
Key-Exposure Free Chameleon Hashing and

Signatures Based on Discrete Logarithm Systems

Xiaofeng Chen, Fangguo Zhang, Haibo Tian, Baodian Wei, and Kwangjo Kim

1 School of Information Science and Technology,
Sun Yat-sen University, Guangzhou 510275, P.R.China
{isschxf,isszhfg,tianhb,weibd}@mail.sysu.edu.cn

2 International Research center for Information Security (IRIS)
Information and Communications University(ICU), Taejon 305-714, KOREA

kkj@icu.ac.kr

Abstract. Chameleon signatures are based on well established hash-and-sign
paradigm, where a chameleon hash function is used to compute the cryptographic
message digest. Chameleon signatures simultaneously provide the properties of
non-repudiation and non-transferability for the signed message. However, the ini-
tial constructions of chameleon signatures suffer from the problem of key exposure:
the signature forgery results in the signer recovering the recipient’s trapdoor in-
formation, i.e., the private key. This creates a strong disincentive for the recipient
to forge signatures, partially undermining the concept of non-transferability. Re-
cently, some specific constructions of key-exposure free chameleon hashing are
presented, based on RSA or pairings, using the idea of “Customized Identities”.

In this paper, we propose the first key-exposure free chameleon hash scheme
based on discrete logarithm systems, without using the gap Diffile-Hellman groups.
Moreover, one distinguished advantage of the resulting chameleon signature scheme
is that the property of “message hiding” or “message recovery” can be achieved
freely by the signer. Another main contribution in this paper is that we propose
the first identity-based chameleon hash scheme without key exposure, which gives
a positive answer for the open problem introduced by Ateniese and de Mederious
in 2004.

Key words: Chameleon hashing, Gap Diffie-Hellman group, Key exposure.

1 Introduction

Chameleon signatures, introduced by Krawczyk and Rabin [20], are based on
well established hash-and-sign paradigm, where a chameleon hash function is
used to compute the cryptographic message digest. A chameleon hash function
is a trapdoor one-way hash function, which prevents everyone except the holder
of the trapdoor information from computing the collisions for a randomly given
input. Chameleon signatures simultaneously provide non-repudiation and non-
transferability for the signed message as undeniable signatures [3, 10–12, 16–19]
do, but the former allows for simpler and more efficient realization than the
latter. In particular, chameleon signatures are non-interactive and less compli-
cated. More precisely, the signer can generate the chameleon signature without
interacting with the designated recipient, and the recipient will be able to verify

the signature without the collaboration of the signer. On the other hand, if pre-
sented with a forged signature, the signer can deny its validity by only revealing
some certain values. That is, the forged-signature denial protocol is also non-
interactive. Besides, since the chameleon signatures are based on well established
hash-and-sign paradigm, it provides more generic and flexible constructions.

One limitation of the original chameleon signature scheme is that signature
forgery results in the signer recovering the recipient’s trapdoor information, i.e.,
private key. The signer then can use this information to deny other signatures
given to the recipient. In the worst case, the signer could collaborate with other
individuals to invalidate any signatures which were designated to be verified by
the same public key. This will create a strong disincentive for the recipient to
forge signatures and thus weakens the property of non-transferability.

Ateniese and de Mederious [1] firstly addressed the key exposure problem of
chameleon hashing and introduced the idea of identity-based chameleon hashing
to solve this problem. Due to the distinguished property of identity-based system,
the signer can sign a message to an intended recipient, without having to first
retrieve the recipient’s certificate. Moreover, the signer uses a different public key
(corresponding a different private key) for each transaction with a recipient, so
that signature forgery only results in the signer recovering the trapdoor informa-
tion associated to a single transaction. Therefore, the signer will not be capable
of denying signatures on any message in other transactions. We argue that this
idea only provides a partial solution for the problem of key exposure since the
recipient’s public key is changed for each transaction.1

Chen et al. [15] proposed the first full construction of a key-exposure free
chameleon hash function in the gap Diffie-Hellman (GDH) groups with bilinear
pairings. Ateniese and de Mederious [2] then presented three key-exposure free
chameleon hash schemes, two based on the RSA assumption (the first construc-
tions without using pairings), as well as a new construction based on pairings.
As pointed out by Ateniese and de Mederious, the single-trapdoor commitment
schemes are not sufficient for the construction of key-exposure free chameleon
hashing and the double-trapdoor mechanism can either be used to construct an
identity-based chameleon hash scheme or a key-exposure free one, but not both.
Therefore, an interesting open problem is whether there is an efficient construc-
tion for identity-based chameleon hash function without key exposure [2].

All of the existing key-exposure free chameleon hash schemes based on the
discrete logarithm systems can only be constructed in the setting of GDH groups
with bilinear pairings. Are there efficient (discrete-logarithm-based) constructions
for key-exposure free chameleon hash schemes without using the GDH groups?
To the best of our knowledge, it seems that there is no research work on this
problem.

1 A trivial solution for the key exposure problem is that the signer changes his key pair fre-
quently in the chameleon signature scheme. However, it is only meaningful in theoretical
sense because the key distribution problem arises simultaneously.

Our Contribution. In this paper, we propose some efficient constructions for
key-exposure free chameleon hash schemes in the discrete logarithm systems. Our
contribution is three folds:

1. We proposed a new key-exposure free chameleon hash scheme in the GDH
groups. Compared with the existing schemes in the GDH groups [2, 15], the pro-
posed chameleon hash scheme is not only based on the weaker assumption, but
also more efficient in both hashing computation and collision computation.

2. We propose the first discrete-logarithm-based key-exposure free chameleon
hash scheme without using the GDH groups. One distinguished advantage of the
resulting chameleon signature scheme is that the property of “message hiding”
or “message recovery” can be achieved freely by the signer.

