
Security of Verifiably Encrypted Signatures

Markus Rückert∗ Dominique Schröder†

Department of Computer Science
TU Darmstadt

January 12, 2009

Abstract. In a verifiably encrypted signature scheme, signers encrypt their signature
under the public key of a trusted third party and prove that they did so correctly. The
security properties are unforgeability and opacity. Unforgeability states that a malicious
signer should not be able to forge verifiably encrypted signatures and opacity prevents
extraction from an encrypted signature.

This paper proposes two novel fundamental requirements for verifiably encrypted sig-
natures, called extractability and abuse-freeness, and analyze its effects on the security
model of Boneh et al. Extractability ensures that the trusted third party is always able
to extract a valid signature from a valid verifiably encrypted signature and abuse-freeness
guarantees that a malicious signer, who cooperates with the trusted party, is not able
to forge a verifiably encrypted signature. We further show that both properties are not
covered by the model of Boneh et al., introduced at Eurocrypt 2003.

Keywords. Verifiably encrypted signatures, Online contract signing, Security Model

1 Introduction

The concept of verifiably encrypted signature (VES) schemes was proposed by Boneh, Gentry,
Lynn, and Shacham [BGLS03] at Eurocrypt 2003. There, a signer encrypts its signature
under the public key of a trusted third party, the adjudicator, and attaches a proof about
its content. One popular application for verifiably encrypted signature is online contract
signing, which is a type of optimistic fair exchange protocol [ASW00, BDM98]. Suppose
Alice and Bob wish to sign the same contract. Both want to be sure that the other party
will also produce a signature before revealing their own. Following the protocol, Alice and
Bob exchange verifiably encrypted signatures. After they have ascertained themselves of the
correctness of the encrypted signature, they reveal the corresponding ordinary signature. If,
for example, Alice is not willing to disclose her signature then Bob can take her verifiably
encrypted signature together with the transcript to the adjudicator, who uncovers Alice’s
ordinary signature. This fail-safe mechanism prevents Alice from misusing this one-sided
∗rueckert@cdc.informatik.tu-darmstadt.de
†schroeder@me.com – The author was supported by the Emmy Noether Programme Fi 940/2 of the German

Research Foundation (DFG).

1



commitment to a contract for legal actions, blackmail, or simply negotiating a better deal
elsewhere.

Security of verifiably encrypted signatures is defined via unforgeability and opacity [BGLS03].
Roughly speaking, unforgeability assures that a malicious user cannot produce signatures on
behalf of another party. Opacity guarantees that only the adjudicator and the signer can
disclose a signature from a verifiably encrypted signature.

Surprisingly, the original security model does not guarantee that the adjudicator is always
able to extract a valid signature from a valid verifiably encrypted signature. We show that
every VES can easily be turned into a scheme which remains secure, but where a malicious
signer can output a verifiably encrypted signature such that the ordinary signature is hidden
irrecoverably. This is disastrous for fair exchange protocols, because it implies that a VES,
which does not support extractability, is not suitable for such protocols. Thus, as our first
result, we extend the model of [BGLS03] to ensure extractability. Afterwards, we study the
effect of extractability on the security model, showing that the unforgeability of the underlying
signature scheme often implies unforgeability of the verifiably encrypted signature scheme as
long as the scheme is extractable. Though there is no explicit proof of extractability in the
known constructions [BGLS03] and [LOS+06], they already support the property due to the
similarity of the signature verification algorithm and the verification of verifiably encrypted
signatures in their schemes.

We further propose the definition of abuse-freeness. Basically, an abuse-free VES guaran-
tees that an adversary who cooperates with the adjudicator is not able to derive a verifiably
encrypted signature on behalf of an honest signer. We show that for a “natural” class of VES
schemes, abuse-freeness is already implied. Since the instantiation of [BGLS03] and [LOS+06]
fall into this class, our results give more confidence about the security of their schemes.

