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Abstract

We prove that, for bent vectorial functions, CCZ-equivalence coin-
cides with EA-equivalence. However, we show that CCZ-equivalence
can be used for constructing bent functions which are new up to CCZ-
equivalence. Using this approach we construct classes of nonquadratic
bent Boolean and bent vectorial functions.
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1 Introduction

The notion of CCZ-equivalence of vectorial functions, introduced in [4] (the
name was in fact introduced later in [1]), is a fecund notion which has led
to new APN and AB functions. It seems to be the proper notion of equiv-
alence for vectorial functions used as S-boxes in cryptosystems. Two vec-
torial functions F' and F’ from Fj to F3' (that is, two (n,m)-functions)
are called CCZ-equivalent if their graphs Gp = {(z, F(x)); « € F3} and
Gp = {(z, F'(x)); x € F}} are affine equivalent, that is, if there exists an
affine permutation £ of Fj x 7' such that £L(Gr) = Gg. If F' is an almost
perfect nonlinear (APN) function from Fj to F3, that is, if any derivative
D,F(z)=F(z)+ F(x+a), a # 0, of F is 2-to-1 (which implies that F' con-
tributes an optimal resistance to the differential attack of the cipher in which
it is used as an S-box), then F’ is APN too. If F' is almost bent (AB), that
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is, if its nonlinearity equals 27! — 2" (which implies that F' contributes an
optimal resistance of the cipher to the linear attack), then F’ is also AB.

Recall that ' and F’ are called EA-equivalent if there exist affine au-
tomorphisms L : Fj; — F7 and L' : F}' — FJ' and an affine function
L" :Fy — Fy' such that F' = L'oF o L+ L" . EA-equivalence is a particular
case of CCZ-equivalence [4]. Besides, every permutation is CCZ-equivalent
to its inverse. As shown in [1], CCZ-equivalence is still more general.

The notion of CCZ-equivalence can be straightforwardly generalized to
functions over finite fields of odd characteristic p. It has been proved in [2, 6]
that, when applied to perfect nonlinear (also called planar) functions from
) to ), that is, functions whose derivatives D, F'(r) = F(x) — F(x + a),
a # 0, are bijective, it is the same as EA-equivalence. A natural question
is to ask whether this property is true for perfect nonlinear functions from
F5 to Fy', that is, functions (also called bent) whose derivatives D, F(z) =
F(z) + F(z + a), a # 0, are balanced (i.e. uniformly distributed over F7';
these functions exist only for n even and m < n/2, see [8]). We prove in
Section 2 that CCZ-equivalence coincides with EA-equivalence when applied
to bent functions.

The result of Section 2 is merely a negative result since it means that all
bent vectorial functions obtained by CCZ-equivalence from known bent func-
tions are EA-equivalent to the original functions. However, CCZ-equivalence
can be applied to a non-bent vectorial function F' (from Fan to itself) of a
low algebraic degree with bent components tr,, (bF'(z)) for some b € F3,, and
obtain a vectorial function F” of a higher algebraic degree which hopefully
has bent components tr,(b'F'(x)) for some ¥ € F,. (which, according to
the result of Section 2, cannot be CCZ-equivalent to the bent components
of F' unless they are EA-equivalent to them). We give in Sections 3 and
4 examples of vectorial functions from Fy to itself leading this way to new
bent Boolean and bent vectorial functions. The significance of this approach
is, for instance, that there are many quadratic non-bent vectorial functions
with bent components and applying CCZ-equivalence to them, we can in-
crease the algebraic degree and obtain nonquadratic bent functions which
are CCZ-inequivalent to quadratic ones.

2 CCZ-equivalence and bent vectorial func-
tions

If we identify F7 with the finite field Fon then a function F': Fon — Fan is
uniquely represented as a univariate polynomial over Fom of degree smaller



than 27
om_1
F(z) = Z ', ¢ € Fon.
i=0

If m is a divisor of n then a function F' from Fy» to Fom can be viewed as
a function from Fan to itself and, therefore, it admits a univariate polynomial
representation. More precisely, if tr,(x) denotes the trace function from Fon
into Fy, and tr,,/m(x) denotes the trace function from Fan into Fom, that is,

27L71

tro(z) = z+a2*+a2'+ . +2¥

m (n/m—1)m
trm(z) = z+27 +27 4+ .. 42 ,

22m

then F' can be represented in the form trn/m(zza "¢;2%) (and in the form
trn(zza Ye;at) for m = 1). Indeed, there exists a function G from Fon to
Fon (for example G(x) = aF'(z), where a € Fon and tr,/,(a) = 1) such that
F equals tr,/,,(G(x)).

