On CCZ-equivalence and its use in secondary constructions of bent functions

Lilya Budaghyan* and Claude Carlet ${ }^{\dagger}$

Abstract

We prove that, for bent vectorial functions, CCZ-equivalence coincides with EA-equivalence. However, we show that CCZ-equivalence can be used for constructing bent functions which are new up to CCZequivalence. Using this approach we construct classes of nonquadratic bent Boolean and bent vectorial functions.

Keywords: Affine equivalence, Almost perfect nonlinear, Bent function, Boolean function, CCZ-equivalence, Nonlinearity.

1 Introduction

The notion of CCZ-equivalence of vectorial functions, introduced in [4] (the name was in fact introduced later in [1]), is a fecund notion which has led to new APN and AB functions. It seems to be the proper notion of equivalence for vectorial functions used as S-boxes in cryptosystems. Two vectorial functions F and F^{\prime} from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{m} (that is, two (n, m)-functions) are called CCZ-equivalent if their graphs $G_{F}=\left\{(x, F(x)) ; x \in \mathbb{F}_{2}^{n}\right\}$ and $G_{F^{\prime}}=\left\{\left(x, F^{\prime}(x)\right) ; x \in \mathbb{F}_{2}^{n}\right\}$ are affine equivalent, that is, if there exists an affine permutation \mathcal{L} of $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ such that $\mathcal{L}\left(G_{F}\right)=G_{F^{\prime}}$. If F is an almost perfect nonlinear (APN) function from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{n}, that is, if any derivative $D_{a} F(x)=F(x)+F(x+a), a \neq 0$, of F is 2-to-1 (which implies that F contributes an optimal resistance to the differential attack of the cipher in which it is used as an S-box), then F^{\prime} is APN too. If F is almost bent (AB), that

[^0]is, if its nonlinearity equals $2^{n-1}-2^{\frac{n-1}{2}}$ (which implies that F contributes an optimal resistance of the cipher to the linear attack), then F^{\prime} is also AB .

Recall that F and F^{\prime} are called EA-equivalent if there exist affine automorphisms $L: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ and $L^{\prime}: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$ and an affine function $L^{\prime \prime}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ such that $F^{\prime}=L^{\prime} \circ F \circ L+L^{\prime \prime}$. EA-equivalence is a particular case of CCZ-equivalence [4]. Besides, every permutation is CCZ-equivalent to its inverse. As shown in [1], CCZ-equivalence is still more general.

The notion of CCZ-equivalence can be straightforwardly generalized to functions over finite fields of odd characteristic p. It has been proved in $[2,6]$ that, when applied to perfect nonlinear (also called planar) functions from \mathbb{F}_{p}^{n} to \mathbb{F}_{p}^{n}, that is, functions whose derivatives $D_{a} F(x)=F(x)-F(x+a)$, $a \neq 0$, are bijective, it is the same as EA-equivalence. A natural question is to ask whether this property is true for perfect nonlinear functions from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{m}, that is, functions (also called bent) whose derivatives $D_{a} F(x)=$ $F(x)+F(x+a), a \neq 0$, are balanced (i.e. uniformly distributed over $\mathbb{F}_{2}^{m} ;$ these functions exist only for n even and $m \leq n / 2$, see [8]). We prove in Section 2 that CCZ-equivalence coincides with EA-equivalence when applied to bent functions.

The result of Section 2 is merely a negative result since it means that all bent vectorial functions obtained by CCZ-equivalence from known bent functions are EA-equivalent to the original functions. However, CCZ-equivalence can be applied to a non-bent vectorial function F (from $\mathbb{F}_{2^{n}}$ to itself) of a low algebraic degree with bent components $\operatorname{tr}_{n}(b F(x))$ for some $b \in \mathbb{F}_{2^{n}}^{*}$, and obtain a vectorial function F^{\prime} of a higher algebraic degree which hopefully has bent components $\operatorname{tr}_{n}\left(b^{\prime} F^{\prime}(x)\right)$ for some $b^{\prime} \in \mathbb{F}_{2^{n}}^{*}$ (which, according to the result of Section 2, cannot be CCZ-equivalent to the bent components of F unless they are EA-equivalent to them). We give in Sections 3 and 4 examples of vectorial functions from \mathbb{F}_{2}^{n} to itself leading this way to new bent Boolean and bent vectorial functions. The significance of this approach is, for instance, that there are many quadratic non-bent vectorial functions with bent components and applying CCZ-equivalence to them, we can increase the algebraic degree and obtain nonquadratic bent functions which are CCZ -inequivalent to quadratic ones.

2 CCZ-equivalence and bent vectorial functions

If we identify \mathbb{F}_{2}^{n} with the finite field $\mathbb{F}_{2^{n}}$ then a function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is uniquely represented as a univariate polynomial over $\mathbb{F}_{2^{m}}$ of degree smaller
than 2^{n}

$$
F(x)=\sum_{i=0}^{2^{m}-1} c_{i} x^{i}, \quad c_{i} \in \mathbb{F}_{2^{n}}
$$

If m is a divisor of n then a function F from $\mathbb{F}_{2^{n}}$ to $\mathbb{F}_{2^{m}}$ can be viewed as a function from $\mathbb{F}_{2^{n}}$ to itself and, therefore, it admits a univariate polynomial representation. More precisely, if $\operatorname{tr}_{n}(x)$ denotes the trace function from $\mathbb{F}_{2^{n}}$ into \mathbb{F}_{2}, and $\operatorname{tr}_{n / m}(x)$ denotes the trace function from $\mathbb{F}_{2^{n}}$ into $\mathbb{F}_{2^{m}}$, that is,

$$
\begin{aligned}
\operatorname{tr}_{n}(x) & =x+x^{2}+x^{4}+\ldots+x^{2^{n-1}} \\
\operatorname{tr}_{n / m}(x) & =x+x^{2^{m}}+x^{2^{2 m}}+\ldots+x^{2^{(n / m-1) m}}
\end{aligned}
$$

then F can be represented in the form $\operatorname{tr}_{n / m}\left(\sum_{i=0}^{2^{n}-1} c_{i} x^{i}\right)$ (and in the form $\operatorname{tr}_{n}\left(\sum_{i=0}^{2^{n}-1} c_{i} x^{i}\right)$ for $\left.m=1\right)$. Indeed, there exists a function G from $\mathbb{F}_{2^{n}}$ to $\mathbb{F}_{2^{n}}$ (for example $G(x)=a F(x)$, where $a \in \mathbb{F}_{2^{n}}$ and $\operatorname{tr}_{n / m}(a)=1$) such that F equals $\operatorname{tr}_{n / m}(G(x))$.

For any integer $k, 0 \leq k \leq 2^{n}-1$, the number $w_{2}(k)$ of nonzero coefficients $k_{s}, 0 \leq k_{s} \leq 1$, in the binary expansion $\sum_{s=0}^{n-1} 2^{s} k_{s}$ of k is called the 2 -weight of k. The algebraic degree of a function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is equal to the maximum 2-weight of the exponents i of the polynomial $F(x)$ such that $c_{i} \neq 0$, that is

$$
d^{\circ}(F)=\max _{\substack{0 \leq i \leq 2^{n}-1 \\ c_{i} \neq 0}} w_{2}(i) .
$$

A Boolean function f of $\mathbb{F}_{2^{n}}$ is bent if and only if

$$
\lambda_{f}(u)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{f(x)+\operatorname{tr}_{n}(u x)}= \pm 2^{\frac{n}{2}}, \quad \forall u \in \mathbb{F}_{2^{n}}
$$

A vectorial function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{m}}$ is bent if and only if for any $v \in \mathbb{F}_{2^{m}}^{*}$ its component function $\operatorname{tr}_{m}(v F(x))$ is bent, that is,

$$
\lambda_{F}(u, v)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}_{m}(v F(x))+\operatorname{tr}_{n}(u x)}= \pm 2^{\frac{n}{2}}, \quad \forall u \in \mathbb{F}_{2^{n}}, \forall v \in \mathbb{F}_{2^{m}}^{*}
$$

The set of the absolute values of $\lambda_{F}(u, v)$ for $u \in \mathbb{F}_{2^{n}}, v \in \mathbb{F}_{2^{m}}^{*}$, is called the extended Walsh spectrum of F. Note that, though CCZ-equivalence preserves the extended Walsh spectrum of a function [1], this does not imply that if a function F has some bent components then any function CCZequivalent to F necessarily has any bent components.