Garay, Jakobsson, and MacKenzie already considered abuse-freeness in the context of
optimistic contract signing [GJM99]. Their definition demands that no single signer should
be able to prove to any third party that he can determine the outcome of the protocol.
Since verifiably encrypted signature schemes are typically non-interactive, and because the
verification equation assures that the contained signature is valid, this definition seems not
to be applicable to the scenario of VES.

Organization. We start out by introducing our notation and some basic definitions in
Section 2. In Section 3, we recall the model for verifiably encrypted signatures along with
the security definitions. In the subsequent section, Section 4, we introduce a new property,
extractability, to the model of Boneh et al. and argue why this is necessary. Finally, Section
5 deals with abuse-freeness in the context of verifiably encrypted signatures and we discuss
the influence of extractability on this additional requirement.

2 Notation and Basic Definitions

By a1‖ . . . ‖a` we denote the encoding of a1, . . . , a` such that a1, . . . , a` are uniquely recover-
able. Furthermore, n always denotes the security parameter.

2.1 Secure Signature Schemes

Recall that a digital signature scheme DSig is defined as:

2



Definition 2.1 A signature scheme consists of a triple of efficient algorithms DSig = (Kg,
Sign,Vf), where

Key Generation: Kg(1n) outputs a private signing key sk and a public verification key pk.

Signature Generation: Sign(sk,m) outputs a signature σ on a message m from the mes-
sage space M under sk.

Signature Verification: The algorithm Vf(pk, σ,m) outputs 1 iff σ is a valid signature on
m under pk.

Signature schemes are complete if for any (sk, pk)← Kg(1n), any message m ∈ M, and any
σ ← Sign(sk,m), we have Vf(pk, σ,m) = 1.

Security of signature schemes is proven against existential forgery under chosen message
attacks (EU-CMA) [GMR88]. In this model, an adversary adaptively invokes a signing oracle
and is successful if it outputs a signature on a new message.

Definition 2.2 A signature scheme DSig = (Kg, Sign,Vf) is called unforgeable under chosen
message attacks (EU-CMA) if for any efficient algorithm A the probability that the experiment
sForgeDSig

A evaluates to 1 is negligible.

Experiment sForgeDSig
A (n)

(sk, pk)← Kg(1n)
(m∗, σ∗)← ASign(sk,·)(pk)

Return 1 iff Vf(pk,m∗, σ∗) = 1 and A never queried Sign(sk, ·) about m∗.

A signature scheme DSig is (t, qS , ε)-secure if no adversary running in time at most t, invoking
the signing oracle at most qS times, outputs a valid forgery (m∗, σ∗) with probability larger
than ε.

2.2 Trapdoor Functions

We briefly recall the definition of trapdoor functions. Let D be a group and let a family
Π of trapdoor functions over D is defined as a triple of algorithms Generate, Evaluate, and
Invert. The randomized algorithm Generate outputs the description s of a trapdoor function
along with the corresponding trapdoor t. The evaluation algorithm Evaluate takes as input
the description s of the function and a value x ∈ D. It outputs the image a ∈ D under the
trapdoor function. The input of the inversion algorithm Invert is a description of the function
s, the trapdoor t, and a value a ∈ D. It returns the preimage of a under the function.

We require that Invert(s, t,Evaluate(s, x)) = x holds for all (s, t) ← Generate and that
all algorithms are efficient. In the following, we define the advantage of an algorithm A in
inverting a trapdoor.

Definition 2.3 The advantage of an algorithm A in inverting a trapdoor family is

Adv InvertA := Prob[x = A(s,Evaluate(s, x)) : (s, t)← Generate, x← D] .

The probability is taken over the coin tosses of Generate and of A. An algorithm A (t, ε)-
inverts a trapdoor function family if A runs in time at most t and the advantage Adv InvertA
is at least ε. We say that a trapdoor function is family is (t, ε)-one-way if no algorithm
(t, ε)-inverts the trapdoor function family.