3. We propose the first identity-based chameleon hash scheme without key
exposure, which gives a positive answer for the open problem introduced by
Ateniese and de Mederious in 2004.

Organization. The rest of the paper is organized as follows: Some preliminar-
ies are given in Section 2. The definitions associated with chameleon hashing
and signatures are introduced in Section 3. The proposed key exposure freeness
chameleon hash and signature schemes in the GDH groups and non-GDH groups
are given in Section 4 and Section 5, respectively. The proposed identity-based
chameleon hash scheme without key exposure is given in Section 6. Finally, con-
clusions will be made in Section 7.

2 Preliminaries

In this section, we first introduce some well-known number-theoretic problems in
the discrete logarithm systems. We then present two proof systems for knowledge
of discrete logarithms.

2.1 Number-Theoretic Problems

Let G be a cyclic multiplicative group generated by g with the prime order q.
We introduce the following problems in G.

– Discrete Logarithm Problem (DLP): Given two elements g and h, to find an
integer a ∈ Z

∗

q, such that h = ga whenever such an integer exists.

– Computation Diffie-Hellman Problem (CDHP): Given (g, ga, gb) for a, b ∈
Z
∗

q, to compute gab.

– Decision Diffie-Hellman Problem (DDHP): Given (g, ga, gb, gc) for a, b, c ∈
Z
∗

q, to decide whether c ≡ ab mod q.

It is proved that the CDHP and DDHP are not equivalent in the GDH groups.
More precisely, we call G a GDH group if the DDHP can be solved in polynomial
time but there is no polynomial time algorithm to solve the CDHP with non-
negligible probability. Such groups can be found in supersingular elliptic curves

or hyperelliptic curves over finite fields. For more details, see [4–6, 9, 21, 23, 25].
Moreover, we call < g, ga, gb, gc > a valid Diffie-Hellman tuple if c ≡ ab mod q.

2.2 Proofs of Knowledge

A prover with possession a secret number x ∈ Zq wants to show a verifier that
x = logg y without exposing x, this is named the proof of knowledge of a discrete
logarithm.

This proof of knowledge is basically a Schnorr signature [26] on message
(g, y): The prover chooses a random number r ∈R Zq, and then computes c =
H(g, y, gr), and s = r − cx mod q, where H : {0, 1}∗ → {0, 1}k is a collision-
resistant hash function. The verifier accepts the proof if and only if c = H(g, y, gsyc).

Definition 1. A pair (c, s) ∈ {0, 1}k × Zq satisfying c = H(g, h, gsyc) is a proof
of knowledge of a discrete logarithm of the element y to the base g.

Similarly, we can define the proof of knowledge for the equality of two discrete
logarithms: A prover with possession a secret number x ∈ Zq wants to show that
x = logg u = logh v without exposing x.

Chaum and Pedersen [14] firstly proposed the proof as follows: The prover
chooses a random number r ∈R Zq, and then computes c = H(g, h, u, v, gr , hr),
and s = r − cx mod q, where H : {0, 1}∗ → {0, 1}k is a collision-resistant hash
function. The verifier accepts the proof if and only if c = H(g, h, u, v, gsuc, hsvc).

Definition 2. A pair (c, s) ∈ {0, 1}k × Zq satisfying c = H(g, h, u, v, gsuc, hsvc)
is a proof of knowledge for the equality of two discrete logarithms of elements u, v
with respect to the base g, h.

Trivially, the verifier can efficiently decide whether < g, u, h, v > is a valid
Diffie-Hellman tuple with the pair (c, s).

3 Definitions

In this section, we introduce the definitions and properties of chameleon hashing
and signatures [1, 20, 28].

3.1 Chameleon Hashing

A chameleon hash function is a trapdoor collision-resistant hash function, which
is associated with a trapdoor/hash key pair (TK,HK). Anyone who knows the
public key HK can efficiently compute the hash value for each input. However,
there exists no efficient algorithm for anyone except the holder of the secret key
TK, to find collisions for every given input. In the following, we present a formal
definition of a chameleon hash scheme.

Definition 3. A chameleon hash scheme consists of four efficient algorithms
(PG,KG,H,F):

– System Parameters Generation PG: A probabilistic polynomial-time al-
gorithm that, on input a security parameter k, outputs the system parameters
SP .

– Key Generation KG : A probabilistic polynomial-time algorithm that, on
input the system parameters SP , outputs a trapdoor/hash key pair (TK,HK).

– Hashing Computation H: A probabilistic polynomial-time algorithm that,
on input the hash key HK, a customized identity I,3 a message m, and a
random string r, outputs the hashed value h = Hash(I,m, r). Note that h
does not depend on TK.

– Collision Computation F : A deterministic polynomial-time algorithm that,
on input the trapdoor key TK, a message m, a random string r, and another
message m′ 6= m, outputs a string r′ that satisfies

Hash(I,m′, r′) = Hash(I,m, r).

Moreover, if r is uniformly distributed in a finite space R, then the distribution
of r′ is computationally indistinguishable from uniform in R.

A secure chameleon hashing scheme satisfies the following properties:

– Collision resistance: Without the knowledge of trapdoor key TK, there
exists no efficient algorithm that, on input a message m, a random string r,
and another message m′, outputs a string r′ that satisfy Hash(I,m′, r′) =
Hash(I,m, r), with non-negligible probability.

– Semantic security: For all pairs of messages m and m′, the probability
distributions of the random values Hash(I,m′, r) and Hash(I,m, r) are com-
putationally indistinguishable.

