors (Cell Broadband Engine (revision 48.0)); measurements used one SPU
of one CBE:

SUPERCOP benchmark on node033 number of cycles
crypto scalarmult 777000
crypto scalarmult base 777000
crypto dh keypair 804000
crypto dh 780840

We also benchmarked our software on a computer named cosmovoid, a Sony
Playstation 3 at the Chair for Operating Systems at RWTH Aachen University.
It has a 3192MHz Cell Broadband Engine processor (revision 5.1); measurements
used one SPU of this CBE.

SUPERCOP benchmark on cosmovoid number of cycles
crypto scalarmult 777040
crypto scalarmult base 777040
crypto dh keypair 803960
crypto dh 780720

6.3 Comparison

To compare our results on a cost-performance basis with ECDH software for
other platforms, we consider the cheapest hardware configuration containing a
Cell Broadband Engine, namely the Sony Playstation 3, and compare the results
to an Intel-Core-2-based configuration running the ECDH software presented
in [8]. This is the currently fastest implementation of ECDH for the Core 2
processor providing a similar security as curve25519. Note that this software is
not protected against timing attacks.

We benchmarked this software on a machine called archer. at the National
Taiwan University. This machine has a 2500MHz Intel Core 2 Q9300 processor
with 4 cores; measurements used one core.

Fast elliptic-curve cryptography on the Cell Broadband Engine 17

SUPERCOP reports 365363 cycles for the crypto dh benchmark (this soft-
ware is not benchmarked as scalar-multiplication software). Key-pair genera-
tion specializes the scalar multiplication algorithm for the known basepoint; the
crypto dh keypair benchmark reports 151215 cycles.

For the Core-2-based configuration we determined which processor (as part
of a workstation) yields the best cost-performance ratio. Currently this is the
Q9300, a quad-core processor operating at 2.5 GHz. To estimate a price for a
complete workstation including this processor we determined the lowest prices
for processor, case, motherboard, memory, hard disk and power supply from the
online retailer zipzoomfly.com yielding $402.66.

To determine the best price for the Sony Playstation 3 we used Google Prod-
uct Search. The currently (Jan 6, 2009) cheapest offer is $279 for the Playstation
3 with a 40 GB hard disk.

The Sony Playstation 3 makes 6 SPUs available for general purpose com-
putations. Using our implementation running at 780720 cycles (crypto dh on
cosmovoid) on 6 SPUs operating at 3192MHz yields 24528 curve25519 com-
putations per second. Taking the $279 market price for the Playstation as a
basis, the cheapest CBE-based hardware can thus perform 87 computations of
curve25519 per second per dollar.

The Q9300-based workstation has 4 cores operating at 2.5GHz, using the
above-mentioned implementation which takes 365363 cycles, we can thus per-
form 27368 joint-key computations per second. Taking $400 market price for a
Q9300-based workstation as a basis, the cheapest Core-2-based hardware can
thus perform 68 joint-key computations per second per dollar.

Note, that this comparison is not fair in several ways: The cheapest Q9300-
based workstation has for example more memory than the Playstation 3 (1GB
instead of 256MB) and a larger hard disk (160GB instead of 40GB).

On the other hand we only use the 6 SPUs of the CBE for the curve25519
computation, the PPU is still available for other tasks, whereas the performance
estimation for the Core-2-based system assumes 100% workload on all CPU
cores.

In any case it is clear that the Cell Broadband Engine, when used properly,
is one of the best available CPUs for public-key cryptography.

References

1. Wesley Alvaro, Jakub Kurzak, and Jack Dongarra. Fast and small short vector
SIMD matrix multiplication kernels for the synergistic processing element of the
CELL processor. In Computational Science – ICCS 2008), volume 5101 of Lecture
Notes in Computer Science, pages 935–944. Springer, 2008.

2. Daniel J. Bernstein. qhasm: tools to help write high-speed software. http://cr.

yp.to/qhasm.html (accessed Jan 1, 2009).

3. Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Public Key
Cryptography – PKC 2006, volume 3958 of Lecture Notes in Computer Science,
pages 207–228. Springer, 2005.

18 Neil Costigan and Peter Schwabe

4. Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT benchmarking
of cryptographic systems, Nov 2008. http://bench.cr.yp.to/ (accessed Jan 1,
2009).

5. Neil Costigan and Michael Scott. Accelerating SSL using the vector processors in
IBM’s Cell Broadband Engine for Sony’s Playstation 3. In Proceedings of SPEED
workshop, 2007. http://www.hyperelliptic.org/SPEED/.

6. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, Nov 1976. http://

citeseer.ist.psu.edu/diffie76new.html.
7. Junfeng Fan, Kazuo Sakiyama, and Ingrid Verbauwhede. Elliptic curve cryptogra-

phy on embedded multicore systems. In Workshop on Embedded Systems Security
- WESS 2007, pages 17–22, Salzburg,Austria, 2007.

8. Stephen D. Galbraith, Xibin Lin, and Michael Scott. Endomorphisms for faster
elliptic curve cryptography on general curves, 2008. http://eprint.iacr.org/

2008/194.
9. P. Gaudry and E. Thomé. The mpFq library and implementing curve-based key

exchanges. In Proceedings of SPEED workshop, 2007. http://www.loria.fr/

~gaudry/publis/mpfq.pdf.
10. Darrel Hankerson, Alfred J. Menezes, and Scott A. Vanstone. Guide to Elliptic

Curve Cryptography. Springer, Berlin, 2003.
11. IBM DeveloperWorks. Cell broadband engine architecture and its first implemen-

tation, Nov 2005. http://www-128.ibm.com/developerworks/power/library/

pa-cellperf/.
12. IBM DeveloperWorks. Cell broadband engine programming handbook (ver-

sion 1.1), April 2007. http://www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs/9F820A5FFA3ECE8C8725716A0062585F.
13. IBM DeveloperWorks. SPU assembly language specification (version 1.6),

Sep 2007. http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

EFA2B196893B550787257060006FC9FB.
14. IBM DeveloperWorks. Example library API reference (version 3.1), Sep 2008.

http://www.ibm.com/developerworks/power/cell/documents.html.
15. IBM DeveloperWorks. SPE cryptographic library user documentation 1.0, Sep

2008. http://www.ibm.com/developerworks/power/cell/documents.html.
16. Peter. L. Montgomery. Speeding the Pollard and elliptic curve methods of factor-

ization. Mathematics of Computation, 48(177):243–264, 1987.
17. Kanna Shimizu, Daniel Brokenshire, and Mohammad Peyravian. Cell Broadband

Engine support for privacy, security, and digital rights management applications.
White paper, IBM, Oct 2005. http://www-01.ibm.com/chips/techlib/techlib.
nsf/techdocs/3F88DA69A1C0AC40872570AB00570985.

18. Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, David Molnar,
Dag Arne Osvik, and Benne de Weger. MD5 considered harmful today, Dec 2008.
http://www.win.tue.nl/hashclash/rogue-ca/ (accessed Jan 4, 2009).

19. Marc Stevens, Arjen Lenstra, and Benne de Weger. Nostradamus – predicting the
winner of the 2008 US presidential elections using a Sony PlayStation 3, Nov 2007.
http://www.win.tue.nl/hashclash/Nostradamus/ (accessed Jan 4, 2009).