3



3 Verifiably Encrypted Signatures

Verifiably encrypted signature schemes support the encryption of signatures under the public
key of a trusted third party, while simultaneously proving that the encryption contains the
signature. More precisely:

A verifiably encrypted signature scheme VES consists of the (Kg,AdjKg, Sign,Vf,Create,
VesVf,Adj) following seven algorithms.

Key Generation, Signing, and Verification: Same as in a digital signature scheme.

Adjudicator Key Generation: AdjKg(1n) outputs a key pair (ask, apk), where ask is the
private key and apk the corresponding public key.

VES Creation: Create(sk, apk,m) takes as input a secret key sk, the adjudicator’s public
key apk, and a message m ∈ {0, 1}n. It returns a verifiably encrypted signature ω on
m.

VES Verification: The algorithm VesVf(apk, pk, ω,m) takes as input the adjudicator’s pub-
lic key apk, a public key pk, a verifiably encrypted signature ω, and a message m. It
returns a bit.

Adjudication: The algorithm Adj(ask, apk, pk, ω,m) accepts as input the key pair (ask, apk)
of the adjudicator, the public key of the signer pk, a verifiably encrypted signature ω,
and a message m. It extracts an ordinary signature1 σ on m and returns σ.

Definition 3.1 A verifiably encrypted signature scheme is complete2, i.e. for all adjudica-
tion key pairs (ask, apk) ← AdjKg(1n) and for all signature key pairs (sk, pk) ← Kg(1n) the
following holds:

VesVf(apk, pk,Create(sk, apk,m),m) = 1 and

Vf(pk,Adj(ask, apk, pk,Create(sk, apk,m)),m) = 1 for all m ∈M.

Security Model. Security of verifiably encrypted signatures is defined through unforge-
ability and opacity [BGLS03]. Unforgeability requires that it is hard to forge a verifiably
encrypted signature and opacity implies that it is difficult to extract an ordinary signature
from a verifiably encrypted signature.

Both intuitions are formalized in experiments, where the adversary is given the public
keys of the signer and of the adjudicator. Moreover, the adversary has access to two oracles:
oracle C returns verifiably encrypted signatures for a given message; oracle A extracts a
verifiably encrypted signature and returns a corresponding ordinary signature.

Definition 3.2 A verifiably encrypted signature VES = (Kg,AdjKg, Sign,Vf,Create,VesVf,Adj)
scheme is called secure if the following holds:

Unforgeability: For any efficient algorithm A, the probability that the following experiment
evaluates to 1 is negligible.

1Not necessarily the same signature, cf. [LOS+06].
2Note that in [BGLS03] this condition is called validity.

4



Experiment VesForgeVES
A (n)

(ask, apk)← AdjKg(1n)
(sk, pk)← Kg(1n)
(m∗, ω∗)← AC(sk,apk,·),A(ask,apk,pk,·,·)(pk, apk)

Return 1 iff VesVf(apk, pk, ω∗,m∗) = 1 and
A has never queried C(sk, apk, ·) or A(ask, apk, pk, ·, ·) about m∗.

Opacity: For any efficient algorithm A, the probability that the following experiment evalu-
ates to 1 is negligible.

Experiment OpacVES
A (n)

(ask, apk)← AdjKg(1n)
(sk, pk)← Kg(1n)
(m∗, σ∗)← AC(sk,apk,·),A(ask,apk,pk,·,·)(pk, apk)

Return 1 iff Vf(pk, σ∗,m∗) = 1 and
A has never queried A(ask, apk, pk, ·, ·) about m∗.

A scheme is called (t, qC, qA, ε)-unforgeable (-opaque), if no adversary, running in time at
most t, making at most qC verifiably encrypted signature oracle queries, and at most qA
adjudication oracle queries, can succeed with probability at least ε in the VesForge (Opac)
experiment.

4 The Need for Extractability

In the following, we propose a fundamental requirement of verifiably encrypted signatures,
called extractability. It states that if a verifiably encrypted signature ω is valid then the
adjudicator is always able to extract a valid signature σ. Note that this property is essential
for protocols like optimistic fair exchange. We formalize extractability as follows.