– Key exposure freeness: If a recipient has never computed a collision under
I, then there is no efficient algorithm for an adversary to find a collision for a
given chameleon hash value Hash(I,m, r). This must remain true even if the
adversary has oracle access to F and is allowed polynomially many queries
on triples (Ij ,mj, rj) of his choice, except that Ij is not allowed to equal the
challenge I.

3.2 Chameleon Signatures

A chameleon signature is generated by digitally signing a chameleon hash value
of the message. More precisely, we have the following definition:

Definition 4. A chameleon signature scheme consists of the following efficient
algorithms and a specific denial protocol:

3 A customized identity is actually a label for each transaction. For example, we can let I =
IDS||IDR||IDT , where IDS , IDR, and IDT denote the identity of the signer, recipient, and
transaction, respectively [1].

– System Parameters Generation PG: A probabilistic polynomial-time al-
gorithm that, on input a security parameter k, outputs the system parameters
SP .

– Key Generation KG : A probabilistic polynomial-time algorithm that, on
input the system parameters SP , outputs a trapdoor/hash key pair (TK,HK)
and a signing/verification key pair (sk, vk).

– Signature Generation SG: A probabilistic polynomial-time algorithm that,
on input the hash key HK, the signing key sk, a customized identity I, a
message m, and a random string r, outputs a signature σ on the chameleon
hash value h = Hash(I,m, r).

– Signature Verification SV: A deterministic polynomial-time algorithm that,
on input the hash key HK, the verification key vk, a customized identity I,
a message m, a random string r, and a signature σ, outputs a verification
decision b ∈ {0, 1}.

– Denial Protocol DP: A non-interactive protocol between the signer and
the judge. Given a chameleon signature (σ, r) on the message m, the signer
provides the judge a valid collision (m′, r′) and some auxiliary information
Σ. If and only if m 6= m′ and Σ is valid, the judge claims that the signature
σ on the message m is a forgery.

A secure chameleon signature scheme should satisfy the properties [1, 15, 20]:

– Unforgeability: No party can produce a valid chameleon signature not pre-
viously generated by the signer. Also, the recipient can only produce a forgery
of a chameleon signature previously generated by the signer.

– Non-transferability: The recipient can not convince a third party that the
signer indeed generated a signature on a certain message, thus the signature
is not universal verifiable.

– Non-repudiation: The signer cannot deny legitimate signature claims.
– Deniability: The signer can deny a forgery of the signature.
– Message hiding: The signer does not have to reveal the original message to

deny the validity of a forgery.
– Message recovery (or Convertibility): A variant of the chameleon signa-

ture can be transformed into a regular signature by the signer.

4 Constructions in the GDH Groups

In this section, we present an efficient construction of chameleon hashing without
key exposure in the GDH groups.

4.1 The Proposed Chameleon Hash Scheme

– System Parameters Generation PG: Let G be a GDH group generated by
g, whose order is a prime q. Let H : {0, 1}∗ → G

∗ be a full-domain collision-
resistant hash function. The system parameters are SP = {G, q, g,H}.

– Key Generation KG : Any user randomly chooses an integer x ∈R Z
∗

q as
his trapdoor key, and publishes his hash key y = gx. The validity of y can be
ensured by a certificate issued by a trusted certification authority.

– Hashing Computation H: On input the hash key y, a customized identity
I, let h = H(y, I). Chooses a random integer a ∈R Z

∗

q, and computes r =
(ga, ya). Our proposed chameleon hash function is defined as

H = Hash(I,m, r) = gahm.

– Collision Computation F : For any valid hash value H, the algorithm F
can be used to compute a hash collision with the trapdoor key x as follows:

F(H, x, I,m, r,m′) = r′ = (ga′

, ya′

),

where ga′

= gahm−m′

and ya′

= yahx(m−m′).

Note that

Hash(I,m′, r′) = ga′

hm′

= gahm−m′

hm′

= gahm = Hash(I,m, r)

and < g, y, ga′

, ya′

> is a valid Diffie-Hellman tuple. Therefore, the forgery is
successful. Moreover, if r is uniformly distributed then the distribution of r ′ is
computationally indistinguishable from uniform.

Theorem 1. The proposed chameleon hash scheme is collision resistance under
the assumption that the CDHP in G is intractable.

Proof. Assume to the contrary, that there exists a polynomial time algorithm A,
with a non-negligible probability, that outputs two pairs (m, r) and (m′, r′) which
satisfy Hash(I,m′, r′) = Hash(I,m, r), i.e., ga′

hm′

= gahm, we can compute
hx = (ya′

/ya)(m−m′)−1

efficiently. This is equivalent to solve the CDHP in G. ut

Theorem 2. The proposed chameleon hash scheme is semantically secure.

Proof. Given a value H, a customized identity I, and any message m, there exists
exactly one string r such that H = Hash(I,m, r). ut

Theorem 3. The proposed chameleon hash scheme is key-exposure free.

Proof. Even if the adversary has oracle access to F and is allowed polynomi-
ally many queries on triples (Ij ,mj , g

aj , yaj) of his choice, there is no efficient
algorithm for him to find a collision of the hash value H = Hash(I,m, ga, ya)
where I 6= Ij. Note that hx is a GDH signature on message I [5], and comput-
ing collisions is equivalent to breaking the signature scheme. However, the GDH
signature scheme is proved to be secure against existential forgery on adaptive
chosen-message attacks in the random oracle model. In other words, even if the
adversary has obtained polynomially many GDH signatures hx

j on message Ij ,
he can not forge a signature hx on message I 6= Ij. ut

4.2 The Proposed Chameleon Signature Scheme

There are two users, a signer S and a recipient R, in our signature scheme. When
dispute occurs, a judge J is involved in the scheme.

– System Parameters Generation PG: Let G be a GDH group generated by
g, whose order is a prime q. Let H : {0, 1}∗ → G

∗ be a full-domain collision-
resistant hash function. The system parameters are SP = {G, q, g,H}.

