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Abstract

With increased use of passive RFID tags, the need for secure lightweight identification protocols
arose. HB+ is one such protocol, which was proven secure in the detection-based model, but shown
breakable by man-in-the-middle attacks. Trusted-HB is a variant of HB+, specifically designed to resist
man-in-the-middle attacks. In this paper, we discuss several weaknesses of Trusted-HB, show that the
formal security proof provided by its designers is incorrect, and demonstrate how to break it in realistic
scenarios.

1 Introduction

With increased use of passive RFID tags, the need for secure lightweight identification protocols arose. One
family of such protocols is based on the NP-hard problem of learning parity with noise [1, 2]. The first
protocol of this kind, called HB [3], was designed for use by humans and shown to be secure only against
passive adversaries. Since RFID tags, like humans, are limited in computing power, Juels and Weiss used
HB as a basis to create an identification protocol for RFID, called HB+ [4], which is provably secure against
active attacks in the detection-based model (defined in [4]), in which an adversary can eavesdrop on the tag-
reader communication channel and communicate only with tags, but not readers, before attempting to pass
an identification session posing as a tag. Katz et al. [5, 6, 7] simplified and extended the original proof of
security. Nevertheless, HB+ was shown to be insecure against a stronger adversary that can perform man-in-
the-middle attacks [8]. Since then, many attempts have been made to design an LPN-based protocol, secure
against MIM attacks [9, 10, 11, 12, 13, 14, 15, 16], and some of them have been broken [17, 18]. This paper
discusses the security of one such improvement attempt, called Trusted-HB [15]. Section 2 introduces HB+

and describes some known attacks on it; Section 3 describes the Trusted-HB proposal; Section 4 describes
problems with the design of Trusted-HB and demonstrates how to break the scheme in realistic scenarios;
finally, Section 5 summarizes the paper and describes possible directions for future research.

2 HB+

HB+ is a lightweight secret-key protocol proposed for RFID tag identification by Juels and Weis [4]. The
publicly known parameters are: positive integers k1, k2, r and real values η, u ∈ (0, 0.5). The reader and the
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tag share two secrets x ∈R {0, 1}k1 and y ∈R {0, 1}k2 . The protocol proceeds in r 3-move rounds as shown
in Figure 1: the tag generates a random blinding factor b(i) ∈R {0, 1}k2 and sends it to the server; the server
responds with a random challenge a(i) ∈R {0, 1}k1 ; the tag computes z(i) = a(i)x+b(i)y+ν(i), where ν(i) ∼ Berη,
and sends it to the server. The reader accepts the tag if the number of i’s, for which z(i) , a(i)x + b(i)y does
not exceed ur.

Figure 1: The i’th Round of HB+

Reader (secret x ∈R {0, 1}k1 , y ∈R {0, 1}k2)Tag (secret x ∈R {0, 1}k1 , y ∈R {0, 1}k2)
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Katz et al. [5, 6, 7] showed that HB+ is asymptotically secure for any choice of η ∈ (0, 0.5) and extended
the proof to parallel/concurrent versions of HB+. It is possible to make the completeness and soundness
errors sufficiently small by the appropriate choice of r and u. k1 needs to be at least 80, so it is hard to
guess x, while k2 is chosen to make the LPN problem with the parameters η, k2 sufficiently hard. Several
algorithms were proposed to solve the LPN problem [19, 20, 21, 22, 23]. See [22] for the state-of-the-art
heuristic algorithm LF2 and the recommended parameter values for HB+.

In the prevention-based model, which allows the adversary to communicate with tags and readers at the
same time, HB+ can be broken in linear time with a simple man-in-the-middle attack [8], which is referred
to as the GRS attack by the first letters of the names of its authors. The adversary chooses a δ ∈ {0, 1}k1 and
replaces every ai by ai + δ. If the identification session succeeds, he concludes that (ai + δ) · x = ai · x and,
therefore, δ · x = 0; otherwise, δ · x = 1 with overwhelming probability. Having access to k1 sessions, the
adversary repeats the above procedure with k1 linearly independent values of δ (e.g. the standard basis) and
is able to learn the secret x. Since the tag can generate any blinding factors it wants, the knowledge of x is
sufficient to successfully forge an RFID tag.