Definition 4.1 A verifiably encrypted signature scheme VES is extractable if for any effi-
cient algorithm A, the probability that the following experiment evaluates to 1 is negligible.

Experiment ExtractVES
A (n)

(ask, apk)← AdjKg(1n)
(m∗, ω∗, pk∗)← AA(ask,apk,·,·,·)(apk)

Let σ∗ ← Adj(ask, apk, pk∗, ω∗,m∗)
Return 1 iff VesVf(apk, pk∗, ω∗,m∗) = 1 and Vf(pk∗, σ∗,m∗) = 0.

Observe that, in this case, the adjudication oracle A takes as input a tuple (pk, ω,m) which
consists of a public key pk, a verifiably encrypted signature ω, and a message m. Thus,
extractability must hold for all pairs (m,ω), even for those not properly generated and even
in case pk∗ is not chosen honestly. Similarly, we define weak-extractability, where the adversary
is not allowed to choose its public key dishonestly. Note that a scheme that satisfies weak-
extractability can always be turned into an extractable scheme by having the signer prove
the correct form of its public key to the (universally trusted) adjudicator. The adjudicator
may then sign the public key or otherwise vouch for its validity. We motivate the need for
this new property, showing that every verifiably encrypted signature scheme, secure in the
model of [BGLS03], can simply be turned into one which is not extractable.

5



Theorem 4.2 If there exists a secure scheme VES, then there exists a scheme VES′ which is
not extractable.

Proof. The basic idea is that the verifiably encrypted signature may consist of two independent
parts. One part is the encrypted signature and the other part forms the proof. As both parts
are independent of each other, a malicious signer can easily set the encrypted signature to
an empty string while computing the proof honestly. We assume that the bit length of a
verifiably encrypted signature is out(n).

Key Generation, Signing, Verification: Same as in VES.

VES Creation: Given a message m ∈ {0, 1}n, a signing key sk, and the public key of the
adjudicator apk. Create′ computes ω′ ← Create(sk, apk,m) and outputs (ω1‖ω2) ←
(ω′‖ω′) ∈ {0, 1}2 out(n).

VES Verification: Given a verifiably encrypted signature ω1‖ω2 on m, algorithm VesVf ′

outputs 1 iff VesVf(apk, pk, ω1,m) evaluates to 1.

Adjudication: Adj′(ask, apk, pk, ω1‖ω2,m) outputs σ ← Adj(ask, apk, pk, ω2,m).

Obviously, if VES is complete, unforgeable, and opaque, so is VES′. Though, now, the
following adversary A contradicts extractability.

Setup: A receives the adjudicator’s public key apk and (honestly) generates its signature
key (sk, pk)← Kg(1n).

VES Creation: When A signs a message m, it calls ω1‖ω2 ← Create′(sk, apk,m) and out-
puts (m∗, ω∗, pk∗)← (m,ω1‖0out(n), pk).

Since ω1 remains unchanged in Create′, VesVf ′ always returns 1. The algorithm Adj′, however,
cannot extract a valid (ordinary) signature out of the second part of the verifiably encrypted
signature because it is 0. Thus, A breaks extractability with probability 1. �

To conclude, we have shown that security and completeness in the model of Boneh et al. do
not imply extractability and therefore do not suffice.

4.1 Implications

In this section, we show that the unforgeability of the underlying signature scheme already
implies unforgeability for all verifiably encrypted signature schemes with a common property.
Furthermore, we remove a restriction from the definition of unforgeability. We prove that
the condition that the adversary is not allowed to output a forgery m∗ for a message already
queried to the adjudication oracle (and not to the creation oracle), is unnecessary.

In order to prove these theorems, we need the following property which we call key-
independence. It states that computing the encrypted signature can be performed by two
algorithms, independently. The first one computes the signature σ and the second algorithm
the verifiable encryption of it. More precisely:

Definition 4.3 (Key-Independence) A verifiably encrypted signature scheme VES is called
key-independent if there exists an efficient algorithm Enc such that

Enc(apk,Sign(sk,m)) ≡ Create(sk, apk,m) for all m ∈M .