– Key Generation KG: S randomly chooses an integer xS ∈R Z
∗

q as his signing
key, and publishes his verification key yS = gxs . Similarly, R randomly chooses
an integer xR ∈R Z

∗

q as his trapdoor key, and publishes his hash key yR = gxR .
– Signature Generation SG: Suppose the message to be signed is m. S ran-

domly chooses an integer a ∈R Z
∗

q, and computes the chameleon hash value
H = gahm, where h = H(yR, I) and I is a customized identity. Assume SIGN
is any secure signature scheme. The signature σ for message m consists of
(m, ga, ya

R,SIGNxS
(H)).

– Signature Verification SV: Given a signature σ, R first verifies whether the
equation (ga)xR = ya

R holds.3 If the verification fails, he rejects the signature;
else, he computes the chameleon hash value H = gahm and verifies the validity
of SIGNxS

(H) with the verification key yS .
– Denial Protocol DP: When dispute occurs, i.e., R provides a signature

σ=(m∗, ga∗

, ya∗

R ,SIGNxS
(H)) to J . If either < g, yR, ga∗

, ya∗

R > is not a valid
Diffie-Hellman tuple or SIGNxS

(H) is invalid, J rejects it. Otherwise, J sum-
mons S to accept/deny the claim. If S wants to accept the signature, he just
confirms to J this fact. Otherwise, he provides a collision for the chameleon
hash function as follows:

• If S wants to achieve the property of “message hiding”, he provides J a
collision (m′, ga′

, ya′

R). If and only if m∗ 6= m′, < g, yR, ga′

, ya′

R > is a valid
Diffie-Hellman tuple, and H = ga′

hm′

, then J can be convinced that R
forged the signature on message m∗.

• If S wants to achieve the property of “message recovery”, he provides the
tuple (m, ga, ya

R, Σ) as the collision, where Σ is a non-interactive proof of
knowledge of the discrete logarithm a = logg ga. If and only if m∗ 6= m,
< g, yR, ga, ya

R > is a valid Diffie-Hellman tuple, H = gahm, and Σ is
valid, then J can be convinced that R forged the signature on message
m∗ and S only generated a valid signature on message m.

Different from the basic chameleon signature schemes [1, 20], the proposed
chameleon signature scheme has the following distinguishing advantages:

1. In the previous chameleon signature schemes, the customized identity I and
the identity of the recipient IDR must be explicitly committed to the signa-
ture. While in our scheme, this is not required since no one knows the discrete
logarithm of the element h to the base g.

3 If the equation (ga)xR = ya
R holds, then R can be convinced that < g, yR, ga, ya

R > is a valid
Diffie-Hellman tuple.

2. Another distinguishing advantage of our scheme is that the signer can effi-
ciently prove which message was the original one if he desires. This is due to
the following observations: Firstly, no one can provide a proof of knowledge of
the discrete logarithm a′ = logg ga′

for any collision ga′

= gahm−m′

; Secondly,
only S can provide a proof of knowledge of the discrete logarithm a = logg ga

for the original input ga.

On the other hand, the enhanced schemes [1, 20] can be converted into uni-
versally verifiable instances. The trick is that the signer encrypts the message
using a semantically secure probabilistic encryption scheme ENC and then
includes the ciphertext in the signature. However, as noted in [1], this solution
does not provide the recipient with a mechanism for adjudicated convertibil-
ity, because the recipient has no guarantee that the signer has encrypted the
correct information during the signing step.

4.3 Security Analysis

Theorem 4. The proposed chameleon signature scheme satisfies the properties
of unforgeability, non-transferability, non-repudiation, deniability, message hid-
ing, and key exposure freeness.

Proof. We prove the proposed chameleon signature scheme satisfies the above
properties one by one.

– Unforgeability: No third party can produce a valid chameleon signature
which has not been previously generated by the signer, as this requires either
to break the underlying signature scheme SIGN, or find a valid collision of
the chameleon hash function H. Also, it is trivial that the recipient can only
produce a forgery of a chameleon signature previously generated by the signer.
However, it is meaningless since the judge can detect this forgery after the
signer provides a different collision.

– Non-transferability: Note that the semantic security of a chameleon hash-
ing scheme implies the non-transferability of the corresponding chameleon
signature scheme [1]. Therefore, the recipient cannot transfer a signature of
the signer to convince any third party.

– Non-repudiation: Given a valid signature σ = (m, ga, ya
R,SIGNxS

(H)), the
signer cannot generate a valid hash collision (m′, ga′

, ya′

R) which satisfies H =
Hash(I,m′, ga′

, ya′

R) and m 6= m′ because it is equivalent to computing the
CDHP in G.

– Deniability: It is ensured by the denial protocol.

– Message hiding: Given a collision (m, ga, ya
R) and (m∗, ga∗

, ya∗

R), though
the trapdoor key x is never divulged, the signer can compute the ephemeral
trapdoor key hx. Then the signer can provide any other collision (m′, ga′

, ya′

R)
to ensure the confidentiality of the original message m, where ga′

= gahm−m′

,
ya′

R = ya
R(hx)m−m′

.

– Message recovery: Note that (only) S can provide a proof of knowledge of
the discrete logarithm a = logg ga (only) for the original input ga. Therefore,
any verifier can be convinced that the original message to be signed is m.

4.4 Comparison

Compared with the existing two key-exposure free chameleon hash schemes in
the GDH groups [2, 15], the proposed chameleon hash scheme is a little more
efficient in both hashing computation and collision computation. Moreover, the
security of the scheme [2] is equivalent to the q-Strong Diffie-Hellman Problem
(q-SDHP), while the security of our proposed scheme is equivalent to the CDHP,
which is harder than the q-SDHP for any q.