3 Trusted-HB

3.1 The Design Principles of Trusted-HB

If the attacker modifies the communication, then the reader and the tag have different views of the transcript.
Therefore, one way to achieve security against man-in-the-middle attacks is for the tag to send a signature
of its view of the transcript. The adversary will need to replace it by the signature of the transcript as seen
by the reader, which is computationally infeasible if a secure (existentially unforgeable) signature scheme
is used [24]. Note that the security parameters of the signature scheme cannot be significantly relaxed. For
example, consider the linear-time GRS attack on HB+ and assume that the adversary knows how to forge a
signature for the modified transcript with success probability ε. Then he will repeat his attack with a fixed
δ in c/ε sessions, where c is some constant. If δ · x = 0, the adversary expects the tag to be accepted with
probability about 1 − (1 − ε)c/ε > 1 − e−c and otherwise rejected with overwhelming probability.

The extended identification protocol has two stages:

(i) the original identification protocol,

(ii) signing the transcript and verifying the signature.
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Note that the verifier needs to check the signature only if the first stage is passed. Since the original protocol
is secure in the detection-based model and transcript signing makes man-in-the-middle attacks impossible,
the new protocol is secure in the prevention-based model.

Now, the challenge for RFIDs is that the signature scheme has to be implemented on the tag and, there-
fore, be very lightweight. Note that using a full-fledged MAC, such as SQUASH [25], in order to sign the
transcript (in addition to the original identification protocol) is too resource-demanding for a passive RFID
tag. In addition, such a solution would defeat the purpose, as the MAC itself can be used for identification
in a challenge-response protocol - and more efficiently, since the whole transcript is longer than a single
challenge. Therefore, to make this approach practical, one has to make compromises which weaken the
security of the protocol.

3.2 The LFSR-based Signature Scheme

Let H be a publicly known universal family of hash functions (as defined by Carter and Wegman in [26])
from {0, 1}m to {0, 1}n. Let h ∈R H and a number of one-time pads e(i) ∈R {0, 1}n be the secret key shared
by two communicating parties. A Carter-Wegman MAC defines the signature of a message M ∈ {0, 1}m

by t = h(M) + e(i) ∈ {0, 1}n, where e(i) is the first unused one-time pad. Since the universal family of
hash functions H is by definition perfectly balanced and thanks to the use of one-time pads, Carter-Wegman
MACs are perfectly secure in the information-theoretic sense.

One way to construct a family of universal hash functions, introduced in [27], is based on n×m boolean
Toeplitz matrices. These are matrices which contain a fixed value in each left-to-right diagonal, i.e. U is a
Toeplitz matrix if Ui, j = Ui+k, j+k for every 0 ≤ i, i + k < n and 0 ≤ j, j + k < m. The family H can be
described as a collection of such matrices, namely, every h ∈ H corresponds to a Toeplitz matrix U, and
h(M) is computed as shown in Equation 1.

h(M) =



u0 u1 u2 · · ·
. . .

. . . um−1

u−1 u0 u1 · · ·
. . .

. . . um−2
...

...
...

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .
. . .

...

u1−n u2−n u3−n · · · · · · · · · um−n

︸                                                   ︷︷                                                   ︸
U

·



M0
M1
M2
...
...

Mm−1

︸  ︷︷  ︸
M

(1)

Hugo Krawczyk [28] suggested restricting the family of all the Toeplitz matrices to only those, whose
consecutive columns can be compactly represented as the consecutive states of an LFSR with an irreducible
connection polynomial p of degree n. Let f be the feedback function corresponding to p. Then u1 =

f (u1−n, . . . , u0), u2 = f (u2−n, . . . , u0, u1), etc. Each function in this family can be described as (s, p), where
s = u0u−1 . . . u1−n, which results in significant savings for a large m.

The LFSR-based hash family H is not perfectly balanced, so the perfect security guarantee of the original
Toeplitz construction is lost; however, Krawczyk showed that it is ε-otp-balanced for ε ≤ m

2n−1 , i.e.

∀M ∈ {0, 1}m, M , 0, c ∈ {0, 1}n, Pr
h∈H

[h(M) = c] ≤ ε (2)

In addition, H is ⊕-linear, i.e.