If two functions are CCZ-equivalent and one of them is bent then the second is bent too. Below we show that, for bent vectorial functions, CCZequivalence coincides with EA-equivalence.

Theorem 1 Let F be a bent function from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{m}. Then any function $C C Z$-equivalent to F is EA-equivalent to it.
Proof. Let F^{\prime} be CCZ-equivalent to F and $\mathcal{L}(x, y)=\left(L_{1}(x, y), L_{2}(x, y)\right)$ be an affine permutation of $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ which maps the graph of F to the graph of F^{\prime} and where $L_{1}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{n}, L_{2}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$. Then $L_{1}(x, F(x))$ is a permutation (see e.g. [3]). We can write $L_{1}(x, y)=L^{\prime}(x)+L^{\prime \prime}(y)$. For any element v of \mathbb{F}_{2}^{n} we have

$$
v \cdot L_{1}(x, F(x))=v \cdot L^{\prime}(x)+v \cdot L^{\prime \prime}(F(x)),
$$

where "." is the inner product in \mathbb{F}_{2}^{n} (which we can take as $x \cdot y=\operatorname{tr}_{n}(x y)$). The function $v \cdot L^{\prime}(x)$ is an affine function. Since $L_{1}(x, F(x))$ is a permutation, any function $v \cdot L_{1}(x, F(x))$ is balanced (recall that this property is a necessary and sufficient condition, see e.g. [3]) and, hence, cannot be bent. Then, the adjoint operator $L^{\prime \prime \prime}$ of $L^{\prime \prime}$ (satisfying $\left.v \cdot L^{\prime \prime}(F(x))=L^{\prime \prime \prime}(v) \cdot F(x)\right)$ is the null function since if $L^{\prime \prime \prime}(v) \neq 0$ then $L^{\prime \prime \prime}(v) \cdot F(x)$ is bent. This means that $L^{\prime \prime}$ is null, that is, L_{1} depends only on x, which corresponds to EAequivalence by Proposition 3 of [1].

Since the algebraic degree is preserved by EA-equivalence then Theorem 1 implies that if two bent functions have different algebraic degrees then they are CCZ-inequivalent.

3 New bent Boolean functions obtained through CCZ-equivalence of non-bent vectorial functions

In this section, we show with two examples of infinite classes of functions that, despite the result of the previous section, CCZ-equivalence can be used for constructing new bent Boolean functions, by applying it to non-bent vectorial functions which admit bent components.

Let i be a positive integer. For n even, let us define:

$$
\begin{align*}
& F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}} \\
& F(x)=x^{2^{i}+1}+\left(x^{2^{i}}+x+1\right) \operatorname{tr}_{n}\left(x^{2^{i}+1}\right), \tag{1}
\end{align*}
$$

and for n divisible by 6 :

$$
\begin{align*}
G & : \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}} \\
G(x) & =\left(x+\operatorname{tr}_{n / 3}\left(x^{2\left(2^{i}+1\right)}+x^{4\left(2^{i}+1\right)}\right)+\operatorname{tr}_{n}(x) \operatorname{tr}_{n / 3}\left(x^{2^{i}+1}+x^{2^{2 i}\left(2^{i}+1\right)}\right)\right)^{2^{i}+1} \tag{2}
\end{align*}
$$

Functions F and G were constructed in [1] by applying CCZ-equivalence to $F^{\prime}(x)=x^{2^{i}+1}$. When $\operatorname{gcd}(i, n)=1$ these functions are APN, the function F has algebraic degree 3 (for $n \geq 4$), and the function G has algebraic degree 4 (however, the components of F and G may have lower algebraic degrees). Since algebraic degrees of non-affine functions are preserved by EAequivalence then F and G are EA-inequivalent to F^{\prime}. We know (see e.g. [3]) that if $n / \operatorname{gcd}(n, i)$ is even and $b \in \mathbb{F}_{2^{n}}$ is the $\left(2^{i}+1\right)$-th power of no element of $\mathbb{F}_{2^{n}}$ then the Boolean function $\operatorname{tr}_{n}\left(b F^{\prime}(x)\right)$ is bent. In general, if a vectorial function H has some bent components, it does not yet imply that a function CCZ-equivalent to H has necessarily bent components. Below we show that the two classes (1) and (2) above have bent nonquadratic components which are CCZ-inequivalent to the components of F^{\prime} by Theorem 1 .

3.1 The first class

We begin with the bent components of function (1).
Theorem 2 Let $n \geq 6$ be an even integer and i be a positive integer not divisible by $n / 2$ such that $n / \operatorname{gcd}(i, n)$ is even. If $b \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{i}}$ is such that neither b nor $b+1$ are the $\left(2^{i}+1\right)$-th powers of elements of $\mathbb{F}_{2^{n}}$, and the function F is given by (1) then the Boolean function $f_{b}(x)=\operatorname{tr}_{n}(b F(x))$ is bent and has algebraic degree 3.

Proof. By Theorem 2 of [1], which proves that the function F is CCZequivalent to $F^{\prime}(x)=x^{2^{i}+1}$, the graph of F^{\prime} is mapped to the graph of F by the linear involution:

$$
\mathcal{L}(x, y)=\left(L_{1}(x, y), L_{2}(x, y)\right)=\left(x+\operatorname{tr}_{n}(y), y\right) .
$$

It is shown in the proof of Proposition 2 of [1] (and straightforward to check) that for any $a, b \in \mathbb{F}_{2^{n}}$:

$$
\lambda_{F^{\prime}}(a, b)=\lambda_{F}\left(\mathcal{L}^{-1 *}(a, b)\right),
$$

where $\mathcal{L}^{-1 *}$ is the adjoint operator of \mathcal{L}^{-1}, that is, for any $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{F}_{2^{n}}^{2}$:

$$
(x, y) \cdot \mathcal{L}^{-1 *}\left(x^{\prime}, y^{\prime}\right)=\mathcal{L}^{-1}(x, y) \cdot\left(x^{\prime}, y^{\prime}\right)
$$

where $(x, y) \cdot\left(x^{\prime}, y^{\prime}\right)=\operatorname{tr}_{n}\left(x x^{\prime}\right)+\operatorname{tr}_{n}\left(y y^{\prime}\right)$.
The adjoint operator of $\mathcal{L}^{-1}=\mathcal{L}$ is

$$
\mathcal{L}^{*}(x, y)=\left(L_{1}^{*}(x, y), L_{2}^{*}(x, y)\right)=\left(x, y+\operatorname{tr}_{n}(x)\right) .
$$

Indeed,

$$
\begin{aligned}
\mathcal{L}(x, y) \cdot\left(x^{\prime}, y^{\prime}\right) & =\operatorname{tr}_{n}\left(\left(x+\operatorname{tr}_{n}(y)\right) x^{\prime}\right)+\operatorname{tr}_{n}\left(y y^{\prime}\right) \\
& =\operatorname{tr}_{n}\left(x x^{\prime}\right)+\operatorname{tr}_{n}(y) \operatorname{tr}_{n}\left(x^{\prime}\right)+\operatorname{tr}_{n}\left(y y^{\prime}\right) \\
& =\operatorname{tr}_{n}\left(x x^{\prime}\right)+\operatorname{tr}_{n}\left(y\left(y^{\prime}+\operatorname{tr}_{n}\left(x^{\prime}\right)\right)\right) \\
& =(x, y) \cdot \mathcal{L}^{*}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

Then to prove that $\operatorname{tr}_{n}\left(b F^{\prime}(x)\right)$ is bent for some $b \neq 0$, we need to determine the Walsh coefficients $\lambda_{F^{\prime}}(a, b)$ for any a. According to what is recalled above, we have:

$$
\lambda_{F^{\prime}}(a, b)=\lambda_{F}\left(a, b+\operatorname{tr}_{n}(a)\right)
$$

We know that $\lambda_{F}\left(a, b+\operatorname{tr}_{n}(a)\right)= \pm 2^{n / 2}$ if and only if $b+\operatorname{tr}_{n}(a)$ is not the $\left(2^{i}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$ (see e.g. [7]) then $\operatorname{tr}_{n}\left(b F^{\prime}(x)\right)$ is bent if and only if neither b nor $b+1$ is the $\left(2^{i}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$.