6



Note that the encryption algorithm Enc may also depend on the a second secret generated
by the adjudicator. This is the case when the key generation algorithm are not independent.
Key-independence describes the property that signing and creating the encrypted signature
can be performed by two algorithms independently. We stress that most schemes are key-
independent, such as the scheme of Boneh et al. [BGLS03] or the scheme of Lu et al. [LOS+06].

Theorem 4.4 Let VES be an extractable, key-independent verifiably encrypted signature
scheme defined through the following algorithms (Kg,AdjKg, Sign,Vf,Create,VesVf,Adj). The
scheme VES is unforgeable if and only if the underlying signature scheme DSig = (Kg,Sign,
Vf) is unforgeable.

Proof. In order to prove this theorem, we have to show two directions. We begin with the
(interesting) direction, showing that the existence of and algorithm A1, forging the verifi-
ably encrypted signature, implies the existence of an adversary B, breaking the underlying
signature scheme.

Algorithm B gets as input the public key pk of the underlying signature scheme DSig,
picks a key-pair for the simulation of the adjudicator (ask, apk)← AdjKg(1n), and simulates
A1 in a black-box way on input (apk, pk).

During the simulation, A1 may invoke its creation oracle C on a message m. Algorithm
B answers this query as follows. It first generates the signature σ ← Sign(sk,m) with the
help of its external signing oracle Sign(sk, ·) and computes the verifiably encrypted signature
ω ← Enc(apk, σ). Whenever A1 invokes its adjudication oracle A on a (valid) tuple (m,ω),
then algorithm B returns σ ← Adj(ask, apk, pk, ω,m). Eventually, A1 stops, outputting a
tuple (m∗, ω∗), then B computes σ∗ ← Adj(ask, apk, pk, ω∗,m∗) and outputs (m∗, σ∗).

For the analysis, it is assumed that A1 succeeds with non-negligible probability ε(n).
Observe that B performs a perfect simulation from A1’s point of view because the scheme
VES is key-independent. Note that A1 succeeds if its outputs a “fresh” tuple (m∗, ω∗), i.e.,
A1 has neither queried its creation oracle nor the adjudication oracle about m∗. But if A1

has never sent m∗ to one of the oracles, then B has never queried its singing oracle about
m∗. Since the scheme VES is extractable, B always outputs a valid signature whenever A1

generates a valid verifiably encrypted signature. This, however, contradicts the assumption
that the signature scheme is unforgeable.

The other direction shows how break unforgeability of the verifiably encrypted signature
scheme with the help of an adversary A2 that forges the underlying signature scheme. The
idea of the proof is to encrypt the forgery of A2 by executing the algorithm Enc (which is
possible because VES is key-independent). We omit the proof. �

Roughly speaking, the next theorem states that the adjudication oracle does not help to
forge verifiably encrypted signatures. This means that the restriction in the unforgeability
experiment, which requires that the adversary must output a “new” message m∗ (that has
never been sent to the adjudication oracle), is superfluous. One might think that the ad-
versary against the unforgeability of the VES scheme succeeds because it manages to modify
some “ciphertext” such that the adjudicator extracts a “fresh” message-signature pair. The
adversary then simply “encrypts” this signature and wins the game. Here, however, we show
that this intuition is wrong. If the adversary invokes the adjudication oracle on a “fresh”
and valid tuple (m,ω) (i.e., it has never queried its creation oracle about m), then we can
already forge the verifiably encrypted signature scheme.

7



To prove this theorem formally, let adjudication-free unforgeability be defined as un-
forgeability of verifiably encrypted signature schemes, except that the adversary wins the
experiment even if it queries its adjudication oracle with the message m∗.

Theorem 4.5 A verifiably encrypted signature scheme is unforgeable if and only if it is
adjudication-free unforgeable.