∀h ∈ H, M , M′ ∈ {0, 1}m, h(M + M′) = h(M) + h(M′) (3)
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Figure 2: The LFSR-based Toeplitz hashing

Krawczyk showed that these two properties of the LFSR-based Toeplitz construction are enough to guaran-
tee that it is ε-otp-secure for the same ε ≤ m

2n−1 , according to the following definition:

Definition 3.1 Let H be a family of hash functions from {0, 1}m to {0, 1}n. Let h ∈R H and a collection of
one-time pads e(i) ∈R {0, 1}n be the secret key shared by two communicating parties. Consider the signature
scheme in which the signature of an M ∈ {0, 1}m is t = h(M) + e(i) ∈ {0, 1}n, where e(i) is the first unused
one-time pad. Consider an all-powerful adversary that knows the H, but not the h or the e(i)’s and can
observe any number s of message-signature pairs (M(i), h(M(i)) + e(i)) for i = 0, . . . , s−1. He is then given a
pair (M(s), h(M(s))+e(s)) and is asked to generate a pair (M′, h(M′)+e(s)), where the M′ was not previously
signed. If the success probability over the choice of h for any such adversary is upper-bounded by ε, the
hash family H is called ε-otp-secure.

Thus, for the ε-otp-security of the MAC, one can set

n = dlog(m) − log(ε)e + 1, (4)

which is much smaller than m for large values of m and a fixed ε. The secret key of the signature scheme
consists of the randomly chosen irreducible connection polynomial p, the seed s ∈R {0, 1}n and a number of
one-time pads e(i) ∈R {0, 1}n, one per message to be authenticated. The feedback connections of the LFSR
can be efficiently implemented in hardware as shown in Figure 2. The hash function starts with the secret
seed s in the LFSR and 0 in the accumulator. For each bit of M, if it is equal to 1, the value in the shift
register is XOR’ed into the value of the accumulator, and then the LFSR is clocked.

3.3 The Implementation of Trusted-HB

Bringer and Chabanne [15] used the techniques described above in the design of the two-stage identification
protocol Trusted-HB:

(i) the standard HB+ protocol is executed;

(ii) the Krawczyk’s scheme is used by the tag to sign and by the reader to verify the integrity of the
transcript of the first stage.
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Let us discuss the implementation details of the signature generation:

• The reader and the tag share the connection polynomial p and the seed value s as part of the secret
key in addition to x and y.

• The transcript is represented as M = z(r−1)||a(r−1)||b(r−1)|| · · · ||z(0)||a(0)||b(0); hence, m = |M| = r(k1 +

k2 + 1).

• Since the tag cannot store the whole transcript M, the signature t is constructed progressively along
the way, with the LFSR being clocked k1 + k2 + 1 times per round of HB+. The tag uses separate
circuitry to generate the signature in parallel with the HB+ computations.

• Since a tag can participate in many identification sessions, there is no way it could store enough
one-time pads for all of them. Normally, the noise ν is generated in the tag from a physical source
of randomness, which cannot be replicated by the reader. This source of randomness can be used
to generate one-time pads; however, we need to make sure that the reader can also compute them,
while keeping the scheme safe from desynchronization attacks. Bringer and Chabanne suggest the
novel technique of generating the one-time pad e from the LPN noise ν (which becomes known to the
reader by locating the errors in the values sent by the tag). Since ν is unbalanced, both parties have to
use a randomness extractor E to balance the output: e = E(ν). Since the reader knows x and y, it can
compute ν = Ax + B · y + z and, hence, e; however, an attacker cannot identify the locations of the
errors, since this is equivalent to breaking the security of the scheme by solving a system of error-free
linear equations.

• To avoid having to store all of ν in the tag, the randomness extractor E should be such that the tag
can compute e (and hence t) progressively. Bringer and Chabanne suggest using the von Neumann
procedure [29]: for each bit pair

(
ν(2i), ν(2i+1)

)
, if ν(2i) , ν(2i+1), then the next bit of e is ν(2i); otherwise,

the pair is not used. Let F : {0, 1}∗ → {0, 1}∗ denote the von Neumann procedure; it can be expressed
recursively as:

F(ν) =

F(. . . ν4ν3ν2), if ν0 = ν1

F(. . . ν4ν3ν2)||ν0, if ν0 , ν1
(5)

While the length of F(ν) is variable, only the first n bits of the output are computed and used.