In the proposed chameleon signature scheme, both the signature verification
and the denial protocol are non-interactive, so it is more efficient and simple than
undeniable signature schemes. Moreover, compared with two previous chameleon
signature schemes in the GDH groups [2, 15], our signature scheme provides more
efficient and explicit convertibility.

Table 1 and Table 2 present the comparison between our scheme and two pre-
vious schemes. We denote by M the exponentiation in G, by m the multiplication
in G, and by I the inversion in G. We also denote by C(S), C(V), and C(E) the
computation cost of signing, verifying in scheme SIGN and encrypting in scheme
ENC, respectively. We omit other operations such as hash and the multiplication
in Zq in all schemes.

Scheme [2] Scheme [15] Our Scheme

Mathematical Assumption q-SDHP CDHP CDHP

Hashing Computation 4M + 2m 3M + 2m 3M + 1m

Collision Computation 2M + 2m 2M + 2m 2M + 2m

Table 1. Comparison with two previous chameleon hash schemes

Scheme [2] Scheme [15] Our Scheme

Signature Generation 4M + 2m + 1C(S) 3M + 2m + 1C(S) 3M + 1m + 1C(S)

Signature Verification 2M + 1m + 1C(V) 2M + 2m + 1C(V) 2M + 1m + 1C(V)

Denial Protocol 2M + 3m + 1I 2M + 3m + 1I 2M + 3m + 1I

(Message Hiding)

Denial Protocol 1C(E) 1C(E) 1M

(Message Recovery)

Table 2. Comparison with two previous chameleon signature schemes

5 Constructions in the Non-GDH Groups

In this section, we propose a construction of key exposure freeness chameleon
hashing in the non-GDH groups, e.g., the multiplicative group of finite fields.

5.1 Main Idea

In the non-GDH groups, there is no polynomial time algorithm to solve the DDHP
with non-negligible probability. Therefore, given a tuple < g, ga, gb, gc >, no one
is allowed to use the decisional Diffie-Hellman (DDH) oracle to check whether it
is a valid Diffie-Hellman tuple.

However, as we mentioned above, the proof of knowledge for the equality of
two discrete logarithms can substitute the DDH oracle. This is the main trick
to design key exposure freeness chameleon hash scheme in the non-GDH groups.
We explain it in more details as below.

The chameleon hash scheme in the non-GDH groups is almost the same as
the one in the GDH groups. The only difference is the way to verify the validity
of a Diffie-Hellman tuple. Given the original input (ga, ya) in the GDH groups,
anyone can easily check that < g, y, ga, ya > is a valid Diffie-Hellman tuple using
the DDH oracle. While in the non-GDH groups, on one except the holder of the
trapdoor key x can verify the validity of the Diffie-Hellman tuple < g, y, ga, ya >.
However, the holder can check whether the equation (ga)x = ya holds using
the trapdoor key x. If the equation holds, then (ga, ya) is a valid input of the
chameleon hashing. Moreover, the holder with x can provide a proof of knowledge
for the equality of two discrete logarithms, i.e., x = logg y = logga ya, to convince
any third party of the fact.

5.2 The Proposed Chameleon Hash Scheme

– System Parameters Generation PG: Let G be a multiplicative group
generated by g, whose order is a prime q. Let H : {0, 1}∗ → G

∗ be a full-
domain collision-resistant hash function. The system parameters are SP =
{G, q, g,H}.

– Key Generation KG : Any user randomly chooses an integer x ∈R Z
∗

q as
his trapdoor key, and publishes his hash key y = gx. The validity of y can be
ensured by a certificate issued by a trusted certification authority.

– Hashing Computation H: On input the hash key y, a customized identity
I, let h = H(y, I). Chooses a random integer a ∈R Z

∗

q, and computes r =
(ga, ya). Our proposed chameleon hash function is defined as

H = Hash(I,m, r) = gahm.

– Collision Computation F : For any valid hash value H, the algorithm F
can be used to compute a hash collision with the trapdoor key x as follows:

F(H, x, I,m, r,m′) = r′ = (ga′

, ya′

),

where ga′

= gahm−m′

and ya′

= yahx(m−m′).

Note that Hash(I,m′, r′) = Hash(I,m, r). Also, for any collision r ′, the holder
of the trapdoor key x can convince any third party that < g, y, ga′

, ya′

> is a
valid Diffie-Hellman tuple, using a proof of knowledge for the equality of two
discrete logarithms, i.e., logg y = logga′ ya′

. In particular, it also holds for the
original input (ga, ya). Therefore, the forgery is successful. Besides, if r is uni-
formly distributed then the distribution of r ′ is computationally indistinguishable
from uniform.

Theorem 5. The construction above is a secure chameleon hash scheme under
the assumption that the CDHP in G is intractable.

Proof. The proof for the properties of collision resistance and semantic security
is the same as that of theorem 1. In the following, we only focus on the key
exposure freeness.

Note that even if the adversary has obtained polynomially many signatures hx
j

on message Ij, he can not forge a signature hx on message I 6= Ij, otherwise the
full domain hash (FDH) [8, 13] variant of Chaum’s undeniable signature scheme
can be broken. However, Ogata et al. [24] showed that the unforgeability of
the FDH variant of Chaum’s scheme with non-interactive zero-knowledge proof
confirmation and disavowal protocols is equivalent to the CDHP. Therefore, even
if the adversary has oracle access to F and is allowed polynomially many queries
on triples (Ij ,mj, g

aj , yaj) of his choice, there is no efficient algorithm for him to
find a collision of the hash value H = Hash(I,m, ga, ya) where I 6= Ij . ut

5.3 The Proposed Chameleon Signature Scheme

There are two users, a signer S and a recipient R, in our signature scheme. When
dispute occurs, a judge J is involved in the scheme.

