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Abstract—A fuzzy extractor is a security primitive that allows
for reproducible extraction of an almost uniform key from a noisy
non-uniform source. We analyze a fuzzy extractor scheme that
uses universal hash functions for both information reconciliation
and privacy amplification. This is a useful scheme when the num-
ber of error patterns likely to occur is limited, regardless of the
error probabilities. We derive a sharp bound on the uniformity
of the extracted key, making use of the concatenation property
of universal hash functions and a recent tight formulation of the
leftover hash lemma.

I. INTRODUCTION

A. Security with noisy data

Many security applications require input bitstrings to be uni-
formly distributed and exactly reproducible. Cryptographic
keys, for instance, have to be uniformly random in order to
prevent attacks; they have to be reproducible in order to allow
for decryption of encrypted data, verification of signatures,
successful authentication etc. Even a single bit error in a
key causes failure. Physical sources of randomness, however,
are neither uniform nor noise-free. The patterns in biometrics
such as fingerprints and iris scans do not follow a uniform
distribution, and they are never exactly reproduced when a
measurement is repeated. Measurement noise can be due to
many factors, e.g. differences in lighting conditions or sensor
alignment, physiological changes, difference between sensors
etc. Another class of physical sources that has received a lot
of attention recently are the Physical Unclonable Functions
(PUFs), also known as Physical One-Way Functions, Physical
Random Functions and Physically Obscured Keys. PUFs can
be regarded as ‘non-biological biometrics’. Many types of PUF
have been described in the literature, e.g. multiple scattering
of laser light [13], reflection of laser light from paper fibers
[2], randomized dielectrics in protective chip coatings [19],
radiofrequent responses from pieces of metal [6] or thin-film
resonators [21], delay times in chip components [5] and start-
up values of SRAM cells [9].

For security and/or privacy reasons it is often necessary to
apply a one-way hash function to the biometric/PUF mea-
surement, in analogy with the /etc/passwd file in UNIX.
The storage of biometric/PUF data is assumed to be public;
the hashing step hides the measurement data. However, as
measurements are noisy, it is not possible to directly hash;
a single bit error in the input causes roughly 50% of the
output bits to flip. Hence, an error-correction step is required
first (‘information reconciliation’). This is not trivial, since
the redundancy data has to be stored publicly and may reveal

too much sensitive information. Similarly, if PUF data is to
be used as a key, then it should be thoroughly noise-corrected
first. Here, too, it is crucial that the publicly stored redundancy
data does not reveal secrets.

After information reconciliation, the step of privacy ampli-
fication is applied, mapping a non-uniform random string to
a shorter, almost uniform string. The requirement of unifor-
mity is obvious in the case of key extraction. Interestingly,
extracting uniform bitstrings is also desirable in biometric
systems and PUF-based anti-counterfeiting, applications where
the identifiers are not considered to be secret. A uniform
string is the most efficient way of storing the entropy present
in a measurement. Furthermore, database search speed is
improved.

The concept of a Fuzzy Extractor [7], [8], also known as
a helper data scheme [12], was introduced as a primitive
that achieves both information reconciliation and privacy am-
plification. The publicly stored enrolment data (a.k.a. secure
sketch, helper data or public data) suffices to reproducibly
reconstruct a string from noisy measurements, yet leaks only a
negligible amount of information about the extracted key. An
overview of privacy-preserving biometrics, PUFs and fuzzy
extraction is given in [20].

B. Problems with noise correction

One of the nontrivial aspects of the information reconciliation
step is the ‘shape’ of the noise. The noise patterns are not
always nicely compatible with a representation in terms of
binary strings. Error-correcting codes (ECCs) work best on
(binary) strings under the condition that the likely to occur
error patterns are completely random. This is the case e.g. for
i.i.d. bit errors and for burst errors that have no preference
for a specific location in the bit string. Now consider an N -
dimensional biometric feature vector (or PUF output) being
the source. Such a source is typically not binary. Mapping
the feature vector to a binary string introduces problems for
standard ECCs in the following ways:
— It often happens that the errors are not uniformly random,
e.g. certain burst errors are far more likely than others.
— It is also common for error probabilities to depend on the
value of the feature vector itself.
— Often, one-dimensional components of the feature vector
are separately discretized [19], and the discretization intervals
are assigned a binary representation such as a Gray code. This
procedure causes unequal error probabilities of the bits that
form the Gray code. (One bit flips when the noise nudges