We denote $c=b^{2^{n-i}}+b$. If $b \notin \mathbb{F}_{2^{i}}$ then $c \neq 0$. For i not divisible by $n / 2$ all items in $\operatorname{tr}_{n}\left(x^{2^{i}+1}\right)=\sum_{j=0}^{n-1} x^{2^{i+j}+2^{j}}$ are pairwise different. Indeed, if for some $0 \leq j, k<n, k \neq j$, we have $2^{i+j}+2^{j}=2^{i+k}+2^{k} \bmod \left(2^{n}-1\right)$ or, equivalently, $i+j=k \bmod n$ and $i+k=j \bmod n$ then obviously i is divisible by $n / 2$.
We get

$$
\begin{aligned}
f_{b}(x) & =\operatorname{tr}_{n}\left(b x^{2^{i}+1}\right)+\operatorname{tr}_{n}\left(b\left(x^{2^{i}}+x+1\right)\right) \operatorname{tr}_{n}\left(x^{2^{i}+1}\right) \\
& =\operatorname{tr}_{n}\left(b x^{2^{i}+1}\right)+\operatorname{tr}_{n}(b) \operatorname{tr}_{n}\left(x^{2^{i}+1}\right)+\operatorname{tr}_{n}\left(\left(b^{2^{n-i}}+b\right) x\right) \operatorname{tr}_{n}\left(x^{2^{i}+1}\right) \\
& =Q(x)+\operatorname{tr}_{n}(c x) \operatorname{tr}_{n}\left(x^{2^{i}+1}\right)
\end{aligned}
$$

where Q is quadratic. Let us denote $A_{j}=\{j-i, j, j+i, j+2 i\}$. Then, since $\sum_{0 \leq j<n} c^{j+2 i} x^{2^{j}+2^{j+i}+2^{j+2 i}}=\sum_{0 \leq j<n} c^{j+i} x^{2^{j-i}+2^{j}+2^{j+i}}$, we have

$$
\begin{aligned}
\operatorname{tr}_{n}(c x) \operatorname{tr}_{n}\left(x^{2^{i}+1}\right)= & \left(\sum_{0 \leq k<n} c^{2^{k}} x^{2^{k}}\right)\left(\sum_{0 \leq j<n} x^{2^{j}+2^{j+i}}\right) \\
= & \sum_{0 \leq j<n} c^{2^{j}} x^{2^{j+1}+2^{j+i}}+\sum_{0 \leq j<n} c^{2^{j+i}} x^{2^{j}+2^{j+i+1}} \\
& +\sum_{0 \leq j<n}\left(c^{2^{j-i}}+c^{2^{j+i}}\right) x^{2^{j-i}+2^{j}+2^{j+i}} \\
& +\sum_{\substack{0 \leq j, k<n \\
k \notin A_{j}}} c^{2^{k}} x^{2^{k}+2^{j}+2^{j+i}}
\end{aligned}
$$

For $n>4$ all exponents $2^{k}+2^{j}+2^{j+i}$ in the sum

$$
\sum_{\substack{0 \leq j, k<n \\ k \notin \not A_{j}}} c^{2^{k}} x^{2^{k}+2^{j}+2^{j+i}}
$$

are pairwise different, have 2 -weight 3 and they obviously differ from the exponents in the first three sums above. Hence, the items with these exponents do not vanish and, therefore, f_{b} has algebraic degree 3 .

3.2 The existence of elements b satisfying the conditions of Theorem 2 and the type of the corresponding bent components

We first show that elements $b \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{i}}$ such that neither b nor $b+1$ are the $\left(2^{i}+1\right)$-th powers of elements of $\mathbb{F}_{2^{n}}$ always exist. We subsequently point out explicit values of such elements, under some conditions.

Proposition 1 Let $n \geq 6$ be an even integer and i be a positive integer not divisible by $n / 2$ such that $n / \operatorname{gcd}(i, n)$ is even. There exist at least $\frac{1}{3}\left(2^{n}-\right.$ $1)-2^{n / 2}>0$ elements b satisfying the conditions of Theorem 2 .

Proof. Since $n / \operatorname{gcd}(i, n)$ is even, we have $\operatorname{gcd}(2 i, n)=2 \operatorname{gcd}(i, n)$ and we deduce that $\operatorname{gcd}\left(2^{n}-1,2^{2 i}-1\right)=2^{\operatorname{gcd}(2 i, n)}-1=\left(2^{\operatorname{gcd}(i, n)}+1\right)\left(2^{\operatorname{gcd}(i, n)}-1\right)=$ $\left(2^{\operatorname{gcd}(i, n)}+1\right) \operatorname{gcd}\left(2^{n}-1,2^{i}-1\right)$. This implies $\operatorname{gcd}\left(2^{n}-1,2^{i}+1\right) \geq 2^{\operatorname{gcd}(i, n)}+1 \geq$ 3 (note that this bound is tight since if $\operatorname{gcd}(i, n)=1$ then $\operatorname{gcd}\left(2^{n}-1,2^{i}+1\right)=$ $3)$. Then the size of the set E of all $\left(2^{i}+1\right)$-th powers of elements of $\mathbb{F}_{2^{n}}^{*}$ is at most $\left(2^{n}-1\right) / 3$ and this implies that $\left(F_{2^{n}} \cap F_{2^{i}}\right) \cup E \cup(1+E)$ has size at most $2^{n / 2}+2\left(2^{n}-1\right) / 3<2^{n}-1$ (since $n>2$). This completes the proof.

Proposition 2 Let $n \geq 6$ be an even integer, i be a positive integer not divisible by $n / 2$, and s be a divisor of i such that i / s is odd and n is divisible by $2 s$ but not by $2 s\left(2^{s}+1\right)$. If $b \in \mathbb{F}_{2^{2 s}} \backslash \mathbb{F}_{2^{s}}$ and the function F is given by (1) then the Boolean function $f_{b}(x)=\operatorname{tr}_{n}(b F(x))$ is bent and has algebraic degree 3 .