– System Parameters Generation PG: Let G be a multiplicative group
generated by g, whose order is a prime q. Let H : {0, 1}∗ → G

∗ be a full-
domain collision-resistant hash function. The system parameters are SP =
{G, q, g,H}.

– Key Generation KG: S randomly chooses an integer xS ∈R Z
∗

q as his signing
key, and publishes his verification key yS = gxs . Similarly, R randomly chooses
an integer xR ∈R Z

∗

q as his trapdoor key, and publishes his hash key yR = gxR .

– Signature Generation SG: Suppose the message to be signed is m. S ran-
domly chooses an integer a ∈R Z

∗

q, and computes the chameleon hash value
H = gahm, where h = H(yR, I) and I is a customized identity. Assume SIGN
is any secure signature scheme. The signature σ for message m consists of
(m, ga, ya

R,SIGNxS
(H)).

– Signature Verification SV: Given a signature σ, R first verifies whether the
equation (ga)xR = ya

R holds. If the verification fails, he rejects the signature;
else, he computes the chameleon hash value H = gahm and verifies the validity
of SIGNxS

(H) with the verification key yS .

– Denial Protocol DP: When dispute occurs, i.e., R provides J a signature
σ=(m∗, ga∗

, ya∗

R ,SIGNxS
(H)) and a non-interactive proof of knowledge Π ∗

for the equality of two discrete logarithms that xR = logg yR = logga∗ ya∗

R . If
either SIGNxS

(H) or Π∗ is invalid, J rejects it. Otherwise, J summons S to
accept/deny the claim. If S wants to accept the signature, he just confirms to
J this fact. Otherwise, he provides a collision for the chameleon hash function
as follows:

• If S wants to achieve the property of “message recovery”, he provides J
the tuple (m, ga, ya

R,Π) as a collision, where Π is a non-interactive proof
of knowledge for the equality of two discrete logarithms that logg ga =
logyR

ya
R. If and only if m∗ 6= m, H = gahm, and Π is valid, then J

can be convinced that R forged the signature on message m∗ and S only
generated a valid signature on message m.

• If S wants to achieve the property of “message hiding”, he provides J the
tuple (ga, ya

R, Σ,Π) as a collision, where Σ is a non-interactive proof of
knowledge of a discrete logarithm that m = logh H/ga, and Π is a non-
interactive proof of knowledge for the equality of two discrete logarithms
that logg ga = logyR

ya
R. If and only if ga∗

6= ga, and Σ and Π are both
valid, then J can be convinced that R forged the signature on message
m∗ and the original message m is still confidential.

Remark 1. For any collision (ga∗

, ya∗

R), R can provide a proof of knowledge that
logg yR = logga∗ ya∗

R , which is also holds even when a = a∗. That is, the original

input (ga, ya
R) is totally indistinguishable with any collision (ga∗

, ya∗

R). Besides,
only S can provide a proof of knowledge that logg ga = logyR

ya
R, and no one can

provide a proof of knowledge that logg ga∗

= logyR
ya∗

R when a 6= a∗. Therefore,
S can efficiently prove which message was the original one if he desires.

Remark 2. In the proposed chameleon signature scheme, both the signature
verification and the denial protocol are non-interactive, so it is more efficient and
simple than undeniable signature schemes.

Compared with our key-exposure free chameleon signature scheme based on
GDH groups in section 4.2, the proposed scheme is as efficient as in the signature
generation and verification algorithms. While in the denial protocol, the proposed
scheme requires a (very) little more computation and communication cost for the
non-interactive proofs of knowledge. We argue that these proofs of knowledge
requires at most 2 modular exponentiation operations and about 2q bits storage.
Therefore, the proposed chameleon signature scheme is much efficient for the real
applications.

5.4 Security Analysis

Theorem 6. The proposed chameleon signature scheme satisfies the properties
of unforgeability, non-transferability, non-repudiation, deniability, message hid-
ing, and key exposure freeness.

Proof. We prove the proposed chameleon signature scheme satisfies the above
properties one by one.

– Unforgeability: No third party can produce a valid chameleon signature
which has not been previously generated by the signer, as this requires either
to break the underlying signature scheme SIGN, or find a valid collision of
the chameleon hash function H. Also, it is trivial that the recipient can only
produce a forgery of a chameleon signature previously generated by the signer.
However, it is meaningless since the judge can detect this forgery after the
signer provides a different collision.

– Non-transferability: The semantic security of the proposed chameleon hash
scheme implies the non-transferability of the resulting chameleon signature
scheme.

– Non-repudiation: Given a valid signature σ = (m, ga, ya
R,SIGNxS

(H)), the
signer cannot generate a valid hash collision (m′, ga′

, ya′

R) which satisfies H =
Hash(I,m′, ga′

, ya′

R) and m 6= m′ because it is equivalent to computing the
CDHP in G.

– Deniability: It is ensured by the denial protocol.

– Message hiding: Since Σ is a proof of knowledge of a discrete logarithm
that m = logh H/ga, the information for original signed message m is never
revealed.

– Message recovery: Note that only S can provide a proof of knowledge
that logg ga = logyR

ya
R, and no one can provide a proof of knowledge that

logg ga∗

= logyR
ya∗

R when a∗ 6= a. Therefore, any verifier can be convinced
that the original message to be signed is m.

6 Identity-based Key-exposure Free Chameleon Hashing

In this section, we first propose an identity-based key-exposure free chameleon
hash scheme based on bilinear pairings, which still follows the above construction
while using an identity-based proof of knowledge for the equality of two discrete
logarithms [7].

