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Abstract. In this paper, we present a collision attack on the hash function NaSHA for the
output sizes 384-bit and 512-bit. This attack is based on the the weakness in the generate
course of the state words and the fact that the quasigroup operation used in the compression
function is only determined by partial state words. Its complexity is about 2128 (much lower
than the complexity of the corresponding birthday attack) and its probability is more than
(1− 2

264−1
)2 (À 1

2
).

1 Description of NaSHA-384/512

NaSHA[1] is a iterated hash function based on the Merkle-Damg̊ard construction. The compres-
sion function of NaSHA adopts a linear transformation LinTr and a quasigroup transformation
MT (which is defined by an unbalanced Feistel network).

We give a sketch of NaSHA-384/512, especially the operations which we need in our analysis.
For a detailed description of NaSHA we refer to [1].

The lengths of message block and chaining variable processed in the compression function of
NaSHA-384/512 are both 1024-bit. The word processed in NaSHA is 64-bit each. Firstly, message
block M and chaining variable H are separated into 16 words respectively and the string S is formed

S = M1‖H1‖M2‖H2‖ . . . ‖M16‖H16.

Secondly, a linear transformation LinTr512 is used to update S

LinTr512(S1‖ . . . ‖S32) = (S7 ⊕ S15 ⊕ S25 ⊕ S32)‖S1‖ . . . ‖S31.

Thirdly, the parameters of MT are chosen according to the first 16 words of LinTr512(S) and
the compression value f(M, H) is computed

f(M, H) = MT (LinTr512(S)) = Z1‖ . . . ‖Z32.

After all of the message blocks have been processed, given the output value Z1‖ . . . ‖Z32 of the
compression function, NaSHA-512 outputs

Z4‖Z8 . . . ‖Z28‖Z32(mod2512)

and NaSHA-384 outputs

Z4‖Z8 . . . ‖Z28‖Z32(mod2384).



The main transformation MT is divided into two quasigroup transformation Al1 , RAl2 and one
rotation left operation ρ

MT (S1, . . . , S32) = ρ(RAl2)(Al1(S1, . . . , S32)).

We give the definition of Al1 , RAl2 and the depiction of the parameters used in the quasigroup
transformation.

Definition 1. [1][Quasigroup additive string transformation Al : Qt → Qt with leader l] Let t be a
positiive integer, let (Q, ∗) be a quasigroup, Q = Z2n , and l, xj , zj ∈ Q. The transformation Al is
defined as

Al(x1, . . . , xt) = (z1, . . . , zt) ⇔ zj =
{

(l + x1) ∗ x1, j = 1
(zj−1 + xj) ∗ xj , 2 ≤ j ≤ t

where + is addition modulo 2n. The element l is said to be a leader of A.

The quasigroup operation ∗ of A is built from the extended Feistel networks
x ∗ y = FA1,B1,C1(x⊕ y)⊕ y = (x⊕ y)R ⊕A1 ⊕ yL‖

(x⊕ y)L ⊕B1 ⊕ fa1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1((x⊕ y)R ⊕ C1)⊕ yR.
In the above equation, yL (yR) is the left (right) 32-bit of y, i.e., y = yL‖yR and so on. fa1,b1,c1,a2,b2,c2,

a3,b3,c3,α1,β1,γ1(·) is fa1,b1,c1(fa2,b2,c2( fa3,b3,c3( fα1,β1,γ1(·)))) for short, all of them are defined by the
same extended Feistel network with different parameters as FA1,B1,C1 . fa1,b1,c1,a2,b2,c2,a3, b3,c3,α1,β1,γ1

and fa1,b1,c1,a2,b2,c2,a3,b3,c3 are noted as f and f1 for short in the following section.
The parameters used above is chosen according to the first 16 words of LinTr512(S) (A2, B2, C2

are used in the quasigroup transformation RA with leader l2).

l1 = S1 + S2, l2 = S3 + S4,

a1‖b1‖c1‖a2‖b2‖c2‖a3‖b3 = S5 + S6, c3 = a1,

α1‖β1‖γ1‖α2 = S7 + S8,

β2‖γ2 = (S9 + S10) mod 232,

A1‖B1 = S11 + S12, C1‖A2 = S13 + S14, B2‖C2 = S15 + S16.