Proof. Obviously, $b \notin \mathbb{F}_{2^{i}}$. Since i / s is odd then

$$
\begin{equation*}
2^{i}+1=2^{s}+1+\left(2^{2 s}-1\right)\left(2^{s}+2^{3 s}+2^{5 s}+. .+2^{s(i / s-2)}\right) \tag{3}
\end{equation*}
$$

is divisible by $2^{s}+1$.
Since n is divisible by $2 s$ then $2^{n}-1$ is divisible by $2^{2 s}-1$ and therefore divisible by $2^{s}+1$. Moreover, $2^{n}-1$ is divisible by $\left(2^{s}+1\right)^{2}$ if and only if n
is divisible by $2 s\left(2^{s}+1\right)$. Indeed, if n is divisible by $2 s\left(2^{s}+1\right)$, then $2^{n}-1$ is divisible by $2^{2 s\left(2^{s}+1\right)}-1$, and therefore by $2^{s\left(2^{s}+1\right)}+1$. Using (3) we get

$$
\begin{aligned}
2^{s\left(2^{s}+1\right)}+1= & 2^{s}+1+\left(2^{2 s}-1\right)\left(2^{s}+2^{3 s}+. .+2^{s\left(2^{s}+1-2\right)}\right) \\
= & \left(2^{s}+1\right)\left(1+\left(2^{s}-1\right)\left(2^{s}+2^{3 s}+. .+2^{s\left(2^{s}+1-2\right)}\right)\right) \\
= & \left(2^{s}+1\right)\left(1+\left(2^{s}+1\right)\left(2^{s}+2^{3 s}+. .+2^{s\left(2^{s}+1-2\right)}\right)\right. \\
& \left.-2\left(2^{s}+2^{3 s}+. .+2^{s\left(2^{s}+1-2\right)}\right)\right) \\
= & \left(2^{s}+1\right)\left(1+\left(2^{s}+1\right)\left(2^{s}+2^{3 s}+. .+2^{s\left(2^{s}+1-2\right)}\right)\right. \\
& \left.+2^{s}-2\left(\left(2^{s}+1\right)+\left(2^{3 s}+1\right)+\ldots+\left(2^{s\left(2^{s}+1-2\right)}+1\right)\right)\right) \\
= & \left(2^{s}+1\right)\left(\left(2^{s}+1\right)\left(1+2^{s}+2^{3 s}+\ldots+2^{s\left(2^{s}+1-2\right)}\right)\right. \\
& \left.-2\left(\left(2^{s}+1\right)+\left(2^{3 s}+1\right)+\ldots+\left(2^{s\left(2^{s}+1-2\right)}+1\right)\right)\right)
\end{aligned}
$$

which is divisible by $\left(2^{s}+1\right)^{2}$ since for any l odd $2^{s l}+1$ is divisible by $2^{s}+1$ as it is observed above. If $n=2 s\left(k\left(2^{s}+1\right)+t\right)$ for some k and $1 \leq t \leq 2^{s}$, then $2^{n}-1=2^{2 s t}\left(2^{2 s k\left(2^{s}+1\right)}-1\right)+\left(2^{2 s t}-1\right)$. As it is shown above $2^{2 s k\left(2^{s}+1\right)}-1$ is divisible by $\left(2^{s}+1\right)^{2}$. For t odd

$$
\begin{aligned}
2^{s t}+1= & 2^{s}+1+\left(2^{2 s}-1\right)\left(2^{s}+2^{3 s}+\ldots+2^{s(t-2)}\right) \\
= & \left(2^{s}+1\right)\left(1+\left(2^{s}+1\right)\left(2^{s}+2^{3 s}+\ldots+2^{s(t-2)}\right)\right. \\
& \left.+(t-1)-2\left(\left(2^{s}+1\right)+\left(2^{3 s}+1\right)+\ldots+\left(2^{s(t-2)}+1\right)\right)\right) \\
= & \left(2^{s}+1\right)^{2} T+t\left(2^{s}+1\right)
\end{aligned}
$$

for some T, and therefore $2^{2 s t}-1$ is divisible by $2^{s}+1$ but not by $\left(2^{s}+1\right)^{2}$ since $2^{s t}-1$ is not divisible by $2^{s}+1$. For t even $2^{s t}-1=\left(2^{2 s}-1\right)\left(1+2^{2 s}+\ldots+2^{s(t-2)}\right)$ is divisible by $2^{s}+1$ but not by $\left(2^{s}+1\right)^{2}$ since $1+2^{2 s}+\ldots+2^{s(t-2)}=$ $t / 2+\left(2^{2 s}-1\right)+\left(2^{4 s}-1\right)+\ldots+\left(2^{s(t-2)}-1\right)$. Hence $2^{2 s t}-1$ is not divisible by $\left(2^{s}+1\right)^{2}$ since $2^{\text {st }}+1$ is not divisible by $2^{s}+1$.

Since $2^{n}-1$ is not divisible by $\left(2^{s}+1\right)^{2}$ then any element which is not the $\left(2^{s}+1\right)$-th power of an element in $\mathbb{F}_{2^{2 s}}$ is not the $\left(2^{s}+1\right)$-th power of an element in $\mathbb{F}_{2^{n}}$ either, and we can apply Theorem 2 to finish the proof.

An n-variable Boolean bent function belongs to the Maiorana-McFarland class if, writing its input in the form (x, y), with $x, y \in \mathbb{F}_{2}^{n / 2}$, the corresponding output equals $x \cdot \pi(x)+g(x)$, where π is a permutation of $\mathbb{F}_{2}^{n / 2}$ and g is a Boolean function over $\mathbb{F}_{2}^{n / 2}$. The completed class of Maiorana-McFarland's functions is the set of those functions which are EA-equivalent to MaioranaMcFarland functions. These bent functions are characterized by the fact
that there exists an $n / 2$-dimensional vector space such that the second order derivatives

$$
D_{a} D_{c} f(x)=f(x)+f(x+a)+f(x+c)+f(x+a+c)
$$

of the function in directions a and c belonging to this vector space all vanish [5]. Almost all bent functions found in trace representation (listed e.g. in [3]) are in the completed Maiorana-McFarland class. It is interesting to see whether this is also the case of the bent functions of Theorem 2 . We checked with a computer that it is the case for $n=6$. Below we prove that this is also true for the functions f_{b} of Theorem 2 when $b \in \mathbb{F}_{2^{n / 2}}$.

Proposition 3 The bent functions f_{b} of Theorem 2 belong to the completed Maiorana-McFarland class when $b \in \mathbb{F}_{2^{n / 2}}$. In particular, all the functions of Proposition 2 are in the completed Maiorana-McFarland class when n is divisible by $4 s$.

Proof. To check whether f_{b} is in the Maiorana-McFarland class, we need to see whether there exists an $n / 2$-dimensional vector space such that the second order derivatives

$$
D_{a} D_{c} f_{b}(x)=f_{b}(x)+f_{b}(x+a)+f_{b}(x+c)+f_{b}(x+a+c)
$$

vanish when a and c belong to this vector space. We have

$$
\begin{aligned}
& f_{b}(x)=\operatorname{tr}_{n}\left(b x^{2^{i}+1}\right)+\operatorname{tr}_{n}\left(b\left(x^{2^{i}}+x+1\right)\right) \operatorname{tr}_{n}\left(x^{2^{i}+1}\right), \\
& D_{a} f_{b}(x)= \operatorname{tr}_{n}\left(b x^{2^{i}+1}\right)+\operatorname{tr}_{n}\left(b x^{2^{i}+1}+b a x^{2^{i}}+b a^{2^{i}} x+b a^{2^{i}+1}\right) \\
&+\left.\operatorname{tr}_{n}\left(b\left(x^{2^{i}}+x+1\right)\right) \operatorname{tr}_{n}\left(x^{2^{i}+1}\right)\right) \\
&\left.+\operatorname{tr}_{n}\left(b\left(x^{2^{i}}+x+1+a^{2^{i}}+a\right)\right) \operatorname{tr}_{n}\left(x^{2^{i}+1}+a x^{2^{i}}+a^{2^{i}} x+a^{2^{i}+1}\right)\right) \\
&= \operatorname{tr}_{n}\left(b a x^{2^{i}}+b{\left.\left.a^{2^{i}} x+b a^{2^{i}+1}\right)+\operatorname{tr}_{n}\left(b\left(a^{2^{i}}+a\right)\right) \operatorname{tr}_{n}\left(x^{2^{i}+1}\right)\right)}^{+} \operatorname{tr}_{n}\left(b\left(x^{2^{i}}+x+1\right)\right) \operatorname{tr}_{n}\left(a x^{2^{i}}+a^{2^{i}} x+a^{\left.\left.2^{i^{+1}}\right)\right)}\right.\right. \\
&+\left.\operatorname{tr}_{n}\left(b\left(a^{2^{i}}+a\right)\right) \operatorname{tr}_{n}\left(a x^{2^{i}}+a^{2^{i}} x+a^{2^{i}+1}\right)\right), \\
& D_{a} D_{c} f_{b}(x)=\left.\operatorname{tr}_{n}\left(b a c^{2^{i}}+b a^{2^{i}} c\right)+\operatorname{tr}_{n}\left(b\left(a^{2^{i}}+a\right)\right) \operatorname{tr}_{n}\left(c x^{2^{i}}+c^{2^{i}} x+c^{2^{i}+1}\right)\right) \\
&\left.+\operatorname{tr}_{n}\left(b\left(c^{2^{2}}+c\right)\right) \operatorname{tr}_{n}\left(a x^{2^{i}}+a^{2^{i}} x+a^{2^{i}+1}\right)\right) \\
&+\operatorname{tr}_{n}\left(b\left(x^{2^{i}}+x+1\right)\right) \operatorname{tr}_{n}\left(a{\left.\left.c^{i^{i}}+a^{2^{i}} c\right)\right)}+\operatorname{tr}_{n}\left(b\left(c^{2^{i}}+c\right)\right) \operatorname{tr}_{n}\left(a c^{2^{i}}+a^{2^{i}} c\right)\right) \\
&\left.+\operatorname{tr}_{n}\left(b\left(a^{2^{i}}+a\right)\right) \operatorname{tr}_{n}\left(a c^{2^{i}}+a^{2^{i}} c\right)\right)+\epsilon,
\end{aligned}
$$