Let G1 be a GDH group generated by P , whose order is a prime q, and G2

be a cyclic multiplicative group of the same order q. A bilinear pairing is a map
e : G1 × G1 → G2. Recently, the bilinear pairings play an important role in
designing identity-based cryptographic schemes. The concept of identity-based
public key systems, introduced by Shamir in 1984 [27], allows a user to use his
identity ID as the public key, and a trusted third party, called Private Key
Generator (PKG), calculates the private key SID for the user.

The identity-based proof of knowledge for the equality of two discrete log-
arithms, first introduced by Baek and Zheng [7] from bilinear pairings. Define
g = e(P, P), u = e(P, SID), h = e(L,P) and v = e(L, SID), where P and L
are independent points of G1. The following non-interactive protocol presents a
proof of knowledge that logg u = logh v: The prover chooses a random number

r ∈R Zq, and then computes c = H(g, h, u, v, gr , hr), and S = rP − cSID, where
H : {0, 1}∗ → {0, 1}k is a collision-resistant hash function. The verifier accepts
the proof if and only if c = H(g, h, u, v, e(P, S)uc , e(L, S)vc).

6.1 The Proposed Identity-based Chameleon Hash Scheme

– System Parameters Generation PG: Let G1 be a GDH group generated
by P , whose order is a prime q, and G2 be a cyclic multiplicative group of
the same order q. A bilinear pairing is a map e : G1 × G1 → G2. Let H :
{0, 1}∗ → G1 be a full-domain collision-resistant hash function. PKG picks a
random integer s ∈R Z

∗

q and computes Ppub = sP . The system parameters
are SP = {G1, G2, q, P, Ppub,H}.

– Key Generation KG : Given an identity string ID, computes the trapdoor
key SID = sH(ID) = sQID.

– Hashing Computation H: On input the hash key ID, a customized iden-
tity I, let C = H(I). Chooses a random integer a ∈R Z

∗

q, and computes
(aP, e(aPpub, QID)). Our proposed chameleon hash function is defined as

H = Hash(I,m, aP, e(aPpub, QID)) = aP + mC.

Note that the holder of the trapdoor key SID can check whether the equation
e(aP, SID) = e(aPpub, QID) holds.

– Collision Computation F : For any valid hash value H, the algorithm F
can be used to compute a hash collision with the trapdoor key SID as follows:

F(H, SID, I,m, aP, e(aPpub, QID),m′) = (a′P, e(a′Ppub, QID)),

where
a′P = aP + (m − m′)C,

e(a′Ppub, QID) = e(aPpub, QID)e(C,SID)m−m′

.

Note that

Hash(I,m′, a′P, e(a′Ppub, QID)) = Hash(I,m, aP, e(aPpub, QID))

and

e(a′Ppub, QID) = e(a′P, SID)

= e(aP + (m − m′)C,SID)

= e(aP, SID)e(C,SID)m−m′

= e(aPpub, QID)e(C,SID)m−m′

Besides, for any collision (a′P, e(a′Ppub, QID)), the holder of the trapdoor key SID

can convince any third party that < e(P, P), e(P, SID), e(a′P, P), e(a′P, SID) >
is a valid Diffie-Hellman tuple, using the identity-based proof of knowledge for

the equality of two discrete logarithms. In particular, it also holds for the original
input (aP, e(aPpub, QID)).

Therefore, the forgery is successful. Moreover, if (aP, e(aPpub, QID)) is uni-
formly distributed, then the distribution of (a′P, e(a′Ppub, QID)) is computation-
ally indistinguishable from uniform.

Theorem 7. The construction above is a secure identity-based chameleon hash
scheme under the assumption that the BDHP in (G1, G2, e) is intractable.

Proof. We prove that the construction above satisfies the properties defined in
section 3.1.

– Collision resistance: Assume to the contrary, that there exists a poly-
nomial time algorithm A, with a non-negligible probability, that outputs
two pairs (m,aP, e(aPpub, QID)) and (m′, a′P, e(a′Ppub, QID)) which satisfy
Hash(I,m′, a′P, e(a′Ppub, QID)) = Hash(I,m, aP, e(aPpub, QID)), we can com-

pute e(C,SID) = (e(a′Ppub, QID)/e(aPpub, QID))(m−m′)−1

efficiently. This is
equivalent to solve the BDHP in G1.

– Semantic security: Given a value H, a customized identity I, and any
message m, there exists exactly one pair (aP, e(aPpub, QID)) such that H =
Hash(I,m, aP, e(aPpub, QID)).

– Key exposure freeness: Note that even if the adversary has obtained poly-
nomially many signatures e(Cj , SID) on message Ij, he can not forge a sig-
nature e(C,SID) on message I 6= Ij, otherwise the Libert and Quisquater’s
identity-based undeniable signature scheme [22] can be broken. However, the
unforgeability of this scheme with non-interactive zero-knowledge proof con-
firmation and disavowal protocols is proved to be equivalent to the BDHP.
Therefore, even if the adversary has oracle access to F and is allowed poly-
nomially many queries on triples (Ij ,mj , ajP, e(ajPpub, QID)) of his choice,
there is no efficient algorithm for him to find a collision of the hash value
H = Hash(I,m, aP, e(aPpub, QID)) where I 6= Ij. ut

Similarly, we can construct an identity-based chameleon signature scheme by
incorporating the proposed identity-based chameleon hash scheme and any secure
identity-based signature scheme.

7 Conclusions

Chameleon signatures simultaneously provide the properties of non-repudiation
and non-transferability for the signed message, thus can be used to solve the con-
flict between authenticity and privacy in the digital signatures. However, the orig-
inal constructions suffer from the so-called key exposure problem of chameleon
hashing. Recently, some specific constructions of key-exposure free chameleon
hashing and signatures are presented, based on the RSA assumption or bilinear
pairings.