Proof (sketch). The first direction is to prove that an adversary, which breaks unforge-
ability can be used to break adjudication-free unforgeability. We omit this part because it
straightforward. In the second part of the proof, we construct an algorithm B against un-
forgeability, which runs an adversary A that succeeds in the adjudication-free unforgeability
game. Algorithm B answers all oracle queries with its own oracles. Whenever A invokes the
adjudication oracle A on a “fresh” and valid pair (m∗, ω∗) (i.e., the adversary has never sent
m∗ to the creation oracle), then B stops, outputting this pair as its forgery. Otherwise, if A
never performs such queries, B forwards the final output of A. �

5 The Need for Abuse-Freeness

Roughly speaking, abuse-freeness means that an adversary, who may cooperate with the
(possibly malicious) adjudicator, is not able to compute a verifiably encrypted signature on
behalf of the other signer. We model this intuition in an experiment where the malicious
signer A receives the private key of the adjudicator and the public key of the honest signer.
It succeeds if it outputs a “fresh” tuple (m∗, ω∗), i.e., the attacker A has never invoked its
creation oracle about m∗. Observe that given the algorithm A access to an adjudication
oracle is redundant since A can simulate this oracle with the private key ask.

Definition 5.1 A verifiably encrypted signature scheme VES is called abuse-free if for any
efficient algorithm A the probability that experiment AbuseVES

A evaluates to 1 is negligible,
where

Experiment AbuseVES
A (n)

(apk, ask)← AdjKg(1n)
(sk, pk)← Kg(1n)
(m∗, ω∗)← AC(sk,apk,·)(apk, ask, pk)

Return 1 iff VesVf(apk, pk, ω∗,m∗) = 1 and
A has never queried C(sk, apk, ·) about m∗.

This definition can easily strengthened in the sense that the adversary A may choose the
public of the adjudicator apk. We call schemes satisfying the stronger notion strongly abuse-
free.

5.1 Relation to the Security Model

We study in this section the relation between abuse-freeness and the other definitions. The
interesting point is that for a “natural” class of verifiably encrypted signature scheme (which
we call key-independent) abuse-freeness is already guaranteed as long as the scheme is ex-
tractable.

Theorem 5.2 If there exist secure verifiably encrypted signature schemes, and if there exist
trapdoor functions, then there exists a secure verifiably encrypted signature scheme which is
not abuse-free.

8



Proof. The idea of the proof is as follows. We build a verifiably encrypted signature scheme
VES′ out of a secure scheme VES such that VES′ remains secure but such a malicious adju-
dicator is able to reveal the private signing key.

Construction 5.3 Let VES = (Kg,AdjKg,Sign,Verify,Create,VesVf,Adj) be a verifiably en-
crypted signature scheme and let F be a one-way trapdoor function. Define the following
algorithms:

Key Generation: The algorithms Kg′ is identical to Kg. The key generation algorithm
for the adjudicator AdjKg′ first generates (ask, apk) ← AdjKg and runs the generation
algorithm of the trapdoor one-way function (s, t) ← Generate. It sets (ask′, apk′) ←
((ask, t), (apk, s)).

VES Creation: The input of the algorithm Create′(sk, apk′,m) is a private signing key sk,
the public key of the adjudicator apk′ = (apk, s) and a message m. It first executes
the underlying creation algorithm ω′ ← Create(sk, apk′,m) and then the evaluation al-
gorithm a← Evaluate(s, sk). It outputs the verifiably encrypted signature ω′ ← (ω, a).

VES Verification: The algorithm VesVf ′(apk′, pk, ω′,m) takes as input the public key of the
adjudicator apk′ = (apk, s), the public key of the signer pk, a verifiably encrypted sig-
nature ω′ = (ω, a) together with a message m. It outputs the result of the underlying
verification algorithm VesVf(apk′, pk, ω,m).

Adjudication: The algorithm Adj′(ask′, apk′, pk, ω′,m) accepts as input the private key of the
adjudicator ask′ = (ask, t), the signer’s public key pk, a verifiably encrypted signature
ω′ = (ω, a) and the corresponding message m. It outputs the result of the underlying
adjudication algorithm Adj(ask, pk, ω,m).