For any integer k, 0 < k < 2"—1, the number wq (k) of nonzero coefficients
ks, 0 < kg <1, in the binary expansion ZZ:_& 2%k, of k is called the 2-weight
of k. The algebraic degree of a function F' : Fon — IFan is equal to the
maximum 2-weight of the exponents i of the polynomial F'(z) such that
¢; # 0, that is

d°(F) = o0 | wa(1).
¢ #0
A Boolean function f of Fayn is bent if and only if

Mp(u) = 3 (—1)f@rmtn) = 195 Yy € Fan.

ZBE]an

A vectorial function F': Fon — Fom is bent if and only if for any v € F5,, its
component function tr,,(vF(x)) is bent, that is,

Ap(u,0) = Y (=1)frmCF@ ) — 395 Vi € Fan, Yo € Fyn .

z€Fon

The set of the absolute values of Ap(u,v) for u € Fon,v € F5,., is called
the extended Walsh spectrum of F. Note that, though CCZ-equivalence
preserves the extended Walsh spectrum of a function [1], this does not imply
that if a function F' has some bent components then any function CCZ-
equivalent to F' necessarily has any bent components.

If two functions are CCZ-equivalent and one of them is bent then the
second is bent too. Below we show that, for bent vectorial functions, CCZ-
equivalence coincides with EA-equivalence.
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Theorem 1 Let F' be a bent function from Fy to Fy'. Then any function
CCZ-equivalent to F is EA-equivalent to it.

Proof. Let F' be CCZ-equivalent to F and L(z,y) = (Li(z,y), La(z,y)) be
an affine permutation of Fy x Fy" which maps the graph of F' to the graph
of F" and where L, : Fy X F3' — Ty, Ly : Fy x F3' — Fo'. Then Li(x, F(x))
is a permutation (see e.g. [3]). We can write Li(x,y) = L'(z) + L"(y). For
any element v of Fy we have

veLy(z, Fz)) = v- L'(z) +v- L"(F(z)),

W

where “” is the inner product in F3 (which we can take as = -y = tr,(zy)).
The function v - L'(x) is an affine function. Since Ly (z, F'(x)) is a permuta-
tion, any function v - Ly (z, F'(x)) is balanced (recall that this property is a
necessary and sufficient condition, see e.g. [3]) and, hence, cannot be bent.
Then, the adjoint operator L" of L” (satisfying v- L"(F(z)) = L (v) - F(x))
is the null function since if L"(v) # 0 then L”(v) - F'(x) is bent. This means
that L” is null, that is, L; depends only on z, which corresponds to EA-
equivalence by Proposition 3 of [1]. O

Since the algebraic degree is preserved by EA-equivalence then Theorem 1
implies that if two bent functions have different algebraic degrees then they
are CCZ-inequivalent.

3 New bent Boolean functions obtained through
CCZ-equivalence of non-bent vectorial func-
tions

In this section, we show with two examples of infinite classes of functions
that, despite the result of the previous section, CCZ-equivalence can be used
for constructing new bent Boolean functions, by applying it to non-bent
vectorial functions which admit bent components.

Let @ be a positive integer. For n even, let us define:

F an — an
F(z) =22 4+ (2® + 2 + 1) tr, (a® ), (1)

and for n divisible by 6:
G . an — an

G(z) = (:c +tr,s (22D 4 @D ot (1) try, g (a2 4 2P0 +1>)> . (2)

4



Functions F' and G were constructed in [1] by applying CCZ-equivalence to
F'(z) = ¥ . When ged(i,n) = 1 these functions are APN, the function
F' has algebraic degree 3 (for n > 4), and the function G has algebraic
degree 4 (however, the components of F' and G may have lower algebraic
degrees). Since algebraic degrees of non-affine functions are preserved by EA-
equivalence then F' and G are EA-inequivalent to F’. We know (see e.g. [3])
that if n/ ged(n, i) is even and b € Fan is the (2! + 1)-th power of no element
of Fyn then the Boolean function tr, (bF’(z)) is bent. In general, if a vectorial
function H has some bent components, it does not yet imply that a function
CCZ-equivalent to H has necessarily bent components. Below we show that
the two classes (1) and (2) above have bent nonquadratic components which
are CCZ-inequivalent to the components of F’ by Theorem 1.