In this paper, we propose the first key-exposure free chameleon hash scheme
based on discrete logarithm systems, without using the gap Diffile-Hellman groups.
Besides, one distinguished advantage of the resulting chameleon signature scheme
is that the property of “message hiding” or “message recovery” can be achieved
freely by the signer. Moreover, we propose the first identity-based chameleon
hash scheme without key exposure, which gives a positive answer for the open
problem introduced by Ateniese and de Mederious in 2004.

References

1. G. Ateniese and B. de Medeiros, Identity-based chameleon hash and applications, FC 2004,
LNCS 3110, pp.164-180, Springer-Verlag, 2004.

2. G. Ateniese and B. de Medeiros, On the key exposure problem in chameleon hashes, SCN
2004, LNCS 3352, pp.165-179, Springer-Verlag, 2005.

3. D. Boyar, D. Chaum, and D. Damg̊ard, Convertible undeniable signatures, Advances in
Cryptology-Crypto 1990, LNCS 537, pp.183-195, Springer-Verlag, 1991.

4. P. Barreto, H. Kim, B. Lynn, and M. Scott, Efficient algorithms for Pairing-based cryp-
tosystems, Advances in Cryptology-Crypto 2002, LNCS 2442, pp.354-368, Springer-Verlag,
2002.

5. D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairings, Advances in
Cryptology-Asiacrypt 2001, LNCS 2248, pp.514-532, Springer-Verlag, 2001.

6. D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Advances in
Cryptology-Crypto 2001, LNCS 2139, pp.213-229, Springer-Verlag, 2001.

7. J. Baek and Y. Zheng, Identity-based threshold decryption, PKC 2004, LNCS 2947, pp.248-
261, Springer-Verlag, 2004.

8. M. Bellare and P. Rogaway, The exact security of digital signatures-How to sign with RSA
and Rabin, Advances in Cryptology -Eurocrypt 1996, LNCS 1070, pp.399-416, Springer-
Verlag, 1996.

9. J. Cha and J. Cheon, An identity-based signature from gap Diffie-Hellman groups, PKC
2003, LNCS 2567, pp.18-30, Springer-Verlag, 2003.

10. D. Chaum, Designated confirmer signatures, Advances in Cryptology-Eurocrypt 1994,
LNCS 950, pp.86-91, Springer-Verlag, 1994.

11. D. Chaum, Zero-knowledge undeniable signatures, Advances in Cryptology-Eurocrypt 1990,
LNCS 473, pp.458-464, Springer-Verlag, 1991.

12. D. Chaum and H. van Antwerpen, Undeniable signatures, Advances in Cryptology-Crypto
1989, LNCS 435, pp.212-216, Springer-Verlag, 1989.

13. J. Coron, On the exact security of full domain hash, Advances in Cryptology-Crypto 2000,
LNCS 1880, pp.229-235, Springer-Verlag, 2000.

14. D. Chaum and T. Pedersen, Wallet databases with observers, Advances in Cryptology-
Crypto 1992, LNCS 740, pp.89-105, Springer-Verlag, 1993.

15. X. Chen, F. Zhang, and K. Kim, Chameleon hashing without key exposure, ISC 2004, LNCS
3225, pp.87-98, Springer-Verlag, 2004.

16. S. Galbraith, W. Mao, and K. G. Paterson, RSA-based undeniable signatures for general
moduli, CT-RSA 2002, LNCS 2271, pp.200-217, Springer-Verlag, 2002.

17. S. Galbraith and W. Mao, Invisibility and anonymity of undeniable and confirmer signa-
tures, CT-RSA 2003, LNCS 2612, pp.80-97, Springer-Verlag, 2003.

18. S. Gennaro, H. Krawczyk, and T. Rabin, RSA-based undeniable signatures, Advances in
Cryptology-Crypto 1997, LNCS 1294, pp.132-149, Springer-Verlag, 1997.

19. K. Kurosawa, and S. Heng, 3-move undeniable signature scheme, Advances in Cryptology-
Eurocrypt 2005, LNCS 3494, pp.181-197, Springer-Verlag, 2005.

20. H. Krawczyk and T. Rabin, Chameleon hashing and signatures, Proc. of NDSS 2000, pp.143-
154, 2000.

21. F. Hess, Efficient identity based signature schemes based on pairings, SAC 2002, LNCS 2595,
pp.310-324, Springer-Verlag, 2002.

22. B. Libert and J. Quisquater, ID-based undeniable signatures, CT-RSA 2004, LNCS 2694,
pp.112-125, Springer-Verlag, 2004.

23. V. Miller, The Weil pairing, and its efficient calculation, Journal of Cryptology, 17(4),
pp.235-261, Springer-Verlag, 2004.

24. W. Ogata, K. Kurosawa, and S. Heng, The security of the FDH variant of Chaum’s unde-
niable signature scheme, PKC 2005, LNCS 3386, pp.328-345, Springer-Verlag, 2005.

25. T. Okamoto and D. Pointcheval, The gap-problems: a new class of problems for the security
of cryptographic Schemes, PKC 2001, LNCS 1992, pp.104-118, Springer-Verlag, 2001.

26. C. P. Schnorr, Efficient signature generation for smart cards, Journal of Cryptology, 4(3),
pp.239-252, Springer-Verlag, 1991.

27. A. Shamir, Identity-based cryptosystems and signature schemes, Advances in Cryptology-
Crypto 1984, LNCS 196, pp.47-53, Springer-Verlag, 1984.

28. A. Shamir and Y. Tauman, Improved online/offline signature schemes, Advances in
Cryptology-Crypto 2001, LNCS 2139, pp.355-367, Springer-Verlag, 2001.