• Bringer and Chabanne propose the same parameter values as suggested for HB+: η = 0.25, k1 =

80, k2 = 512, r = 1164, u = 0.348, so 219 < m = r(k1 + k2 + 1) < 220; therefore, according to (4),
to achieve ε-otp-security for ε = 2−80, they fix n = dlog(m) − log(ε)e + 1 = 101. For η = 0.25, the
mean output length of the von Neumann procedure is 218, where the probability of having fewer than
n = 101 bits is less than 2−72 (if this ever happens, the identification restarts).

4 Attacks on Trusted-HB

4.1 Weaknesses of Trusted-HB

As we discussed in Section 3.1, using a signature scheme to authenticate the transcript should secure the
identification scheme against man-in-the-middle adversaries. We claim, however, that Trusted-HB cuts
corners in several places, and some of these modifications make the protocol insecure:
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• h cannot be kept completely secret in practice, while the security of Trusted-HB relies on h being part
of the secret key and completely unknown to the adversary. The main reason the LFSR-based con-
struction was proposed is that it is easy to implement in hardware, which means that the connections
corresponding to the feedback polynomial p are likely to be hardwired (note that it is important that
the LFSR shifting be fast, as the complexity of a single shift is multiplied by m). It is impractical to
have different p’s hardwired in different tags, and thus millions of tags are likely to have the same
feedback. Finally, we cannot rely on security by obscurity (which is a bad idea anyway) as it has been
demonstrated that the circuitry of an RFID tag can be deduced by using just an optical microscope
[30]. Therefore, while the unique seed s can be kept secret, we have to assume that in practice the p
will become publicly known.

• e is not a real one-time pad. As mentioned earlier, the ε-otp-security of the signature scheme depends
on e being a one-time pad; however, it is impossible to store one-time pads in the tag. Recycling ν to
generate e, which looked like a clever implementation trick, makes the protocol insecure.

• For small values of η, the chances that E returns sufficiently many random bits for e are not so high.
The rate of the extraction procedure, defined as R(η) = lim supr→∞

1
r E[|E(ν1, · · · , νr)|], at best can

approach the entropy bound: R(η) ≤ h(η) B −η log2 η − (1 − η) log2(1 − η), which decreases with
η (see [31] for an improvement of the von Neumann procedure that approaches the bound). For
example, for η = 0.05, k1 = 80, k2 = 768, r = 249 (chosen according to the recommendations made in
[22]), we have m = 211, 401 and r · R(η) ≈ 71. n must be way below that (unless we want to restart
the identification every other time) and so ε = m

2n−1 > 2−62. Also, whenever an identification session
is restarted after (or during) the HB+ stage of Trusted-HB (because the tag cannot produce an e of
length n), the information that E cannot extract n random bits from the noise ν, may be useful to the
adversary.

The last weakness above may be not as serious as the other two, as it might be dealt with by disallowing
small values of η, increasing the round complexity r, or by specifying explicitly how and when the identi-
fication session is restarted, so that the adversary cannot benefit much from knowing that the noise ν does
not satisfy certain properties. Nevertheless, this flaw was not addressed in the original proposal and is worth
mentioning.

We now show how to use the first two weaknesses above to attack Trusted-HB. In the realistic attack
scenario in which the connection polynomial p of the LFSR is known, there are efficient man-in-the-middle
attacks described in Section 4.2. The fact that e is not a real one-time pad gives rise to a slower but com-
pletely passive attack, which is described in Section 4.3.

4.2 MIM Attacks

The LFSR used for signing the transcript starts with s = u0u−1 . . . u1−n as the seed, so for every i ≥ 1 − n,
there is a linear dependence ui+ j0 + ui+ j1 + · · ·+ ui+ jl−1 + ui+ jl = 0, where l is the number of taps in the LFSR,
j0, . . . , jl−1 are the tap positions, and 0 = j0 < j1 < · · · < jl = n. Let u(i) denote the i’th column of the
Toeplitz matrix U. Since u(i)’s are the consecutive states of the LFSR, the same recurrence applies to them:

∀i ≥ 1 − n, u(i+ j0) + u(i+ j1) + u(i+ j2) + · · · + u(i+ jl−1) + u(i+n) = 0 (6)

Let us define ∆ ∈ {0, 1}n+1 by

∆i =

1, if i ∈ { j0, . . . , jl}
0, otherwise

(7)
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and Shiftq : {0, 1}∗ × N→ {0, 1}q by

Shiftq(w, d) = 0 . . . 0||w|| 0 . . . 0︸︷︷︸
d︸              ︷︷              ︸

q

(8)

where q ≥ d + |w|.

