Correctness of Li's Generalization of RSA Cryptosystem

Roman Popovych

January 9, 2009

Abstract

For given $N=p q$ with p and q different odd primes and natural $m \mathrm{Li}$ introduced the public key cryptosystem. In the case $m=1$ the system is just the famous RSA system. We answer the Li's question about correctness of the system.

1 Introduction

For given $N=p q$ with p and q different odd primes and natural m Banghe Li introduced the public key cryptosystem [1]. In the case $m=1$ the system is just the famous RSA public key cryptosystem [2].

The cryptosystem is more secure in general [2] than RSA system.
But one has to solve a few problems connected with the introduced cryptosystem. The cryptosystem works with elements of the quotient ring $Z_{N}[x] /(h(x))$. To construct the system it is necessary to calculate a number $\varphi(N, h)$ of units of the ring. If polynomial $h(x)$ is special to N, then formula for $\varphi(N, h)$ is given in [1], but it is not simple to verify if $h(x)$ is special. In general formulas for $\varphi(N, h)$ are not known. For degree $m=2$ of the polynomial $h(x)$ formulas for the number $\varphi(N, h)$ are given in [1].

A question of correctness of the cryptosystem emerges even in the simplest case $m=2$. We answer positively the Li's question about correctness of the system in this case.

2 Preliminaries and notations

Z_{N} denotes a ring of numbers modulo N. We will use the notation $f(x)=g(x)(\bmod N, h(x))$ to represent the equation $f(x)=g(x)$ in the quotient ring $Z_{N}[x] /(h(x))$.
N and Z denote the set of natural numbers and integers respectively. $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of integers a and b. Given $r \in N, a \in Z$ with $\operatorname{gcd}(a, r)=1$ the order of a modulo r is the smallest number k such that $a^{k}=1(\bmod r)$. It is denoted $O_{r}(a)$. For $r \in N, \varphi(r)$ is Euler's totient function giving the number of numbers less than r that are relatively prime to r. It is easy to see that $O_{r}(a) \mid \varphi(r)$ for any $a, \operatorname{gcd}(a, r)=1$.
$h(x)$ is called special to N if $h(x) \bmod p$ is irreducible over the field Z_{p} and $h(x) \bmod q$ is irreducible over the field Z_{q}.
A^{*} denotes the group of units (invertible elements) in the ring A.

Let us denote by $Z_{N, h(x)}$ the quotient ring $Z_{N}[x] /(h(x))$ and by $\varphi(N, h)$ a number of elements of the group $\left(Z_{N, h(x)}\right)^{*}$

To generate public key cryptosystem in the sense of Li one has to perform the following steps:

1) to generate big random primes p, q and calculate $N=p q$
2) to generate random polynomial $h(x)=x^{m}+a_{1} \mathrm{x}^{\mathrm{m}-1} \ldots+a_{m-1} x+a_{m} \in Z_{N}[x]$
3) to choose random number $e \in\{2,3, \ldots, \varphi(N, h)-2\}$ with $\operatorname{gcd}(e, \varphi(N, h))=1$
4) to choose such $d \in\{2,3, \ldots, \varphi(N, h)-2\}$ that $e d=1 \bmod \varphi(N, h)$

Public key of the cryptosystem is (N, h, e) and private key is d.
Encryption and decryption functions are defined in the following way:

- encryption $\mathrm{C}=\mathrm{E}(\mathrm{y})=\mathrm{y}^{\mathrm{e}}$, for any $\mathrm{y} \in Z_{N, h(x)}$,
- decryption $\mathrm{D}(\mathrm{c})=c^{d}=y^{e d}$.

It is clear that any message can be converted to element of $Z_{N}[X] /(h(X))$: a series of m elements of Z_{N}.

Let $N=p q$ with p and q different odd primes, $h(x)=x^{2}+a_{1} x+a_{2}$. When $a \neq 0 \bmod p$, let $\left(\frac{a}{p}\right)$ be the Legendre symbol. We use the following notations from [1]:

$$
\left.\begin{array}{l}
\Delta_{p}=\left\{\begin{array}{ll}
0, & \text { if } \frac{(N+1)^{2}}{4} a_{1}^{2}=a_{2} \bmod p \\
\left(\frac{(N+1)^{2}}{4} a_{1}^{2}-a_{2}\right. \\
p
\end{array}\right), \text { otherwise }
\end{array}\right\} \begin{array}{ll}
0, & \text { if } \frac{(N+1)^{2}}{4} a_{1}^{2}=a_{2} \bmod q \\
\Delta_{q}=\left\{\begin{array}{l}
\frac{(N+1)^{2}}{4} a_{1}^{2}-a_{2} \\
q
\end{array}\right), \text { otherwise }
\end{array}
$$

If polynomial $h(x)$ is special to N, then $\varphi(N, h)=\left(p^{m}-1\right)\left(q^{m}-1\right)$ (see [1]), but it is not simple to verify if $h(x)$ is special as one has to verify if $h(x)$ is irreducible over the field Z_{p} and over the field Z_{q}. In the case $m>2$ formulas for $\varphi(N, h)$ are not known.