3.1 The first class
We begin with the bent components of function (1).

Theorem 2 Let n > 6 be an even integer and i be a positive integer not
divisible by n/2 such that n/ ged(i,n) is even. If b € Fon \ Fyi is such that
neither b nor b+ 1 are the (2' + 1)-th powers of elements of Fan, and the
function F is given by (1) then the Boolean function fy(x) = tr,(bF(z)) is
bent and has algebraic degree 3.

Proof. By Theorem 2 of [1], which proves that the function F' is CCZ-
equivalent to F’(z) = 2% 1, the graph of I’ is mapped to the graph of F' by
the linear involution:

‘C(l’vy) = (Ll(l’vy)a[Q(l’vy)) = (ZL’ +trn(y)ay)

It is shown in the proof of Proposition 2 of [1] (and straightforward to check)
that for any a,b € Fan:

)\F/(CL, b) = )\F(‘C_l*(aa b))>
where £~ is the adjoint operator of £, that is, for any (z,v), (z/,y') € Fa.:
($7 y) ' ﬁ_l*(I,a y,) = ‘C_l(x> y) ’ (ZE'/, y/)>

where (z,y) - (2/,y') = trp(z2’) + tra (yy').
The adjoint operator of £L7! = L is

Lz, y) = (Li(z,y), Ly(x,y)) = (z,y + tra(z)).



Indeed,

L(z,y)- (2y) = tr, ((z+tra(y))2)) +tralyy)
= tr,(zx)) + tr,(y) tr,(2) + tr, (yy)
= tr,(za’) + tr, (y(y' + tra(2)))
= (z,y) L, y).

Then to prove that tr, (bF”(x)) is bent for some b # 0, we need to determine
the Walsh coefficients Ag(a, b) for any a. According to what is recalled above,
we have:

Apr(a,b) = Ap(a, b+ try(a)).

We know that Ap(a,b + tr,(a)) = £2"/2 if and only if b + tr,(a) is not the
(2" + 1)-th power of an element of Fy. (see e.g. [7]) then tr, (bF'(x)) is bent
if and only if neither b nor b+ 1 is the (2' 4 1)-th power of an element of Fyn.
We denote ¢ = b*" " +b. If b ¢ Fyi then ¢ # 0. For ¢ not divisible by
n/2 all items in tr, (22 1) = Z;:g 227+ are pairwise different. Indeed, if
for some 0 < j,k < n, k # j, we have 2047 4+ 27 = 21tk 1 2% mod (27 — 1)
or, equivalently, : + 7 = k£ mod n and i + k = 7 mod n then obviously ¢ is
divisible by n/2.
We get

folz) = rn(bx”“)ﬂrn (b(a® + x + 1)) tr, (a®+1)
= tr, (b )+t (b) tr (2 ) A+t (07 + b)) tr, (22
= Q(a) 4 tra(ca) trp (a2 ),

where () is quadratic. Let us denote A; = {j —4,7,j +1,j+2i}. Then, since
J+2i,.29 420425 +20 J+i 2071420 427+
> 0<j<n €T =5 0<jen €T , we have

tr, (cx) trn(I2i+1) _ (Z 2 2k> (Z x2j+2j+i>

0<k<n 0<j<n
27 93+l 9j+1 927+t 9jy9jtitl
0<j<n 0<j<n
Jj—1 j+i Jj—i4 97y 9J+i

+ 2 : 2 2 SL’2 +274-2

0<j<n
+ }: C2kx2k+2j+2j+i

0<j,k<n

kgA;



For n > 4 all exponents 2% + 27 + 27+ in the sum

Z C2k$2k+2ﬂ'+2j+i
0<j,k<n
kgA;
are pairwise different, have 2-weight 3 and they obviously differ from the ex-
ponents in the first three sums above. Hence, the items with these exponents
do not vanish and, therefore, f;, has algebraic degree 3. O

3.2 The existence of elements b satisfying the condi-
tions of Theorem 2 and the type of the correspond-
ing bent components

We first show that elements b € Fan \ Fyi such that neither b nor b+ 1 are the
(2¢ 4+ 1)-th powers of elements of Fy. always exist. We subsequently point
out explicit values of such elements, under some conditions.

Proposition 1 Let n > 6 be an even integer and i be a positive integer not
divisible by n/2 such that n/ged(i,n) is even. There exist at least 3(2" —
1) — 272 > 0 elements b satisfying the conditions of Theorem. 2.