2 Observations of NaSHA-384/512

In this section, we give some observations of the compression function of NaSHA-384/512 which we
need in the analysis.

Proposition 1. [1] Let G = Z2n be with group operation addition modulo 2n. Let a quasigroup
operation ∗ on G be chosen randomly. Then the probability the left quasigroup (G, •) (the operation
• defined by x•y = (x+y)∗y )to have two different solutions x1 6= x2 of the equation (a+x)∗x = b
is less or equal to 2

2n−1 .



Proposition 2. Given value a and b, the probability of existing x to satisfy the equation (a+x)∗x = b
is more than 1− 2

264−1 , ∗ is the quasigroup operation defined in A.

Proof. The fact that there does not exist x such that (a + x) ∗ x = b means there exists another b′

which has two solutions x1 and x2, i.e., b′ = (a + x1) ∗ x1 = (a + x2) ∗ x2. The latter’s probability is
less than 2

264−1 according to Proposition 1 (A is defined on Z264).

Observation 1 For the quasigroup operation ∗ defined in A, there exist such a, x and y that (a +
x) ∗ x = (a + y) ∗ y. More important, if we let A1 = (x + y)L the following equation is also true
aL = ((a + x) ∗ x)L = ((a + y) ∗ y)L.

For example, given a = 0x7FFF80017FFF8000, x = 0xFFFFFFFF00008000 and y = 0x0000FFFF
00007FFF, then A1 = (x + y)L = 0x0000FFFe and the following equations always hold.

{
(a + x) ∗ x = (a + y) ∗ y
aL = ((a + x) ∗ x)L

(1)

(a + x) ∗ x = FA1,B1,C1((a + x)⊕ x)⊕ x
= FA1,B1,C1(0x80007FFF80008000)⊕ 0xFFFFFFFF00008000
= (0x7FFF7FFF⊕A1) ‖(f(0x80008000⊕ C1)⊕B1 ⊕ 0x8000FFFF
= 0x7FFF8001 ‖C1R ⊕ α1 ⊕B1L ‖f1(0x8000⊕ C1R ⊕ γ1)⊕ β1 ⊕B1R ⊕ 0x7FFF
= aL ‖C1R ⊕ α1 ⊕B1L ‖f1(0x8000⊕ C1R ⊕ γ1)⊕ C1L ⊕ β1 ⊕B1R ⊕ 0x7FFF

(a + y) ∗ y = FA1,B1,C1((a + y)⊕ y)⊕ y
= FA1,B1,C1(0x80007FFF7FFF8000)⊕ 0x0000FFFF00007FFF
= (0x7FFF7FFF⊕A1) ‖(f(0x7FFF8000⊕ C1)⊕B1 ⊕ 0x80000000
= 0x7FFF8001 ‖C1R ⊕ α1 ⊕B1L ‖f1(0x8000⊕ C1R ⊕ γ1)⊕ β1 ⊕B1R ⊕ 0x7FFF
= aL ‖C1R ⊕ α1 ⊕B1L ‖f1(0x8000⊕ C1R ⊕ γ1)⊕ C1L ⊕ β1 ⊕B1R ⊕ 0x7FFF

Observation 2 Only the first 16 words of the state S are used to define the parameters of the
quasigroup transformations in NaSHA-384/512.

According to these properties, we have the following conclusions.

– For any a and b, we can find x such that (a + x) ∗ x = b with probability more than 1− 2
264−1

(Proposition 2).
– For arbitrary a and x, We can choose A1, B1 and C1 such that (a+x) ∗x = a (Definition of A).

Especially for a, x and y mentioned in Observation 1, we have a = (a + x) ∗ x = (a + y) ∗ y.
– The state words except the first 16 words in NaSHA-384/512 can be changed without the change

of the parameters used in the quasigroup transformations (Observation 2).
– The first 16 words should be changed in pairs to keep the parameters no variation (Definition of
A and RA).