the value one interval to the left, another one flips when the
noise nudges it one interval to the right; all the other bits have
very low bit error probabilities.) Furthermore, the bit error
probabilities depend on the value of the feature vector.
— When several components of the feature vector are com-
bined into a D-dimensional space, the binarization sometimes
leads to asymmetries in the bit representation of equally
likely errors. For instance, when a two-dimensional space is
discretized according to a hexagonal lattice [3], and the noise
is random, then the noise will nudge the feature value (center
of a hexagon) to one of the surrounding hexagons with equal
probability, but the number of bit flips is not the same for
these six errors.

Even under these circumstances, an ECC is capable of deal-
ing with errors no matter what their probability distribution is.
But there is a price to pay: The number of redundancy bits
in the code is far higher than what an ‘ideal’ code would
have. If X and X ′ are two different measurements of the
source, then an ideal code would be able to extract I(X;X ′)
bits of information. (Here I denotes the mutual information.)
All the asymmetries listed above reduce the entropy of the
error patterns and hence increase the mutual entropy I(X;X ′).
Typical ECCs are not able to capitalize on the low entropy of
the errors, since they must be able to correct the ‘worst case’
errors, and consequently a large part of the entropy present in
the source gets wasted. Furthermore, ECCs can approach the
Shannon bound only when the code words are very long.

The challenge is to construct a practical error correction
method that, in the case of very non-uniform noise probabili-
ties, extracts more information than typical ECCs.

C. Related work

A lot of work has been done to convert data structures with
various error patterns into binary representations that allow for
the use of error-correcting codes. (See e.g. [8] for an overview
of schemes for Hamming distance, set difference and edit
distance). In this paper we follow a different approach. We
restrict ourselves to the case where the noise is in a certain
sense well-behaved: the error patterns may be very bad, and
the noise may be very strong, but the number of error patterns
that are likely to occur is limited.

The information reconciliation problem for PUFs and bio-
metrics can be seen as a special case of the Slepian-Wolf
problem [16] with a single encoder and a single decoder. Fig. 1
shows the two main procedures in a Fuzzy Extractor: The Gen
procedure extracts a key S from the source X and generates
helper data W ; in the Slepian-Wolf setting Gen is the encoder
and W would be called ‘side information’. The Rep procedure
reproduces S from a noisy measurement X and W . In the
Slepian-Wolf setting this corresponds to the decoder. A generic
solution in this setting is Slepian-Wolf coding [16]. It amounts
to creating a codebook of random codewords for the typical
set. Given X ′, receiving such a codeword is sufficient to
determine which of the candidates X , jointly typical with X ′,
was enrolled, provided that the codeword has entropy of at

Fig. 1. Fuzzy Extractor. Gen generates helper data W and a near-uniform
key S. Rep tries to reproduce S from W and a noisy measurement X′.

least H(X|X ′). In this paper we consider the case where the
size of the codebook is ‘manageable’.

One approach to implement Slepian-Wolf coding efficiently
is to use universal hash functions [4] (or a slight relaxation
thereof, almost universal hash functions [18]). Universal hash
functions are easy to compute and behave like perfectly
random functions as far as collisions in the target space are
concerned. Their use for Slepian-Wolf coding is well known
[17], [8].

A Fuzzy Extractor has to achieve more than just error
correction. First, W must not leak too much about S. Second,
S has to be as close to uniform as possible (privacy amplifica-
tion). For general sources, uniformity can be achieved by using
(almost) universal hash functions.1 Thus, we see that universal
hash functions provide an efficient way to achieve information
reconciliation as well as privacy amplification when the source
is ill behaved.

D. Contributions in this paper

We analyze an offline fuzzy extractor scheme that employs
(almost) universal hash functions for both privacy amplifica-
tion and information reconciliation. By ‘offline’ we mean that
communication between Alice and Bob is only one-way. A
first hash function is applied to X to create a short string
that serves as helper data. It is just long enough to allow for
reconstruction of X from X ′. The secret key is extracted by
applying a second hash function to X . Such a scheme has
several advantages:
— Information reconciliation is efficient even if the errors are
highly non-uniform and strongly correlated with the data, as
long as the likely number of possible error patterns is limited.
— Computation of a short almost universal hash can be done
efficiently. Hence it is feasible to compute a large number of
hashes.
— Two concatenated almost universal hash functions together
form a new almost universal hash function. This property is
useful for security proofs.