Proof. Since n/ged(i,n) is even, we have ged(2i,n) = 2ged(i,n) and we
deduce that ged(2" —1,2% — 1) = 28cd@in) 1 = (28cd(im) 4 1)(28dln) 1) =
(28¢d@m) 1) ged (2" —1,2°—1). This implies ged(2"—1,2¢+1) > 28d@n) 41 >
3 (note that this bound is tight since if ged (7, n) = 1 then ged (2" —1,2'+1)
3). Then the size of the set E of all (2 + 1)-th powers of elements of Fy, is
at most (2" —1)/3 and this implies that (Fon N Fyi) U EU (14 E) has size at
most 2/2 4 2(2" —1)/3 < 2" — 1 (since n > 2). This completes the proof.0]

Proposition 2 Let n > 6 be an even integer, v be a positive integer not
divisible by n/2, and s be a divisor of i such thati/s is odd and n is divisible
by 2s but not by 2s(2°+1). If b € Fozs \ Fos and the function F' is given by
(1) then the Boolean function f,(x) = tr,(bF(x)) is bent and has algebraic
degree 3.

Proof. Obviously, b ¢ Fyi. Since i/s is odd then
241 =2+ 1+ (2% — 1)(2° + 2% 4 2% 4 .. 4 250/s72)) (3)
is divisible by 2° 4 1.

Since n is divisible by 2s then 2" — 1 is divisible by 22 — 1 and therefore
divisible by 2° + 1. Moreover, 2" — 1 is divisible by (2° 4+ 1)? if and only if n
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is divisible by 2s(2° 4+ 1). Indeed, if n is divisible by 2s(2° 4+ 1), then 2" — 1
is divisible by 22(*+1) — 1, and therefore by 2°2**1) + 1. Using (3) we get
22 L1 = 25414 (2% —1)(28 4 2% + . 425212
— (28 + 1) (1 + (28 _ 1)(28 + 238 4o+ 28(25+1—2)))
= (2°+ 1)(1+ 27+ 1)(2° + 2% + .. + 27" H172))
_2(28 ‘l’ 238 + + 28(28+1—2)))

= (2°+1) (1+ (2° +1)(2° + 2% + . 4 2°(+172))
—2((2°+ 1)+ (2% + 1) + ...+ (227172 +1))>
= @+ D(@+ D12+ 2 4 2E D)
—2((2°+ 1)+ (2% + 1) + ...+ (25D 4 1)))

which is divisible by (2% +1)? since for any [ odd 25! +1 is divisible by 2°+1 as
it is observed above. If n = 2s(k(2°+ 1) +1t) for some k and 1 < ¢ < 2% then
20 — 1 = 2%t (22k(2°+1) _ 1) 4 (228 — 1). As it is shown above 22#Z*+1) _ |
is divisible by (2° + 1)%. For ¢ odd

241 = 2414 (2 —1)(2° 2% 4 . 2572
= (2°+ 1)(1 + (20 + 1)(2° 4+ 2% + ..+ 25072

=) —2((27 4 1)+ (2 1) o (250D 4 1)))
= (2°+ 12T +t(2°+1)

for some T', and therefore 22*' —1 is divisible by 28+1 but not by (25+1)? since
25! —1 is not divisible by 2°41. For t even 25 —1 = (225—1) (1422 +...+25(-2))
is divisible by 2° + 1 but not by (2° + 1)? since 1 + 22 + ... 4+ 2572 =
t/24 (22 — 1)+ (2% — 1) + ... + (2°¢=2 — 1). Hence 22! — 1 is not divisible
by (2° + 1)% since 2°¢ + 1 is not divisible by 2° + 1.

Since 2" — 1 is not divisible by (2° + 1)? then any element which is not
the (2° + 1)-th power of an element in Fa2s is not the (2° 4 1)-th power of an
element in Fon either, and we can apply Theorem 2 to finish the proof. O

An n-variable Boolean bent function belongs to the Maiorana-McFarland
class if, writing its input in the form (z,y), with z,y € F;/ ?_ the correspond-
ing output equals z - w(z) + g(z), where 7 is a permutation of Fy/* and g is
a Boolean function over IF;L/ ?. The completed class of Maiorana-McFarland’s
functions is the set of those functions which are EA-equivalent to Maiorana-
McFarland functions. These bent functions are characterized by the fact
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that there exists an n/2-dimensional vector space such that the second order
derivatives

D,D.f(z) = f(x)+ flx+a)+ flz+c)+ f(x+a+c)

of the function in directions a and ¢ belonging to this vector space all vanish
[5]. Almost all bent functions found in trace representation (listed e.g. in
[3]) are in the completed Maiorana-McFarland class. It is interesting to see
whether this is also the case of the bent functions of Theorem 2. We checked
with a computer that it is the case for n = 6. Below we prove that this is
also true for the functions f, of Theorem 2 when b € /2.