Definition 4.1 Let H be the LFSR-generated hash family. We call ψ ∈ {0, 1}m a complete MIM pattern for
p if h(ψ) = 0 for every h ∈ H that uses p as the connection polynomial. We call w a (simple) MIM pattern
for p if v0 = v|w|−1 = 1 and Shiftm(w, 0) is a complete MIM pattern for p.

By definition, a MIM pattern w satisfies U · Shiftm(w, 0) = 0, where the Toeplitz matrix U can be
generated with any seed s ∈ {0, 1}n; therefore, w must satisfy U · Shiftm(w, d) = 0 for every d ≤ m − |w|, i.e.
every such Shiftm(w, d) is a complete MIM pattern. Furthermore, by ⊕-linearity of H, any linear combination
of complete MIM patterns is a complete MIM pattern, so one way to construct a complete MIM pattern from
a simple MIM pattern is by taking a linear combination of Shiftm(w, d)’s for various values of d.

By (6), ∆ is a MIM pattern of length n + 1. Since the adversary knows the p, he can also find other,
longer MIM patterns offline by employing various methods used in correlation attacks (see, e.g., [32]).

Let us use the following notation:

• b(i), a(i), z(i) are the values seen by the tag at round i ∈ {0, . . . , r − 1}; M is the tag’s version of the
transcript; ν is the noise generated by the tag; e is the one-time pad and t is the signature computed
by the tag.

• b̂(i)
, â(i), ẑ(i) are the values seen by the reader at round i ∈ {0, . . . , r − 1}; M̂ is the reader’s version of

the transcript; ν̂ is the noise, ê is the one-time pad, and t̂ is the signature computed by the reader.

• M′ is the transcript composed of the values actually sent by the two parties (the b(i)’s, â(i)’s, and z(i)’s)
and seen by the man-in-the-middle adversary.

• b̄(i)
= b(i) + b̂(i)

, ā(i) = a(i) + â(i), z̄(i) = z(i) + ẑ(i) for every i ∈ {0, . . . , r − 1}. M̄ is the transcript of
all the changes made by the adversary, i.e. the b̄(i)’s, ā(i)’s, and z̄(i)’s. Thus, M̄ = M + M̂, and the
transcript of all the values received by the tag and the reader is M′ + M̄.

The key observation is that if M̄ is a complete MIM pattern, then by ⊕-linearity of H, h(M) = h(M̂).
This means that if the adversary uses such an M̄ to modify the messages sent during the first stage of
Trusted-HB, the identification session results in ’accept’ if the HB+ stage is passed and e = ê.

The first attack below is similar to the GRS attack on HB+ considered in Section 2; in particular, ac-
ceptance of the modified transcript in the HB+ stage is (with overwhelming probability) synonymous with
ν = ν̂. Since ν = ν̂⇒ e = ê, acceptance in the full Trusted-HB protocol is (with overwhelming probability)
synonymous with ν = ν̂ and the attack can be carried out in variants of Trusted-HB that utilize any extraction
procedure for E. The second attack is such that the HB+ stage almost always succeeds. Based on E being
the von Neumann’s procedure, with overwhelming probability e = ê⇒ ν = ν̂; therefore, acceptance is (with
overwhelming probability) synonymous with ν = ν̂.

The two attacks allow the adversary to retrieve x and y. We will next show in 4.2.3 how to learn the
last remaining secret s needed to counterfeit a tag. Finally, we will describe in 4.2.4 a toy example that
demonstrates these two attacks in practice.