We derive a sharp bound on the uniformity of the extracted
key, given that the attacker sees the helper data. We make
use of the concatenation property of almost universal hash
functions and a recent tighter formulation of the leftover hash

1For a source X with a lot of structure in its probability distribution, using
a compression algorithm may be feasible [11]; then the extracted entropy
is close to the Shannon entropy of X , which is much better than what is
achieved by universal hashing (see Section II).



lemma [22]. The helper data W and the extracted key S are
considered to be part of the same big hash value. If this is
taken literally, then it can be said that the scheme performs
information reconciliation and privacy amplification at the
same time or even in the opposite order compared to other
schemes.

We formulate our main result as a choice of key length c(ε)
such that the distance of the key’s distribution from uniformity
is upper bounded by ε. Use of the leftover hash lemma yields
an expression for c(ε) consisting of two parts: a positive term
depending on the source entropy and a negative ‘penalty’ term
which becomes more severe with decreasing ε. Revealing k
bits of the big hash as helper data has two effects on c(ε). (i)
a trivial reduction of the key length by k bits; (ii) nontrivial
correction terms in the penalty term, arising from the fact that
the key and the helper data are derived from the same hash.

II. PRELIMINARIES

Random variables are denoted in capitals. Sets are denoted in
calligraphic font (e.g. X ∈ X ). For X,X ′ ∈ X , we define the
statistical distance as

∆(X;X ′) = 1
2

∑
x∈X

∣∣∣∣Prob[X = x]− Prob[X ′ = x]
∣∣∣∣ .

The MAC of a message M with key K is denoted as
MAC(K,M). We do not use any notion of distance between
X and X ′ in feature vector space. We use a very general
approach to model the measurement noise.

Definition 1: Let θ ∈ (0, 1) be a fixed parameter. Let
X ∈ X be the enrolment measurement and X ′ ∈ X be the
verification measurement. A set B ⊂ X is called an incoming
(1− θ)-neighborhood of x′ if∑

x∈B
Prob[X = x|X ′ = x′] ≥ 1− θ. (1)

The set of all incoming (1−θ)-neighborhoods of x′ is denoted
as Bin

1−θ(x
′).

We assume that the probability distributions of the noise and
the biometric/PUF are known sufficiently accurately to allow
for explicit construction of (1− θ)-neighborhoods.

Definition 2: (From [15]) Let η > 0 be a constant. Let
R, X and Z be finite sets. Let {Φr}r∈R be a family of hash
functions from X to Z . The family {Φr}r∈R is called η-almost
universal iff, for R drawn uniformly from R, it holds that

Prob[ΦR(x) = ΦR(x′)] ≤ η

for all x, x′ ∈ X with x′ 6= x. In the special case η = 1/|Z|
the family is called universal.

Lemma 1: Let {Φr}r∈R : X → {0, 1}` be a 2−`(1 + δΦ)-
almost universal family of hash functions. Let {Ψt}t∈T :
X → {0, 1}k be a 2−k(1 + δΨ)-almost universal family of
hash functions. Then the concatenation {Ψt||Φr}t∈T ,r∈R is
an 2−k−`(1 + δΨ)(1 + δΦ)-almost universal family of hash
functions from X to {0, 1}k+`.

For a given probability distribution of X the Leftover Hash
Lemma dictates how many near-uniform key bits Alice and

Fig. 2. The almost universal hash functions Ψt, Γj and Φr compresses X
to k, σ and c bits, respectively. The concatenation WV S is also an almost
universal hash.

Bob can extract from X if they hash X using (almost)
universal hash functions. In its most tight formulation, the
lemma involves a quantity called smooth Rényi entropy.

Definition 3: (Paraphrased from [10].) Let P be a probabil-
ity measure on X . Let ρ ≥ 0. We define the strictly bounded
ρ-vicinity of P as

Bρ(P) =

{
Q : ∀x∈X Q(x) ≤ P(x) and

∑
x∈X

Q(x) ≥ 1− ρ

}
.

Definition 4: Let P be a probability measure on X . Let ρ ≥
0 be a constant. The smooth Rényi entropy of P is

Hρα(P) = max
Q∈Bρ(P)

Hα(Q).