Proposition 3 The bent functions f, of Theorem 2 belong to the completed
Maiorana-McFarland class when b € Fyn/2. In particular, all the functions
of Proposition 2 are in the completed Maiorana-McFarland class when n is
divisible by 4s.

Proof. To check whether f;, is in the Maiorana-McFarland class, we need
to see whether there exists an n/2-dimensional vector space such that the
second order derivatives

D.D.fy(x) = fo(z) + fo(x +a) + fo(x +c) + fo(x +a+c)
vanish when a and ¢ belong to this vector space. We have

fola) = tra(ba® ) 4 tra (b 4 x4 1)) tr (2,

Do fy(z) = trn(b:czi“) + tlrn(lx(tz”rl +bazr® + ba r + ba2i+1)
+tr, (b(2 + @ 4 1)) tr, (22 )
Ftr,(b(2* + 2+ 14 a” +a) tra(2¥ T 4+ az® + a¥z + a¥ )
= tra(baz® +ba®z + ba® 1) + tr,(b(a® + a)) tr,(a* 1))
+ trn(b(ffzi +x+1)) trn(aat2i +a¥r+ azi“))
+tr,(b(a® + a)) tra(az® + a¥z + a® 1),

D.D.fo(z) = trp(bac® +ba®c) + trp(b(a® + a)) trp(ca® + 'z + &)
Ftr,(b(c? + ) trp(az® + a¥z + a® 1))
+tr,(b(a? + 2+ 1)) trp(ac® + a®¢))
+tr,(b(¢* + ) tra(ac® + a®¢))
+tro(b(a® + a)) tr,(ac® + a*¢))
= tr,(Az) +¢,



where

A = (& + )t +a) + (@ +a¥) tra(b(F + )
+(0*" "+ b) tr(ac® + a?' ),
e = try(bac® +ba*c) + tr,(b(a® + a)) tr, ()
+tr,(b( + ¢)) trp(a® ) + tr, (b) tro(ac® + a®¢)
+tr, (b(* + ¢)) trp(ac® + a¥¢) + tr,(b(a® + a)) trp(ac® + a?'¢).
The function D,D.f;, is null if and only if ¢ = A = 0. Then the n/2-
dimensional vector space can be taken equal to Fyn/2. Indeed, if a, b, ¢ € Fon/2,

then A and e are null since the trace of any element of Fy./» is null. If, in
conditions of Proposition 2, n is divisible by 4s then b € Fo2s C Fyn/o. O

3.3 The second class

We study now the bent components of function (2).

Theorem 3 Let n be a positive integer divisible by 6 and let i be a positive
integer not divisible by n/2 such that n/gced(i,n) is even. Let b € Fan be
such that, for any d € Fg, the element b+ d + d* is not the (2° + 1)-th power
of an element of Fan and let G be given by (2). Then the Boolean function
gp(z) = tr,(bG(x)) is bent. If, in addition, 1 is divisible by 3 and b & Fy
then gy has algebraic degree 3. If i is not divisible by 3 then g, has algebraic
degree at least 3, and it is exactly 4 if n > 12, and either b ¢ Fg or tr3(b) # 0.

Proof. By Theorem 3 of [1], which proves that the function G is CCZ-
equivalent to F’(z) = 2% *1, the graph of I is mapped to the graph of G by
the linear involution

L(z,y) = (z+ tras(y® +y*),y).
We have

L(x,y) = (z,y + tros(@® + 1))

Indeed, we have

tr,, (tross(y” +y*)a') = tr, Z ?y? | =
0<j<n—1/
34

10



tr,, Z 277y | = tr, Z 2%y | = tr, (tr,/s(2” + 2)y) .

0<j<n—1/ 0<j<n—1/
3l 3
Since £ and L* are involutions, we have
>\0(CL, b) = >\F1(a, b+ tl"n/g(a2 + CL4)).