7



4.2.1 The First Attack

When n < k1 + k2 + 1, there are MIM patterns, such as ∆, that have length ≤ k1 + k2 + 1. Let us fix any
such pattern w, any j ∈ {0, . . . , k1 + k2 + 1 − |w|}, and let ẘ = Shiftk1+k2+1(w, j). Let b̄ = ẘk2−1 . . . ẘ0, ā =

ẘk1+k2−1 . . . ẘk2 , and z̄ = ẘk1+k2 , so z̄||ā||b̄ = ẘ.

Definition 4.2 We say that the adversary ”applies” the change ẘ to round i of the HB+ stage of the protocol,
if he replaces b(i) by b(i) + b̄, â(i) by â(i) + ā, and z(i) by z(i) + z̄.

The adversary ”applies” ẘ to every round of the protocol, resulting in the following collection of tran-
scripts:

M = z(r−1) || a(r−1) || b(r−1) ||· · ·|| z(0) || a(0) || b(0)

M̂ = ẑ(r−1) || â(r−1) || b̂(r−1)
||· · ·|| ẑ(0) || â(0) || b̂(0)

M̄ = z(r−1) + ẑ(r−1)||a(r−1) + â(r−1)||b(r−1) + b̂(r−1)
||· · ·||z(0) + ẑ(0)||a(0) + â(0)||b(0) + b̂(0)

= z̄ || ā || b̄ ||· · ·|| z̄ || ā || b̄
= ẘ ||· · ·|| ẘ

Note that M̄ is a complete MIM pattern since it is a linear combination of complete MIM patterns:

M̄ =

r−1∑
i=0

Shiftm(w, j + i(k1 + k2 + 1))

Also,

ν = ν̂⇔ ∀i = 0, . . . , r − 1, b(i)y + â(i)x + z(i) = b̂(i)y + a(i)x + ẑ(i)

⇔ ∀i = 0, . . . , r − 1, (b(i) + b̂(i)
)y + (a(i) + â(i))x + (z(i) + ẑ(i)) = 0

⇔ b̄y + āx + z̄ = 0

Thus, if b̄y + āx + z̄ = 0, then ν = ν̂ and both stages of Trusted-HB are passed (with overwhelming
probability), resulting in ’accept’. If b̄y+ āx+z̄ = 1, then the HB+ stage fails with overwhelming probability,
resulting in ’reject’. Since this can be done for j = 0, . . . , k1 + k2 + 1− |w|, we can get k1 + k2 + 2− |w| linear
equations in the bits of x and y. Furthermore, since the patterns ẘ are all linearly independent as consecutive
linear shifts of the same w, all of these equations are useful.

To demonstrate this attack, consider the parameter values k1 = 80, k2 = 512, n = 101 proposed by
Bringer and Chabanne. Take the MIM pattern ∆ as defined in (7). Since |∆| = n + 1 = 102, the adversary can
get 80 + 512 + 2 − 102 = 492 linear equations. He needs only |∆| − 2 = n − 1 = 100 more linear equations
to efficiently solve for all the bits of x and y by Gaussian elimination. These equations can be obtained
by utilizing a different short MIM pattern or by using these linear relationships to simplify the noisy parity
equations and efficiently solving LPN for the greatly improved parameters η = 0.25, k = 100 using the
methods of [23] or [22].

If the length of the MIM pattern is ≤ k2, a small variation of the above attack is for the adversary to target
only y. For the proposed parameter values, |∆| = n + 1 = 102 ≤ k2 = 512, so the adversary may consider
shifts with j = 0, 1, . . . , k2 − |∆| = 410 to get 411 linearly independent linear equations in the 512 bits of
y. By using other short MIM patterns, the adversary can learn y with fewer man-in-the-middle interactions
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than in the original attack. Once he knows y, the adversary can compute b(i)y for any b(i) and thus eliminate
its masking effect. With a simple (not MIM) active attack, the adversary can find δx for any δ ∈ {0, 1}k1 by
sending the same challenge δ sufficiently many times and eliminating noise by majority voting. Thus, he
can learn every bit of x by having the δ go over the standard base of {0, 1}k1 .