where

$$
\begin{aligned}
\lambda= & \left(c^{2^{n-i}}+c^{2^{i}}\right) \operatorname{tr}_{n}\left(b\left(a^{2^{i}}+a\right)\right)+\left(a^{2^{n-i}}+a^{2^{i}}\right) \operatorname{tr}_{n}\left(b\left(c^{2^{i}}+c\right)\right) \\
& \left.+\left(b^{2^{n-i}}+b\right) \operatorname{tr}_{n}\left(a c^{2^{i}}+a^{2^{i}} c\right)\right), \\
\epsilon= & \operatorname{tr}_{n}\left(b a c^{2^{i}}+b a^{2^{i}} c\right)+\operatorname{tr}_{n}\left(b\left(a^{2^{i}}+a\right)\right) \operatorname{tr}_{n}\left(c^{2^{i}+1}\right) \\
& +\operatorname{tr}_{n}\left(b\left(c^{2^{i}}+c\right)\right) \operatorname{tr}_{n}\left(a^{2^{i}+1}\right)+\operatorname{tr}_{n}(b) \operatorname{tr}_{n}\left(a c^{2^{i}}+a^{2^{i}} c\right) \\
& +\operatorname{tr}_{n}\left(b\left(c^{2^{i}}+c\right)\right) \operatorname{tr}_{n}\left(a c^{2^{i}}+a^{2^{i}} c\right)+\operatorname{tr}_{n}\left(b\left(a^{2^{i}}+a\right)\right) \operatorname{tr}_{n}\left(a c^{2^{i}}+a^{2^{i}} c\right) .
\end{aligned}
$$

The function $D_{a} D_{c} f_{b}$ is null if and only if $\epsilon=\lambda=0$. Then the $n / 2-$ dimensional vector space can be taken equal to $\mathbb{F}_{2^{n / 2}}$. Indeed, if $a, b, c \in \mathbb{F}_{2^{n / 2}}$, then λ and ϵ are null since the trace of any element of $\mathbb{F}_{2^{n / 2}}$ is null. If, in conditions of Proposition 2, n is divisible by $4 s$ then $b \in \mathbb{F}_{2^{2 s}} \subset \mathbb{F}_{2^{n / 2}}$.

3.3 The second class

We study now the bent components of function (2).
Theorem 3 Let n be a positive integer divisible by 6 and let i be a positive integer not divisible by $n / 2$ such that $n / \operatorname{gcd}(i, n)$ is even. Let $b \in \mathbb{F}_{2^{n}}$ be such that, for any $d \in \mathbb{F}_{8}$, the element $b+d+d^{2}$ is not the $\left(2^{i}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$ and let G be given by (2). Then the Boolean function $g_{b}(x)=\operatorname{tr}_{n}(b G(x))$ is bent. If, in addition, i is divisible by 3 and $b \notin \mathbb{F}_{2^{i}}$ then g_{b} has algebraic degree 3. If i is not divisible by 3 then g_{b} has algebraic degree at least 3 , and it is exactly 4 if $n \geq 12$, and either $b \notin \mathbb{F}_{8}$ or $\operatorname{tr}_{3}(b) \neq 0$.

Proof. By Theorem 3 of [1], which proves that the function G is CCZequivalent to $F^{\prime}(x)=x^{2^{i}+1}$, the graph of F^{\prime} is mapped to the graph of G by the linear involution

$$
\mathcal{L}(x, y)=\left(x+\operatorname{tr}_{n / 3}\left(y^{2}+y^{4}\right), y\right) .
$$

We have

$$
\mathcal{L}^{*}(x, y)=\left(x, y+\operatorname{tr}_{n / 3}\left(x^{2}+x^{4}\right)\right) .
$$

Indeed, we have

$$
\operatorname{tr}_{n}\left(\operatorname{tr}_{n / 3}\left(y^{2}+y^{4}\right) x^{\prime}\right)=\operatorname{tr}_{n}\left(\sum_{\substack { 0 \leq j \leq n-1 / \\
\begin{subarray}{c}{j \\
3}{ 0 \leq j \leq n - 1 / \\
\begin{subarray} { c } { j \\
3 } j }\end{subarray}} x^{\prime} y^{2^{j}}\right)=
$$

$$
\operatorname{tr}_{n}\left(\sum_{\substack{0 \leq \leq \leq n-1 / \\
\frac{j}{3} \nmid j}} x^{\prime 2^{n-j}} y\right)=\operatorname{tr}_{n}\left(\sum_{\substack { 0 \leq j \leq n-1 / j \\
\begin{subarray}{c}{\frac{\pi}{3} \nmid j{ 0 \leq j \leq n - 1 / j \\
\begin{subarray} { c } { \frac { \pi } { 3 } \nmid j } }\end{subarray}} x^{\prime 2^{j}} y\right)=\operatorname{tr}_{n}\left(\operatorname{tr}_{n / 3}\left(x^{\prime 2}+x^{\prime 4}\right) y\right) .
$$

Since \mathcal{L} and \mathcal{L}^{*} are involutions, we have

$$
\lambda_{G}(a, b)=\lambda_{F^{\prime}}\left(a, b+\operatorname{tr}_{n / 3}\left(a^{2}+a^{4}\right)\right) .
$$

Thus, $\operatorname{tr}_{n}(b G(x))$ is bent if and only if $b+\operatorname{tr}_{n / 3}\left(a^{2}+a^{4}\right)$ is not the $\left(2^{i}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$ for any a. This proves the first part of Theorem 3.

For i divisible by 3 we have:

$$
\begin{aligned}
G(x) & =\left[x+\operatorname{tr}_{n / 3}\left(x^{2\left(2^{i}+1\right)}+x^{4\left(2^{i}+1\right)}\right)\right]^{2^{i}+1} \\
& =x^{2^{i}+1}+\operatorname{tr}_{n / 3}\left(x^{2^{i}+1}+x^{4\left(2^{i}+1\right)}\right)+\left(x+x^{2^{i}}\right) \operatorname{tr}_{n / 3}\left(x^{2\left(2^{i}+1\right)}+x^{4\left(2^{i}+1\right)}\right)
\end{aligned}
$$

Since $\operatorname{tr}_{n / 3}\left(x^{2 i 2^{i}+1}\right)=\operatorname{tr}_{n / 3}\left(x^{2^{i}+1}\right)$. Clearly, $c=b+b^{2^{n-i}} \neq 0$ because $b \notin \mathbb{F}_{2^{i}}$. For some quadratic function Q we have:

$$
\begin{aligned}
g_{b}(x) & =Q(x)+\operatorname{tr}_{n}\left(b\left(x+x^{2^{i}}\right) \operatorname{tr}_{n / 3}\left(x^{2\left(2^{i}+1\right)}+x^{4\left(2^{i}+1\right)}\right)\right) \\
& =Q(x)+\operatorname{tr}_{3}\left(\operatorname{tr}_{n / 3}(c x) \operatorname{tr}_{n / 3}\left(x^{2\left(2^{i}+1\right)}+x^{4\left(2^{i}+1\right)}\right)\right)
\end{aligned}
$$

and it is not difficult to see that for i not divisible by $n / 2$ the cubic terms of g_{b} do not vanish.