Thus, tr,(bG(z)) is bent if and only if b+ tr,,/3(a® + a*) is not the (2° 4 1)-th
power of an element of Fon for any a. This proves the first part of Theorem 3.
For i divisible by 3 we have:

G(I) = [1' + trn/g (1’2(2i+1) + I4(2i+1))]2i+1

2t 4 try,/3 (:)32i+1 + $4(2i+1)) + (z +2%) tr3 (9:2(2i+1) + $4(2i+1)).

Since tr, /3(2% 1) = tr, 5(2**1). Clearly, ¢ = b+ b*"" # 0 because b ¢ Fy:.
For some quadratic function () we have:

a(r) = Q(x)+tr, (b(a: + xzi) t1,,/3 (I2(2"+1) X x4(2i+1)))
= Q(x) + tr3 (tlrn/3 (cx) £, /3 (x2(2z‘+1) X x4(2i+1)))
and it is not difficult to see that for ¢ not divisible by n/2 the cubic terms of
gp do not vanish.

Let ¢ be not divisible by 3. For simplicity we consider only the case i = 1.
It is not difficult to see that for T'(z) = tr,/3(2*) we have

G(z) = C(x) + trs (T(2)?) + tra(z) (x(T(x) +T(2)?) + 22(T(x) + T(x)4)).

where C is a cubic function

C(z) = 23 +T(z)+tr,(v) (T(x)+T(x)4) +x (T(x)+T(x)4) +2? (T(x)2+T(:c)4) )
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Hence,
g(z) = tr,(bC(x)) + tr,(b) trs (T(x)*)
+tr,, () trs (T(2) try z(ba + ba® + (b° + bh)z?))
= tr,(bC(x)) + trn(b)< Z R

0<j,t<n/3

+ Z I23j+3+23j+2+23t+1+23t
0<j,t<n/3

n Z I23j+3+23j+2+23t+2+23t+1)
0<j,t<n/3

+ Z Uk$2j+2k+23t+23t+1
0<j,k<n
0<t<n/3

_'_ Z /ka2j+2k+23t+l+23t+2
0<j,k<n
0<t<n/3

_'_ Z wkx2j+2k+23t+2+23t+3
0<j,k<n
0<t<n/3

where for 0 < k <n
k .
b? if k=0 mod3

up = p2 ! if k=1 mod 3
B2 +0H%"  if k=2 mod 3,

b2 if k=1 mod 3
vy = p2! if k=2 mod 3
B2 +0H%"  if k=0 mod 3,
b2 if k=2 mod 3
wy = p2 ! if k=0 mod 3

B2 +0H%  if k=1 mod 3.

Assume n > 12. Then the exponent 26 + 29 4+ 20 4+ 2! has 2-weight 4 and,
obviously, we have items with this exponent only with coefficients ug and
ug. Then ug + ug = b*° + 02" = (b+b%)2° # 0 when b ¢ Fos. Hence, in
the univariate polynomial representation of g, the item 22 72°+2°+2' hag a
non-zero coefficient and, therefore, g, has algebraic degree 4 for b ¢ Fys.

If b € Fys then tr,(b) = 0. If trs(b) # 0 then we have items with the
exponent 26 + 28 + 29 + 21 only with coefficients ug and ug and ug + ug =
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b2 + (b* + b*)2° = try(b) # 0. Hence, again g, has algebraic degree 4 when
b € Fys and trs(b) # 0.

Let n > 6. It is not difficult to see that when b € Fos and tr3(b) = 0 then
all items with exponents of 2-weight 4 vanish. Then

() = tr,(bC(x))
= tr, (b(z® + T(2))) + trs (T(2) tr,z(bz + b°2* + b%2* + b*2®))
= tr, (b(z® + T(2))) + Z b2yt 2

0<k<n
0<t<n/3
+ Z b4 2k 23t+1 23t+2 Z b 2k 23t+2+23t+3
0<k<n 0<k<n
0<t<n/3 0<t<n/3

and in g, the only item with the exponent 2° + 2! + 23 has the coefficient b
Hence g, has algebraic degree 3 when b € F3s and trs(b) = 0. O

3.4 The existence of elements b satisfying the condi-
tions of Theorem 3

Proposition 4 Letn be a positive even integer divisible by 6 and i be a posi-
tive integer not divisible by n/2 such that n/ ged(i,n) is even and ged(i,n) #
1. There exist at least %(2”—1) —2"/2 > () elements b satisfying the conditions
of Theorem 3.