Completeness, unforgeability, and opacity of VES′ follow easily form the underlying scheme
VES. Observe that the one-wayness of the trapdoor function guarantees that the adversary
cannot extract the signing key in order to forge a verifiably encrypted signature. Such an
adversary could be used to invert the one-way function. Next, we show that the resulting
scheme is not abuse-free.

The adversaryA breaking abuse-freeness gets as input an adjudicator key-pair (ask, apk)←
AdjKg′(1n) together with a public key pk from the honest signer. It then selects two arbitrary
messages m1,m2 and invokes the creation oracle on m1 obtaining the verifiably encrypted
signature ω = (ω′, a). Algorithm A then extracts the private singing key with the help of the
trapdoor sk ← Invert(t, a). Next, A uses this private key in order to compute the verifiably
encrypted signature ω∗ ← Create(sk, apk,m2) for the message m2 and outputs (ω∗,m2) as its
forgery.

A straightforward analysis shows that the algorithm A is efficient and succeeds with
probability 1. �

In the following, we prove an interesting result, namely, that a key-indepent verifiably
encrypted signature scheme which is unforgeable and extractable, already achieves abuse-
freenes.

Theorem 5.4 A key-independent and extractable verifiably encrypted signature scheme is
abuse-free, if the underlying signature scheme is unforgeable.

9



Proof. Suppose that there exists an adversary A against abuse-freeness that succeeds with
noticeable probability. We then show how to forge the underlying signature scheme. More
precisely, let VES = (Kg,AdjKg,Sign,Verify,Create,VesVf,Adj) be a key-independent and ex-
tractable VES that is unforgeable but which is not abuse-free. Let DSig = (Kg,Sign,Verify)
be the underlying signature scheme. Algorithm B against unforgeability of the underlying
signature scheme gets as input a public key pk. It generates a key-pair for the adjudicator
(apk, ask)← AdjKg(1n) and runs a black-box simulation of A on input (apk, ask, pk). When-
ever A queries its creation oracle C about a message m, then B answers this query with the
help of its external signing oracle σ ← Sign(sk, ·) and with the key-independent encryption
algorithm ω ← Enc(apk, σ). Finally, A1 stops, outputting a pair (m∗, ω∗). Algorithm B
derives the signature executing the adjudication algorithm σ∗ ← Adj(ask, apk, pk, ω∗,m∗) and
returns (m∗, σ∗).

We assume for the analysis that A succeeds with noticeable probability ε(n) and observe
that B is efficient. According to our assumption that VES is key-independent, we conclude
that B performs a perfect simulation from A’s point of view. Furthermore, we know that
the output (m∗, ω∗) from A is extractable, thus B succeeds whenever A does. This, however,
contradicts the assumption that DSig is unforgeable.

�

References

[ASW00] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic Fair Exchange
of Digital Signatures. IEEE Journal on Selected Areas in Communications,
18(4):593–610, 2000.

[BDM98] Bao, Deng, and Mao. Efficient and Practical Fair Exchange Protocols with Off-
Line TTP. RSP: 19th IEEE Computer Society Symposium on Research in Se-
curity and Privacy. IEEE Computer Society Press, 1998.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and Veri-
fiably Encrypted Signatures from Bilinear Maps. Advances in Cryptology — Eu-
rocrypt’03, Lecture Notes in Computer Science, pages 416–432. Springer-Verlag,
2003.

[GJM99] Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie. Abuse-Free Opti-
mistic Contract Signing. Advances in Cryptology — Crypto’99, Lecture Notes
in Computer Science, pages 449–466. Springer-Verlag, 1999.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature
Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput.,
17(2):281–308, 1988.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.
Sequential Aggregate Signatures and Multisignatures Without Random Oracles.
Advances in Cryptology — Eurocrypt’06, Lecture Notes in Computer Science,
pages 465–485. Springer-Verlag, 2006.

10