Let i be not divisible by 3 . For simplicity we consider only the case $i=1$. It is not difficult to see that for $T(x)=\operatorname{tr}_{n / 3}\left(x^{3}\right)$ we have
$G(x)=C(x)+\operatorname{tr}_{3}\left(T(x)^{3}\right)+\operatorname{tr}_{n}(x)\left(x\left(T(x)+T(x)^{2}\right)+x^{2}\left(T(x)+T(x)^{4}\right)\right)$.
where C is a cubic function
$C(x)=x^{3}+T(x)+\operatorname{tr}_{n}(x)\left(T(x)+T(x)^{4}\right)+x\left(T(x)+T(x)^{4}\right)+x^{2}\left(T(x)^{2}+T(x)^{4}\right)$.

Hence,

$$
\begin{aligned}
g_{b}(x)= & \operatorname{tr}_{n}(b C(x))+\operatorname{tr}_{n}(b) \operatorname{tr}_{3}\left(T(x)^{3}\right) \\
& +\operatorname{tr}_{n}(x) \operatorname{tr}_{3}\left(T(x) \operatorname{tr}_{n / 3}\left(b x+b x^{2}+\left(b^{2}+b^{4}\right) x^{4}\right)\right) \\
= & \operatorname{tr}_{n}(b C(x))+\operatorname{tr}_{n}(b)\left(\sum_{0 \leq j, t<n / 3} x^{2^{3 j+1}+2^{3 j}+2^{3 t+2}+2^{3 t+1}}\right. \\
& +\sum_{0 \leq j, t<n / 3} x^{2^{3 j+3}+2^{3 j+2}+2^{3 t+1}+2^{3 t}} \\
& \left.+\sum_{0 \leq j, t<n / 3} x^{2^{3 j+3}+2^{3 j+2}+2^{3 t+2}+2^{3 t+1}}\right) \\
& +\sum_{0 \leq j, k<n} u_{k} x^{2^{j}+2^{k}+2^{3 t}+2^{3 t+1}} \\
& +\sum_{\substack{0 \leq j, k<n \\
0 \leq t<n / 3}} v_{k} x^{2^{j}+2^{k}+2^{3 t+1}+2^{3 t+2}} \\
& +\sum_{\substack{0 \leq j, k<n \\
0 \leq t<n / 3}} w_{k} x^{2^{j}+2^{k}+2^{3 t+2}+2^{3 t+3}}
\end{aligned}
$$

where for $0 \leq k<n$

$$
\left.\left.\left.\begin{array}{l}
u_{k}=\left\{\begin{array}{ll}
b^{2^{k}} & \text { if } k=0 \\
b^{2^{k-1}} & \text { if } k=1 \\
\left(b^{2}+b^{4}\right)^{2^{k-2}} & \text { if } k=2
\end{array} \quad \bmod 3,\right.
\end{array}\right\} \begin{array}{lll}
b^{2^{k}} & \text { if } k=1 & \bmod 3
\end{array}\right\} \begin{array}{lll}
b^{k-1} & \text { if } k=2 & \bmod 3 \\
\left.v_{k}+b^{4}\right)^{2^{k-2}} & \text { if } k=0 & \bmod 3,
\end{array}\right\} \begin{array}{lll}
b^{2^{k}} & \text { if } k=2 & \bmod 3 \\
w_{k} & =\left\{\begin{array}{lll}
2^{k-1} & \text { if } k=0 & \bmod 3 \\
\left(b^{2}+b^{4}\right)^{2^{k-2}} & \text { if } k=1 & \bmod 3 .
\end{array}\right.
\end{array}
$$

Assume $n \geq 12$. Then the exponent $2^{6}+2^{9}+2^{0}+2^{1}$ has 2 -weight 4 and, obviously, we have items with this exponent only with coefficients u_{6} and u_{9}. Then $u_{6}+u_{9}=b^{2^{6}}+b^{2^{9}}=\left(b+b^{8}\right)^{2^{6}} \neq 0$ when $b \notin \mathbb{F}_{2^{3}}$. Hence, in the univariate polynomial representation of g_{b} the item $x^{2^{6}+2^{9}+2^{0}+2^{1}}$ has a non-zero coefficient and, therefore, g_{b} has algebraic degree 4 for $b \notin \mathbb{F}_{2^{3}}$. If $b \in \mathbb{F}_{2^{3}}$ then $\operatorname{tr}_{n}(b)=0$. If $\operatorname{tr}_{3}(b) \neq 0$ then we have items with the exponent $2^{6}+2^{8}+2^{0}+2^{1}$ only with coefficients u_{6} and u_{8} and $u_{6}+u_{8}=$
$b^{2^{6}}+\left(b^{2}+b^{4}\right)^{2^{6}}=\operatorname{tr}_{3}(b) \neq 0$. Hence, again g_{b} has algebraic degree 4 when $b \in \mathbb{F}_{2^{3}}$ and $\operatorname{tr}_{3}(b) \neq 0$.

Let $n \geq 6$. It is not difficult to see that when $b \in \mathbb{F}_{2^{3}}$ and $\operatorname{tr}_{3}(b)=0$ then all items with exponents of 2 -weight 4 vanish. Then

$$
\begin{aligned}
g_{b}(x)= & \operatorname{tr}_{n}(b C(x)) \\
= & \operatorname{tr}_{n}\left(b\left(x^{3}+T(x)\right)\right)+\operatorname{tr}_{3}\left(T(x) \operatorname{tr}_{n / 3}\left(b x+b^{2} x^{2}+b^{2} x^{4}+b^{4} x^{8}\right)\right) \\
= & \operatorname{tr}_{n}\left(b\left(x^{3}+T(x)\right)\right)+\sum_{\substack{0 \leq k<n \\
0 \leq t<n / 3}} b^{2} x^{k^{k}+2^{3 t}+2^{3 t+1}} \\
& +\sum_{\substack{0 \leq k<n \\
0 \leq t<n / 3}} b^{4} x^{2^{k}+2^{3 t+1}+2^{3 t+2}}+\sum_{\substack{0 \leq k<n \\
0 \leq t<n / 3}} b x^{2^{k}+2^{3 t+2}+2^{3 t+3}}
\end{aligned}
$$

and in g_{b} the only item with the exponent $2^{0}+2^{1}+2^{3}$ has the coefficient b^{2}. Hence g_{b} has algebraic degree 3 when $b \in \mathbb{F}_{2^{3}}^{*}$ and $\operatorname{tr}_{3}(b)=0$.

3.4 The existence of elements b satisfying the conditions of Theorem 3

Proposition 4 Let n be a positive even integer divisible by 6 and i be a positive integer not divisible by $n / 2$ such that $n / \operatorname{gcd}(i, n)$ is even and $\operatorname{gcd}(i, n) \neq$ 1. There exist at least $\frac{1}{5}\left(2^{n}-1\right)-2^{n / 2}>0$ elements b satisfying the conditions of Theorem 3.