Proof. As in the proof of Proposition 1, we have ged(2" — 1,2" + 1) >
28cd(im) 1 1. This implies ged(2" — 1,2' + 1) > 5. Since the number of d + d?
equals 4 and the size of the set E’ of all (2° + 1)-th powers of elements of Fj,
is at most (2" — 1)/5, this implies that (Fy. N Fy) U E' U (14 E’) has size at
most 22 4 4(2" — 1)/5 < 2" — 1. This completes the proof. O

Proposition 5 Let i,n,s be positive integers such that i is not divisible
by n/2, ged(i,6s8) = 3s, n is divisible by 6s but not by 6s(2% + 1). If
b € Foos \ Foss and the function G is given by (2) then the Boolean func-
tion gy(x) = tr,(bG(x)) is bent and cubic.

Proof. Since n is divisible by 6s but not by 6s(2* + 1)) and i/(3s) is odd
then 2¢ + 1 is divisible by 23 + 1, and 2" — 1 is divisible by 23° 4+ 1 but not
by (23 + 1)? (see the proof of Proposition 2). Then for any b € Foss \ Fyss
and any d € Fg obviously b + d + d? is not the (23% + 1)-th power of an
element of Fyn (and therefore it is not the (2° 4 1)-th power). Indeed, since
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265 —1 = (235 —1)(2% +1) then b € Foss is the (2394 1)-th power of an element
of Fyss if and only if b € Fyss. Since 2" — 1 is not divisible by (23* +1)2 then,
b € Fass is (2%% + 1)-th power of an element of Fyn if and only if b is (23 + 1)-
th power of an element of Fyss. More precisely, if b € Foss then for some
primitive element a of Fyn and some k we have b = o*@"~D/2"~1  Gince
(2" —1)/(2% —1) is not divisible by 23 +1 then b is the (2% + 1)-th power of
an element of Fon if and only if % is divisible by 23 + 1, that is, if and only
if b is the (23° + 1)-th power of an element of Fges, and that is, if and only if
b € Fyss. For b € Fgss \ Foss and any d € Fg obviously b+ d + d? € Foss \ Foss.

Clearly, b ¢ F,: because i/s is odd. By Theorem 3 the function g, is bent
and cubic. O

Proposition 6 Leti,n,s be positive integers such that n > 12, ged(i, 6s) =
s, ged(s,3) = 1, and n is divisible by 6s but not by 6s(2° + 1), and the
function G be given by (2). If b € Foss \ Foss is such that for any d € Fg the
element b+ d + d? is not the (2° + 1)-th power of an element of Foss then the
function gy(z) = tr,,(bG(z)) is bent and has algebraic degree 4.

Proof. Since i/s is odd then ged(2' 4+ 1,25 + 1) = 2% + 1. As shown in the
proof of Proposition 2 if ¢ is not divisible by 2°+ 1 then 22! —1 is divisible by
2% 4+ 1 but not by (2° 4+ 1)?. Hence, for s # 1 the number 2% — 1 is divisible
by 2¢ 4+ 1 but not by (2° + 1)%.

If s # 1 then n is divisible by 2s but not by 2s(2*+1). Then, as shown in
the proof of Proposition 2, 2" — 1 is divisible by 2° 4+ 1 but not by (2% + 1)
Therefore, if for some b € Fyss \ Foss all elements b+d+d? are not the (25+1)-
th power of an element of Fqss for any d € Fg, then they are not (2° + 1)-th
power of an element of Fan (and therefore they are not the (2° 4 1)-th power
of an element of Fan). For example, for s = 2 there are 1736 such elements
b, and for s = 4 there are 13172960 such elements in Fa2a \ Fau2.

If s = 1 then n is divisible by 6 but not by 9. For ¢t even and any j we have
20t —1= (2% —1)(t/2+ (2% —1) +...+ (27472 —1)). Therefore, taking j = 3
and t = n/3 (which is even and not divisible by 3) 2" — 1 is divisible by 27
only if ¢/2 is divisible by 3, which is not the case. Hence, if for b € Fas \ Fys
all elements b+ d + d? are not cubes in Fys for any d € Fg, then they are not
cubes in Fyn (and therefore they are not the (2 + 1)-th power of an element
of Fyn). These elements b are zeros of one of the polynomials 2% + x + 1 and
S+t + a3+ + 1

Hence, in these cases g is bent and has algebraic degree 4 by Theorem 3. O

Since F’ is quadratic and since EA-equivalence preserves the algebraic

degree then according to Theorem 1, the bent nonquadratic components of
F and G are CCZ-inequivalent to the components of F”.
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Proposition 7 The functions f, and g, of Theorems 2 and 3 (and Proposi-
tions 2, 5 and 6) are CCZ-inequivalent to any component of F'(z) = z* 1.