Here Hα(Q) denotes the ordinary Rényi entropy
−1
α−1 log

∑
x[Q(x)]α.

Definition 5: Let X ∈ X be a random variable. For any
ε > 0 we say that a finite set Z is ε-allowed if there exists a
function F : X → Z such that ∆(F (X); U) ≤ ε, where U
is a random variable uniformly distributed on Z , independent
of X . The ε-extractable randomness of X is defined as

`εext(X) = max {log |Z| : Z is ε-allowed} .

Lemma 2: (From [22]; tighter version of the result in [14].)
Let ε ≥ 0 be a constant. Let X be a random variable on X . Let
{Φr}r∈R be an η-almost universal family of hash functions
from X to T , with η = (1 + δ)/|T |. Then the ε-extractable
randomness from X using this family of hash functions is
bounded from below by

max
ρ∈[0,ε−δ/[4ε])

[
Hρ2(X) + 2− log

1
ε(ε− ρ)− δ/4

]
. (2)

III. OFFLINE KEY RECONSTRUCTION

We present a scheme for offline key reconstruction, i.e. with
only one-way communication. The two parties, called Alice
and Bob, are for instance a device manufacturer and a PUF
device, or a biometric enrollment authority and a biometric
authentication system. The scheme is depicted in Fig. 3.

A. Offline key reconstruction protocol

System setup phase:
Alice and Bob beforehand agree on three almost universal
families of hash functions {Φr}r∈R : X → {0, 1}c, {Ψt}t∈T :
X → {0, 1}k and {Γj}j∈J : X → {0, 1}σ . (See Fig. 2.)



Fig. 3. The offline key reconstruction scheme.

These are 2−c(1 + δΦ), 2−k(1 + δΨ) and 2−σ(1 + δΓ) almost
universal, respectively. Alice and Bob also agree on a MAC
which uses a σ-bit key and outputs an m-bit authentication
code. The Φ, Ψ, Γ hash families are public knowledge, as are
c, σ, k and the MAC.
Enrolment phase:
1. Alice performs a measurement and obtains an outcome x.
2. She randomly chooses r ∈ R, t ∈ T and j ∈ J .
She computes s = Φr(x), w = Ψt(x), v = Γj(x) and
a = MAC(v, rtjw).
3. She stores r, t, j, w, and a.
Reconstruction phase:
1. Bob reads the stored r, t, j, w, a.
2. Bob performs a measurement and obtains an outcome x′.
3. He chooses a neighborhood B ∈ Bin

1−θ(x
′). He compiles

a list L = {xi ∈ B : Ψt(xi) = w}. If L = ∅, the protocol
aborts in failure.
4. For all xi ∈ L, Bob computes vi := Γj(xi). He checks
if MAC(vi, rtjw) = a. In the event that a single match x∗

occurs, the protocol has succeeded, and Φr(x∗) = s is Alice
and Bob’s reconstructed shared secret. If there are no matches,
or more than one, then the protocol aborts in failure.
Remarks:
(i) In Bob’s step 3, the event L = ∅ occurs with probability
at most θ.
(ii) In Bob’s step 4, the verification of the MAC a achieves
authentication2 of the public data r, t, j, w in the spirit of
‘Robust Fuzzy Extractors’ [1].
(iii) The parameter k must be chosen sufficiently large, so that
Bob does not have to compute too many vi values and MACs
in step 4. The expected number of elements in L is of order
|B|2−k. The requirement of having the correct MAC further
restricts the number of candidates to |B|2−k−m. Hence, in
order to reduce the probability of multiple matches in Bob’s
step 4 below some constant γ, we need k+m = O(log |B|+
log 1/γ).

B. Security analysis of the offline key reconstruction

The eavesdropping attacker, Eve, has access to t, r, j w, a. The
security analysis amounts to determining the effect of Eve’s

2If Bob correctly reconstructs v with overwhelming probability, then the
probability of an attacker successfully forging the MAC is approximately
2−m. A detailed security analysis of the MAC is complicated, because of the
non-uniformity of the key v, and is beyond the scope of this paper.

knowledge on the security of the key s. As a security measure
we use the statistical distance from the uniform distribution.
We have the following result.