3 Collision Attack on NaSHA-384/512

Since the state words processed in the compression function are the XOR-sums of input message
words and chaining variable words but not the input message words and chaining variable words
themselves, free-start attacks is trivial on NaSHA [2, 3]. In addition, [3] gave a collision attack on



NaSHA-512 with the complexity 2192. In this section, we give a collision attack on NaSHA-512
which is also true for NaSHA-384 since the difference between NaSHA-384 and NaSHA-512 is only
the different modulo value at the end, and its complexity is 2128.

Firstly, we give the differential pattern of our attack which has two continuous differentials on
the state words in total, see Table 1. The blanks in the table for 4M and 4S indicate that no
difference exists in these words and the blanks for S, S′ and Z mean no condition on these words.
The complexity 2128 is caused by finding S10 and S24 such that the output Z10 and Z24 of Al1

are both equal to a (a and x, y depicted in Table 1 are required to satisfy the the equations that
a = (a + x) ∗ x = (a + y) ∗ y and A1 = (x + y)L). The probability to find such S10 and S24 is more
than (1− 2

264−1 )2. The attack consists of the following 5 steps.

Table 1. Differential pattern in the compression function of NaSHA-384/512

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4M 4x 4x 4x 4x 4x 4x 4x 4x

⇓
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4S 4x 4x

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
4S 4x 4x 4x 4x

⇓
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S x y
S′ y x

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
S x x x x x x x x
S′ y x x y y x x y

⇓
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Z a a a

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Z a a a a a a a a a

Step 1: Fix difference pattern of the state words and the input message words correspondingly.
With the equation S = LinTr512(M1‖H1‖M2‖H2‖ . . . ‖M16‖H16), we search for4S that satisfies

the following two conditions: (i) The quantity of difference (continuous difference) is as small as
possible when some of the input message words (at least only one word, at most all of the words)
have difference 4x = x⊕ y = 0xFFFF00000000FFFF; (ii) If S2i−1 exists difference, S2i must exist
difference too, for i = 1, 2, . . . , 8.

The difference pattern (4S) listed in Table 1 has 6 difference (the smallest number of difference
for 4S under above two conditions), 4S11, 4S12, 4S25, 4S28, 4S29 and 4S32. We set the value
of the state words S11 = x, S12 = y and the value of S25, S26, S27, S28, S29, S30, S31, S32 can be
set as x or y arbitrarily. Then we get the corresponding collision state S′.

Step 2: Determine the free state words.
We have 16 message words processed into the compression function once, and 32 state words

are derived according to the linear transformation LinTr512. In other words, we have 16 free state
words in total and other 16 state words are determined uniquely by these free words. Since we have



already fixed 10 state words for the differential pattern, we have 6 free words at last, S9, S10, S13,
S14, S22 and S24. The correlation between the fixed state words and the free ones is listed as follows.