The existence or non-existence of APN permutations over Fo» when n
is even is an open problem. For the case of quadratic APN functions this
problem was solved negatively in [9]. Hence for n even the APN function
F'(z) = 2%, ged(i,n) = 1, is EA-inequivalent to any permutation. How-
ever, it is potentially possible that F” is CCZ-equivalent to a nonquadratic
APN permutation. From this point of view the following facts are interesting.

Corollary 1 Letn andi be positive integers and ged(i,n) = 1. Ifged(n,6) =
2 then the APN function F' given by (1) is EA-inequivalent to any permu-
tation over Fon. If ged(n,18) = 6 then the APN function G given by (2) is
FEA-inequivalent to any permutation over Fon.

Proof. By Theorem 2 of [1] the function F' is APN and it has bent com-
ponents by Proposition 2. By Theorem 3 of [1] the function G is APN and
it has bent components by Proposition 6. Therefore, F' and G are not EA-
equivalent to any permutation. O

4 New bent vectorial functions

Let I be a function from Fan to itself, n be divisible by m, and b € F3,. We
know from [8] that an (n, m)-function tr, ., (bF(x)) is bent if and only if for
any v € 3, the Boolean function tr, (bvF'(z)) is bent. Hence we can obtain
vectorial bent functions from Theorem 2.

Theorem 4 Let n > 6 be an even integer divisible by m, i be a positive
integer not divisible by n/2 such that n/ged(i,n) is even. If b € Fon \ Fai is
such that for any v € T, neither bv nor bv + 1 are the (2° + 1)-th powers
of elements of Fon, and the function F is given by (1) then the function
tT/m (DF () is bent and has algebraic degree 3.

In particular we obtain the following vectorial bent functions from Proposi-
tion 2.

Corollary 2 Letn > 6 be an even integer, © be a positive integer not divisible
by n/2 and s a divisor of i such that i/s is odd and n is divisible by 2s but
not by 2s(2° 4+ 1). If b € Fozs \ Fos and the function F is given by (1) then
the function f(x) = tr,;s(bF(x)) is bent and has algebraic degree 3.
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Proof. Since b € Fozs \ Fos then bv € Fozs \ Fos for any v € Fj.. Hence by

Proposition 2 the functions tr,(bvF(z)) are bent for all v € F5,, and, there-
fore, tr,/s(bF(x)) is bent. 0

Theorem 3, and in particular Propositions 5 and 6, also give new bent
vectorial functions.

Theorem 5 Let i, m,n be positive integers such that n is divisible by 6m,
and i is not divisible by n/2 and n/ged(i,n) is even. Let b € Fon be such
that, for any d € Fg and any v € Fy., bv+d+ d? is not the (2° + 1)-th power
of an element of Fon. If the function G is given by (2) then the Boolean
Junction try, /(b G(x)) is bent.

Corollary 3 Leti,n,s be positive integers such that i is not divisible by n/2,
ged(i, 6s) = 3s, n is divisible by 6s but not by 6s(23° +1), b € Foes \ Foss and
the function G be given by (2). Then the function gy(x) = tr,/s(bG(x)) is
bent and cubic.

Corollary 4 Let i,n,s be positive integers such that n > 12, ged(i, 6s) = s,
ged(s,3) =1, n is divisible by 6s but not by 6s(2°+1), and the function G be
given by (2). If b € Foss \ Foss is such that for any d € Fg and any v € Fis,
the element bv + d + d* is not the (2° + 1)-th power in Fass then the function
Gp(2) = t1,,/35(bG () is bent and has algebraic degree 4.

Since F'(z) = 22't! is quadratic and since EA-equivalence preserves the
algebraic degree then according to Theorem 1, the bent functions of The-
orems 4 and 5, and Corollaries 2—4 in particular, are CCZ-inequivalent to
tr,/m (VF'(x)) for any v € Fon and any divisor m of n.

Proposition 8 The bent functions f, and g, of Theorems 4 and 5 (and
Corollaries 2, 3 and 4) are CCZ-inequivalent to tr, m (vEF'(x)) for any v € Fan
and any diwvisor m of n.
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