Theorem 1: Consider the protocol of Section III-A. Let δ =
(1 + δΨ)(1 + δΦ)(1 + δΓ)− 1. If c, k, σ satisfy

c ≤ max
ρ

[
Hρ2(X) + 2− log

1
ε(ε− ρ)− δ/4

]
− k − σ (3)

then
∆(RTJWAS; RTJWAUc) ≤ ε,

where Uc is a random variable uniformly distributed on
{0, 1}c, independent of X , R, T and J .
The theorem states that, averaged over all R, T , J , W , A, the
distribution of the key S, given Eve’s knowledge, is ε-close
to uniform. I.e. the inequality can be formulated as

Ertjwa
[
∆
(
S|R = r, T = t, J = j,W = w,A = a; Uc

)]
≤ ε,

where E stands for the expectation value.
Proof: A is a function of R, T , J , W , V , hence the combined
variable RTJWA is a function of the combined variable
RTJWV . We use the fact that applying a function cannot
increase the statistical distance. Thus

∆(RTJWAS;RTJWAUc) ≤ ∆(RTJWV S;RTJWV Uc).

Next, for any random variables X ∈ X , Y ∈ Y it holds that
∆(XY ;UXY ) ≤ ∆(XY ;UX×Y), where UX is a variable
uniform on X . This gives

∆(RTJWV S;RTJWV Uc) ≤ ∆(RTJWV S;RTJUk+σ+c).

According to Lemma 1 the concatenation WVS is a
2−k−σ−c(1 + δ)-almost universal hash, with 1 + δ = (1 +
δΨ)(1 + δΓ)(1 + δΦ). Finally we apply Lemma 2 to the hash
WV S to find how big k + σ + c can be while still having
WV S ε-close to uniformity. �

The result (3) has a simple form. The ε-extractable random-
ness from X is given by the “maxρ” expression. Revealing k
bits of helper data reduces the entropy of S by at most k bits.
Employing σ bits of extracted randomness as a MAC key uses
up (at most) a further σ bits of the entropy of S.

However, Eq.(3) is not trivial. The parameter δ does not
only depend on the choice of Φ, but also on the choice of the
functions Ψ and Γ. This happens because the distribution of
S, conditioned on W and V , becomes less uniform when W
and V become less uniform. We see from (3) that all three
parameters δΨ, δΓ, δΦ have to be significantly smaller than ε2,
otherwise they cause a loss of extractable entropy.

IV. PRACTICAL ISSUES

As mentioned, our scheme is only practical if Bob’s (1− θ)-
neighborhood of x′ is not too large.

A second important point is the implementation of the hash
functions Ψ, Φ, Γ. The Ψ hash is especially critical, since
it has to be run on the whole (1 − θ)-neighborhood of x′.
Fortunately, efficient implementations are known. The ‘PR’
and ‘WH’ universal hashes proposed in [23], for instance,



only need operations in GF(2k), which are well suited for
low-power hardware. Furthermore, it is useful to split up Ψ,
e.g. into b-bit sub-hashes: this allows Bob to check the first b
bits of Ψt(xi) against the first b bits of w, already reducing
the number of candidate xi by a factor 2−b before having
to compute the rest of the hash. Each subsequent sub-hash
achieves another factor 2−b.

Another important implementation aspect is the length of
the (public) random strings r, t and j. They have to be
stored, and on constrained devices there is often a limit to
the amount of nonvolatile memory. Let us consider the Ψ
family. Typical constructions of a universal family of hash
functions require that log |T | is (almost) as large as log |X |.
For instance, the construction of Example 8.39 in [15] requires
#bits = log |T | = log |X | − k. For highly non-uniform
sources X this is prohibitive. It is possible to save on memory
by relaxing the constraints on the hash function: By allowing
almost-universality (Def. 2), one gets a tradeoff between the
quality of the privacy amplification and the space needed to
store t. There are constructions [15] of (1 + δΨ)2−k-almost
universal functions that require only

log |T | = O (k − log k + log log |X |+ log[1/δΨ]) . (4)

We see that the dependence on |X | has changed from log |X |
to log log |X |, which is much smaller. Hence, when storage is
constrained it may pay off to use an almost-universal instead
of a perfectly universal hash function.

A second benefit of the reduced size of r, t, j is that the
length of the MAC key v can be reduced, leaving more entropy
for the shared secret s.
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