S1

S2

S3

S4

S5

S6

S7

S8

S15

S16

S17

S18

S19

S20

S21

S23




= H ⊕




S9 ⊕ S10 ⊕ S11 ⊕ S12 ⊕ S22 ⊕ S23 ⊕ S24 ⊕ S25 ⊕ S27 ⊕ S28 ⊕ S30 ⊕ S31 ⊕ S32

S9 ⊕ S10 ⊕ S13 ⊕ S25 ⊕ S28

S11 ⊕ S13 ⊕ S14 ⊕ S25 ⊕ S26 ⊕ S27 ⊕ S29 ⊕ S31 ⊕ S32

S11 ⊕ S12 ⊕ S13 ⊕ S28 ⊕ S29

S9 ⊕ S12 ⊕ S13 ⊕ S24 ⊕ S27 ⊕ S28 ⊕ S30 ⊕ S31 ⊕ S32

S10 ⊕ S14 ⊕ S25 ⊕ S27 ⊕ S28 ⊕ S29 ⊕ S32

S10 ⊕ S13 ⊕ S14 ⊕ S22 ⊕ S25 ⊕ S27 ⊕ S29 ⊕ S31

S9 ⊕ S10 ⊕ S11 ⊕ S13 ⊕ S22 ⊕ S24 ⊕ S25 ⊕ S26 ⊕ S27 ⊕ S28 ⊕ S30 ⊕ S32

S10 ⊕ S13 ⊕ S22 ⊕ S27 ⊕ S28 ⊕ S30 ⊕ S31 ⊕ S32

S11 ⊕ S12 ⊕ S13 ⊕ S23 ⊕ S25 ⊕ S26 ⊕ S31

S10 ⊕ S13 ⊕ S25 ⊕ S27 ⊕ S28

S10 ⊕ S11 ⊕ S14 ⊕ S25 ⊕ S26 ⊕ S29 ⊕ S31 ⊕ S32

S12 ⊕ S13 ⊕ S28

S9 ⊕ S10 ⊕ S22 ⊕ S24 ⊕ S29

S10 ⊕ S13 ⊕ S14 ⊕ S25 ⊕ S27 ⊕ S28 ⊕ S29 ⊕ S31 ⊕ S32

S9 ⊕ S24 ⊕ S31




H is the linear relationship of the initial value words.

H =




H2 ⊕H4 ⊕H12 ⊕H13 ⊕H16

H1 ⊕H3 ⊕H5 ⊕H10

H3 ⊕H10 ⊕H12 ⊕H14

H2 ⊕H3 ⊕H6 ⊕H10

H1 ⊕H15

H7 ⊕H10 ⊕H12

H3 ⊕H10 ⊕H12

H1 ⊕H2 ⊕H3 ⊕H4 ⊕H8 ⊕H10 ⊕H12 ⊕H16

H3 ⊕H9 ⊕H10 ⊕H12 ⊕H16

H1 ⊕H2 ⊕H3 ⊕H8 ⊕H9 ⊕H10 ⊕H13

H3 ⊕H5 ⊕H10

H12 ⊕H14

H3 ⊕H6 ⊕H10

H1 ⊕H3 ⊕H4 ⊕H9 ⊕H10 ⊕H11 ⊕H12 ⊕H15 ⊕H16

H3 ⊕H7 ⊕H10 ⊕H12

H1 ⊕H8




Step 3: Determine the condition of the parameter C1 such that (a + x) ∗ x = a.
The parameters A1, B1 and C1 are calculated by the following equations

A1‖B1 = S11 + S12, C1‖A2 = S13 + S14. (2)

Since the value of S11 and S12 have been fixed to be x and y respectively, and A1 = (S11 + S12)L =
(x + y)L is the right value to make aL = ((a + x) ∗ x)L, the rest work we need to do is to find right
C1 such that ((a + x) ∗ x)R = aR. This course will cost a free word (S13 or S14) to fulfill.

Step 4: Find collision of Al.
The key step of finding collision of Al is to find state words S10 and S24 such that the corre-

sponding outputs Z10 and Z24 of Al are both a. If we can find such S10 and S24, we can derive the



collision of Al depicted in Table 1. Since the length of a word is 64-bit, the complexity of this course
is (264)2 and the successful probability is more than (1− 2

264−1 )2 according to Proposition 2. (There
are still 3 free words S9, S14 (or S13) and S22 which can be used to improve the probability and
reduce the complexity to find suitable S10 and S24 in the practical search.)

Step 5: Calculate the corresponding message words basing on the inverse LinTr512.

4 Conclusion

In this paper, we propose a collision attack which is valid for both NaSHA-384 and NaSHA-512.
This attack exploits the fact that the quasigroup operation is only determined by partial state words
and the diffusion effect from the message words to the state words is not well (the influence among
different bits does not exist at all). The result is that there are enough free state words which can
be used to generate collision. The complexity of this attack is about 2128 which is much lower than
the complexity of birthday attack to NaSHA-384 and NaSHA-512 and its probability is more than
(1− 2

264−1 )2 (À 1
2 ).
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