For the case $m=2$ formulas for $\varphi(N, h)$ are given in [1]:

$$
+\varphi(N, h)= \begin{cases}\left(p^{2}-1\right)\left(q^{2}-1\right), & \text { if } \Delta_{p}=\Delta_{q}=-1 \\ (p-1)(q-1)(p q-p-q+5), & \text { if } \Delta_{p}=\Delta_{q}=1 \\ (p-1)(q-1)(p q+p-q+1), & \text { if } \Delta_{p}=1, \Delta_{q}=-1 \\ (p-1)(q-1)(p q-p+q+1), & \text { if } \Delta_{p}=-1, \Delta_{q}=1 \\ (p-1)(q-1)(p q-p+3), & \text { if } \Delta_{p}=0, \Delta_{q}=1 \\ (p-1)(q-1)(p q-q+1), & \text { if } \Delta_{p}=0, \Delta_{q}=-1 \\ (p-1)(q-1)(p q-q+3), & \text { if } \Delta_{p}=1, \Delta_{q}=0 \\ (p-1)(q-1)(p q+q+1), & \text { if } \Delta_{p}=-1, \Delta_{q}=0 \\ (p-1)(q-1)(p q+2), & \text { if } \Delta_{p}=0, \Delta_{q}=0\end{cases}
$$

3 Correctness of Li's generalization of RSA public key cryptosystem

Correctness of the Li's cryptosystem means that $y^{e d}=y(\bmod N, h(x))$. It is clear that if $y \in\left(Z_{N, h(x)}\right)^{*}$ then $y^{e d}=y(\bmod N, h(x))$.

Li proved [1] that if $h(x)$ is special to N then the system is correct.
He observed that in the case $m=2, \Delta_{p}=0$ or $\Delta_{q}=0$ the system is not correct. If $h(x)=(x+a)^{2} \bmod p$ (this is equivalent to $\left.\Delta_{p}=0\right)$ then $y^{e d}=0$. So, $y^{e d} \neq y$ since $y \neq 0$.

Li also asked the following question.
Question. For $h(x)=x^{2}+a_{1} x+a_{2}$ not special to $N=p q$ with $\left|\Delta_{p}\right|=\left|\Delta_{q}\right|=1$, ed $=1 \bmod \varphi(N, h)$, is $y^{e d}=y$ for any $y \in Z_{N, h(x)}$.

We answer this question positively.
Note that for $m=2$ the polynomial $h(x)$ is not special to N if and only if $h(x)=(x+a)(x+b)$ modulo p or modulo q.

Proposition 3.1 Let $h(x)=x^{2}+a_{1} x+a_{2}$ is not special to $N=p q$ with $\left|\Delta_{p}\right|=\left|\Delta_{q}\right|=1$, ed=1 $\bmod \varphi(N, h)$.
Then $y^{e d}=y$ for any $y \in Z_{N, h(x)}$.
Proof. The Chinese remainder theorem gives the following isomorphism:
$Z_{N}[x] /(h(x)) \cong Z_{p}[x] /(h(x)) \times Z_{q}[x] /(h(x))$.
The direct product of groups $Z_{p}^{*} \times Z_{q}^{*}$ is subgroup of the group $\left(Z_{N}[x] /(h(x))\right)^{*}$. Hence $\varphi(N) \mid \varphi(N, h)$.
We prove the identity $y^{e d}=y$ modulo $p, h(x)$ and modulo $q, h(x)$.
Let us consider the case modulo $p, h(x)$.
If $y \in\left(Z_{p}[x] /(h(x))\right)^{*}$ then $\mathrm{y} \in\left(Z_{N}[x] /(h(x))\right)^{*}$ and trivially $y^{e d}=y \bmod p, h(x)$.
Assume that $y \in Z_{p}[x] /(h(x))-\left(Z_{p}[x] /(h(x))\right)^{*}$. Then element y must have non-trivial greatest common divisor with $h(x)$.

If $h(x)$ is irreducible modulo p then $h(x) \mid y$ and $y=0(\bmod p, h(x))$. Clearly $y^{e d}=y \bmod p, h(x)$.

If $h(x)=(x+a)(x+b) \bmod p$, then $y=u(x+a)$ or $y=\mathrm{v}(x+b)\left(u, v \in Z_{p}^{*}\right)$.
Let us consider the case $y=u(x+a)$. We now obtain that $(x+a)^{2}=(a-b)(x+a) \bmod p, h(x)$.
Indeed $(x+a)(x+b)=x^{2}+(a+b) x+a b$,
$(x+a)^{2}=x^{2}+2 a x+a^{2}=-(a+b) x-a b+2 a x+a^{2}=(a-b) x+a(a-b)=(a-b)(x+a)$.
So $(x+a)^{t}=(a-b)^{t-1}(x+a) \bmod p, h(x)$ for any natural t.
Since $\varphi(N)=(p-1)(q-1) \mid \varphi(N, h)$ led -1 then $u^{e d}=u$. Since $\left|\Delta_{p}\right| \neq 0$ then $a \neq b \bmod p$ and by little Fermat theorem $(a-b)^{\text {ed }-1}=1 \bmod p$.

Therefore $y^{e d}=u^{e d}(x+a)^{e d}=u^{e d}(a-b)^{e d-1}(x+a)=u(x+a)=y$.
Proof in the case $y=v(x+b)$ is analogous.
Proof in the case modulo $q, h(x)$ is analogous. The proof is complete.

4 Conclusion

For $h(x)=x^{2}+a_{1} x+a_{2}$ not special to $N=p q$ with $\left|\Delta_{p}\right|=\left|\Delta_{q}\right|=1, e d=1 \bmod \varphi(N, h)$, the identity $y^{e d}=y$ holds for any $y \in Z_{N, h(x)}$.

Hence, if $m=2,\left|\Delta_{p}\right|=\left|\Delta_{q}\right|=1$ then Li's generalization of RSA public key cryptosystem is correct.

References

[1] R.Rivest, A.Shamir, M.Adleman, A method for obtaining digital signature and public key cryptosystems, Communications of the ACM, 21 (2), 1978), 120-126.
[2] Banghe Li, Generalizations of RSA Public Key Cryptosystem, 2005. Available at http://iacr.eprint/2005/285.

Roman Popovych, Department of Computer Science and Engineering, National University Lviv Politechnika, Bandery Str.,12, 79013, Lviv, Ukraine E-mail: popovych@polynet.lviv.ua