Proof. As in the proof of Proposition 1, we have $\operatorname{gcd}\left(2^{n}-1,2^{i}+1\right) \geq$ $2^{\operatorname{gcd}(i, n)}+1$. This implies $\operatorname{gcd}\left(2^{n}-1,2^{i}+1\right) \geq 5$. Since the number of $d+d^{2}$ equals 4 and the size of the set E^{\prime} of all $\left(2^{i}+1\right)$-th powers of elements of $\mathbb{F}_{2^{n}}^{*}$ is at most $\left(2^{n}-1\right) / 5$, this implies that $\left(F_{2^{n}} \cap F_{2^{i}}\right) \cup E^{\prime} \cup\left(1+E^{\prime}\right)$ has size at most $2^{n / 2}+4\left(2^{n}-1\right) / 5<2^{n}-1$. This completes the proof.

Proposition 5 Let i, n, s be positive integers such that i is not divisible by $n / 2, \operatorname{gcd}(i, 6 s)=3 s, n$ is divisible by $6 s$ but not by $6 s\left(2^{3 s}+1\right)$. If $b \in \mathbb{F}_{2^{6 s}} \backslash \mathbb{F}_{2^{3 s}}$ and the function G is given by (2) then the Boolean function $g_{b}(x)=\operatorname{tr}_{n}(b G(x))$ is bent and cubic.

Proof. Since n is divisible by $6 s$ but not by $\left.6 s\left(2^{3 s}+1\right)\right)$ and $i /(3 s)$ is odd then $2^{i}+1$ is divisible by $2^{3 s}+1$, and $2^{n}-1$ is divisible by $2^{3 s}+1$ but not by $\left(2^{3 s}+1\right)^{2}$ (see the proof of Proposition 2). Then for any $b \in \mathbb{F}_{2^{6 s}} \backslash \mathbb{F}_{2^{3 s}}$ and any $d \in \mathbb{F}_{8}$ obviously $b+d+d^{2}$ is not the $\left(2^{3 s}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$ (and therefore it is not the $\left(2^{i}+1\right)$-th power). Indeed, since
$2^{6 s}-1=\left(2^{3 s}-1\right)\left(2^{3 s}+1\right)$ then $b \in \mathbb{F}_{2^{6 s}}$ is the $\left(2^{3 s}+1\right)$-th power of an element of $\mathbb{F}_{2^{6 s}}$ if and only if $b \in \mathbb{F}_{2^{3 s}}$. Since $2^{n}-1$ is not divisible by $\left(2^{3 s}+1\right)^{2}$ then, $b \in \mathbb{F}_{2^{6 s}}$ is $\left(2^{3 s}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$ if and only if b is $\left(2^{3 s}+1\right)$ th power of an element of $\mathbb{F}_{2^{6 s}}$. More precisely, if $b \in \mathbb{F}_{2^{6 s}}$ then for some primitive element α of $\mathbb{F}_{2^{n}}$ and some k we have $b=\alpha^{k\left(2^{n}-1\right) /\left(2^{6 s}-1\right)}$. Since $\left(2^{n}-1\right) /\left(2^{6 s}-1\right)$ is not divisible by $2^{3 s}+1$ then b is the $\left(2^{3 s}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$ if and only if k is divisible by $2^{3 s}+1$, that is, if and only if b is the $\left(2^{3 s}+1\right)$-th power of an element of $\mathbb{F}_{2^{6 s}}$, and that is, if and only if $b \in \mathbb{F}_{2^{3 s}}$. For $b \in \mathbb{F}_{2^{6 s}} \backslash \mathbb{F}_{2^{3 s}}$ and any $d \in \mathbb{F}_{8}$ obviously $b+d+d^{2} \in \mathbb{F}_{2^{6 s}} \backslash \mathbb{F}_{2^{3 s}}$.

Clearly, $b \notin \mathbb{F}_{2^{i}}$ because i / s is odd. By Theorem 3 the function g_{b} is bent and cubic.

Proposition 6 Let i, n, s be positive integers such that $n \geq 12, \operatorname{gcd}(i, 6 s)=$ $s, \operatorname{gcd}(s, 3)=1$, and n is divisible by $6 s$ but not by $6 s\left(2^{s}+1\right)$, and the function G be given by (2). If $b \in \mathbb{F}_{2^{6 s}} \backslash \mathbb{F}_{2^{3 s}}$ is such that for any $d \in \mathbb{F}_{8}$ the element $b+d+d^{2}$ is not the $\left(2^{s}+1\right)$-th power of an element of $\mathbb{F}_{2^{6 s}}$ then the function $g_{b}(x)=\operatorname{tr}_{n}(b G(x))$ is bent and has algebraic degree 4 .

Proof. Since i / s is odd then $\operatorname{gcd}\left(2^{i}+1,2^{s}+1\right)=2^{s}+1$. As shown in the proof of Proposition 2 if t is not divisible by $2^{s}+1$ then $2^{2 s t}-1$ is divisible by $2^{s}+1$ but not by $\left(2^{s}+1\right)^{2}$. Hence, for $s \neq 1$ the number $2^{6 s}-1$ is divisible by $2^{s}+1$ but not by $\left(2^{s}+1\right)^{2}$.

If $s \neq 1$ then n is divisible by $2 s$ but not by $2 s\left(2^{s}+1\right)$. Then, as shown in the proof of Proposition $2,2^{n}-1$ is divisible by $2^{s}+1$ but not by $\left(2^{s}+1\right)^{2}$. Therefore, if for some $b \in \mathbb{F}_{2^{6 s}} \backslash \mathbb{F}_{2^{3 s}}$ all elements $b+d+d^{2}$ are not the $\left(2^{s}+1\right)$ th power of an element of $\mathbb{F}_{2^{6 s}}$ for any $d \in \mathbb{F}_{8}$, then they are not $\left(2^{s}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$ (and therefore they are not the $\left(2^{i}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$. For example, for $s=2$ there are 1736 such elements b, and for $s=4$ there are 13172960 such elements in $\mathbb{F}_{2^{24}} \backslash \mathbb{F}_{2^{12}}$.

If $s=1$ then n is divisible by 6 but not by 9 . For t even and any j we have $2^{j t}-1=\left(2^{2 j}-1\right)\left(t / 2+\left(2^{2 j}-1\right)+\ldots+\left(2^{j(t-2)}-1\right)\right)$. Therefore, taking $j=3$ and $t=n / 3$ (which is even and not divisible by 3) $2^{n}-1$ is divisible by 27 only if $t / 2$ is divisible by 3 , which is not the case. Hence, if for $b \in \mathbb{F}_{2^{6}} \backslash \mathbb{F}_{2^{3}}$ all elements $b+d+d^{2}$ are not cubes in $\mathbb{F}_{2^{6}}$ for any $d \in \mathbb{F}_{8}$, then they are not cubes in $\mathbb{F}_{2^{n}}$ (and therefore they are not the $\left(2^{i}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$). These elements b are zeros of one of the polynomials $x^{6}+x+1$ and $x^{6}+x^{4}+x^{3}+x+1$.

Hence, in these cases g_{b} is bent and has algebraic degree 4 by Theorem 3 .
Since F^{\prime} is quadratic and since EA-equivalence preserves the algebraic degree then according to Theorem 1, the bent nonquadratic components of F and G are CCZ-inequivalent to the components of F^{\prime}.

Proposition 7 The functions f_{b} and g_{b} of Theorems 2 and 3 (and Propositions 2, 5 and 6) are CCZ-inequivalent to any component of $F^{\prime}(x)=x^{2^{i}+1}$.

The existence or non-existence of APN permutations over $\mathbb{F}_{2^{n}}$ when n is even is an open problem. For the case of quadratic APN functions this problem was solved negatively in [9]. Hence for n even the APN function $F^{\prime}(x)=x^{2^{i}+1}, \operatorname{gcd}(i, n)=1$, is EA-inequivalent to any permutation. However, it is potentially possible that F^{\prime} is CCZ-equivalent to a nonquadratic APN permutation. From this point of view the following facts are interesting.

Corollary 1 Let n and i be positive integers and $\operatorname{gcd}(i, n)=1$. If $\operatorname{gcd}(n, 6)=$ 2 then the $A P N$ function F given by (1) is EA-inequivalent to any permutation over $\mathbb{F}_{2^{n}}$. If $\operatorname{gcd}(n, 18)=6$ then the $A P N$ function G given by (2) is EA-inequivalent to any permutation over $\mathbb{F}_{2^{n}}$.

Proof. By Theorem 2 of [1] the function F is APN and it has bent components by Proposition 2. By Theorem 3 of [1] the function G is APN and it has bent components by Proposition 6. Therefore, F and G are not EAequivalent to any permutation.

4 New bent vectorial functions

Let F be a function from $\mathbb{F}_{2^{n}}$ to itself, n be divisible by m, and $b \in \mathbb{F}_{2^{n}}^{*}$. We know from [8] that an (n, m)-function $\operatorname{tr}_{n / m}(b F(x))$ is bent if and only if for any $v \in \mathbb{F}_{2^{m}}^{*}$ the Boolean function $\operatorname{tr}_{n}(b v F(x))$ is bent. Hence we can obtain vectorial bent functions from Theorem 2.

Theorem 4 Let $n \geq 6$ be an even integer divisible by m, i be a positive integer not divisible by $n / 2$ such that $n / \operatorname{gcd}(i, n)$ is even. If $b \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{i}}$ is such that for any $v \in \mathbb{F}_{2^{m}}^{*}$ neither bv nor bv +1 are the $\left(2^{i}+1\right)$-th powers of elements of $\mathbb{F}_{2^{n}}$, and the function F is given by (1) then the function $\operatorname{tr}_{n / m}(b F(x))$ is bent and has algebraic degree 3 .

In particular we obtain the following vectorial bent functions from Proposition 2.

Corollary 2 Let $n \geq 6$ be an even integer, i be a positive integer not divisible by $n / 2$ and s a divisor of i such that i / s is odd and n is divisible by $2 s$ but not by $2 s\left(2^{s}+1\right)$. If $b \in \mathbb{F}_{2^{2 s}} \backslash \mathbb{F}_{2^{s}}$ and the function F is given by (1) then the function $f(x)=\operatorname{tr}_{n / s}(b F(x))$ is bent and has algebraic degree 3 .

Proof. Since $b \in \mathbb{F}_{2^{2 s}} \backslash \mathbb{F}_{2^{s}}$ then $b v \in \mathbb{F}_{2^{2 s}} \backslash \mathbb{F}_{2^{s}}$ for any $v \in \mathbb{F}_{2^{s}}^{*}$. Hence by Proposition 2 the functions $\operatorname{tr}_{n}(b v F(x))$ are bent for all $v \in \mathbb{F}_{2 s}^{*}$, and, therefore, $\operatorname{tr}_{n / s}(b F(x))$ is bent.

Theorem 3, and in particular Propositions 5 and 6, also give new bent vectorial functions.

Theorem 5 Let i, m, n be positive integers such that n is divisible by $6 m$, and i is not divisible by $n / 2$ and $n / \operatorname{gcd}(i, n)$ is even. Let $b \in \mathbb{F}_{2^{n}}$ be such that, for any $d \in \mathbb{F}_{8}$ and any $v \in \mathbb{F}_{2^{m}}^{*}, b v+d+d^{2}$ is not the $\left(2^{i}+1\right)$-th power of an element of $\mathbb{F}_{2^{n}}$. If the function G is given by (2) then the Boolean function $\operatorname{tr}_{n / m}(b G(x))$ is bent.

Corollary 3 Let i, n, s be positive integers such that i is not divisible by $n / 2$, $\operatorname{gcd}(i, 6 s)=3 s, n$ is divisible by $6 s$ but not by $6 s\left(2^{3 s}+1\right), b \in \mathbb{F}_{2^{6 s}} \backslash \mathbb{F}_{2^{3 s}}$ and the function G be given by (2). Then the function $g_{b}(x)=\operatorname{tr}_{n / s}(b G(x))$ is bent and cubic.

Corollary 4 Let i, n, s be positive integers such that $n \geq 12, \operatorname{gcd}(i, 6 s)=s$, $\operatorname{gcd}(s, 3)=1$, n is divisible by $6 s$ but not by $6 s\left(2^{s}+1\right)$, and the function G be given by (2). If $b \in \mathbb{F}_{2^{6 s}} \backslash \mathbb{F}_{2^{3 s}}$ is such that for any $d \in \mathbb{F}_{8}$ and any $v \in \mathbb{F}_{2^{3 s}}^{*}$ the element $b v+d+d^{2}$ is not the $\left(2^{s}+1\right)$-th power in $\mathbb{F}_{2^{6 s}}$ then the function $g_{b}(x)=\operatorname{tr}_{n / 3 s}(b G(x))$ is bent and has algebraic degree 4 .

Since $F^{\prime}(x)=x^{2^{i}+1}$ is quadratic and since EA-equivalence preserves the algebraic degree then according to Theorem 1, the bent functions of Theorems 4 and 5, and Corollaries $2-4$ in particular, are CCZ-inequivalent to $\operatorname{tr}_{n / m}\left(v F^{\prime}(x)\right)$ for any $v \in \mathbb{F}_{2^{n}}$ and any divisor m of n.

Proposition 8 The bent functions f_{b} and g_{b} of Theorems 4 and 5 (and Corollaries 2, 3 and 4) are CCZ-inequivalent to $\operatorname{tr}_{n / m}\left(v F^{\prime}(x)\right)$ for any $v \in \mathbb{F}_{2^{n}}$ and any divisor m of n.

Acknowledgments

We would like to thank Gregor Leander for useful discussions. The research of the first author was supported by Norwegian Research Council.

References

[1] L. Budaghyan, C. Carlet, A. Pott. New Classes of Almost Bent and Almost Perfect Nonlinear Functions. IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 1141-1152, March 2006.
[2] L. Budaghyan and T. Helleseth. New perfect nonlinear multinomials over $\mathbb{F}_{p^{2 k}}$ for any odd prime p. Proceedings of SETA 2008, Lecture Notes in Computer Science 5203, pp. 401-414, 2008.
[3] C. Carlet. Vectorial Boolean Functions for Cryptography. Chapter of the monography Boolean Methods and Models, Y. Crama and P. Hammer eds, Cambridge University Press, in press.
[4] C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent functions and permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography, 15(2), pp. 125-156, 1998.
[5] J. F. Dillon. Elementary Hadamard Difference sets. Ph. D. Thesis, Univ. of Maryland, 1974.
[6] G. Kyureghyan and A. Pott. Some theormes on planar mappings. Proceedings of WAIFI 2008, Lecture Notes in Computer Science 5130, pp. 115-122, 2008.
[7] G. Leander. Monomial bent functions. Proceedings of the Workshop on Coding and Cryptography 2005, Bergen, pp. 462-470, 2005. And IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 738-743, 2006.
[8] K. Nyberg. Perfect non-linear S-boxes. Proceedings of EUROCRYPT, 91, Lecture Notes in Computer Science 547, pp. 378-386, 1992.
[9] K. Nyberg. S-boxes and Round Functions with Controllable Linearity and Differential Uniformity. Proceedings of Fast Software Encryption 1994, Lecture Notes in Computer Science 1008, pp. 111-130, 1995.

[^0]: *Department of Informatics, University of Bergen, PB 7803, 5020 Bergen, NORWAY; e-mail: Lilya.Budaghyan@ii.uib.no
 ${ }^{\dagger}$ Universities of Paris 8 and Paris 13; CNRS, UMR 7539 LAGA; Address: University of Paris 8, Department of Mathematics, 2 rue de la liberté, 93526 Saint-Denis cedex 02, France; e-mail: claude.carlet@inria.fr