A multi-round version of this attack technique can be used with MIM patterns that are longer than
k1 + k2 + 1 bits as long as their length ≤ c(k1 + k2 + 1), where c|r. For example, suppose that w is a MIM
pattern of length |w| ≤ c(k1 +k2 +1). Let ẘ = Shiftc(k1+k2+1)(w, j) for a fixed j ∈ {0, 1, . . . , c(k1 +k2 +1)−|w|},
and for i = 0, 1, . . . , c−1, let ẘ(i) = ẘ(i+1)(k1+k2+1)−1 . . . ẘi(k1+k2+1), so ẘ = ẘ(c−1)

|| · · · ||ẘ(0). For i = 0, . . . , c−1,

let b̄(i)
= ẘ(i)

k2−1 . . . ẘ
(i)
0 , ā

(i) = ẘ(i)
k1+k2−1 . . . ẘ

(i)
k2
, z̄(i) = ẘ(i)

k1+k2
, so z̄(i)||ā(i)||b̄(i)

= ẘ(i).
For every round i = 0, . . . , r − 1 of the HB+ phase, the adversary ”applies” ẘ(i mod c) to that round. For

example, for c = 2, the transcripts are modified in the following way:

M = · · ·|| z(1) || a(1) || b(1) || z(0) || a(0) || b(0)

M̂ = · · ·|| ẑ(1) || â(1) || b̂(1)
|| ẑ(0) || â(0) || b̂(0)

M̄ = · · ·||z(1) + ẑ(1)||a(1) + â(1)||b(1) + b̂(1)
||z(0) + ẑ(0)||a(0) + â(0)||b(0) + b̂(0)

= · · ·|| z̄(1) || ā(1) || b̄(1)
|| z̄(0) || ā(0) || b̄(0)

= · · ·|| ẘ(1)
|| ẘ(0)

Now, if ā(i)x+ b̄(i)y+ z̄(i) = 0 for every i = 0, . . . , c−1, then ν = ν̂ and the tag is accepted with overwhelming
probability. If for some i, ā(i)x + b̄(i)y + z̄(i) = 1, then |ν + ν̂| = dr/c, where d is the number of such i’s.
If d is small (e.g. 1) and c is large (e.g. r/2), the slightly increased noise may be insufficient to guarantee a
failure in the HB+ part with high probability. Normally, if we only consider c � r, the probability of failure
is noticeable, so the adversary can use the same ẘ for a number of sessions, and if the tag is still accepted in
all of them, conclude that ā(i)x + b̄(i)y + z̄(i) = 0 for every i = 0, . . . , c − 1. Of course, the knowledge of the
extraction procedure E is helpful since if ν , ν̂, then the second stage of Trusted-HB may result in rejection.
We discuss this point in Section 4.2.2.

As before, it is possible to target only y. In addition, since each w is broken into pieces that are ”applied”
to consecutive rounds, the adversary may target only x; however, it is not clear how this variation would be
useful: to learn s, the adversary probably needs to learn y first anyway.

Since the probability that c random equations hold simultaneously is 1/2c, the expected number of linear
equations per ẘ is only c/2c. While this variant appears somewhat less efficient than the original MIM attack
with short MIM patterns, the adversary may use it if there are no or not enough short patterns (e.g. when
n + 1 > k1 + k2 + 1).

4.2.2 The Second Attack

Consider an attacker who interferes with just a few rounds of the HB+ stage of the protocol, but makes sure
that h(M) = h(M̂). The modified transcript is still accepted with a high probability because the difference
between ν and ν̂ is very small. However, in Trusted-HB even a small such discrepancy may lead, with a high
probability, to e , ê, so t , t̂ and the tag is rejected.

Let us focus on the von Neumann procedure used in Trusted-HB. Assume that the adversary finds a
MIM pattern w of length ≤ k1 + k2 + 1 and ”applies” the corresponding ẘ only to the first round of HB+.
Then weight(ν̄) ≤ 1, so the HB+ stage is still passed with very high probability. If āx + b̄y + z̄ = 0, then
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ν = ν̂, so t = t̂ and the tag is accepted. If āx + b̄y + z̄ = 1, then ν0 , ν̂0 and νi = ν̂i for every i > 0.
Let us refer to Equation 5 that defines the von Neumann procedure F. If ν0 = ν1, then ν̂0 , ν̂1, so F(ν̂) =

F(ν̂r−1 . . . ν̂3ν̂2)||ν̂0 and F(ν) = F(νr−1 . . . ν3ν2). Since ν̂r−1 . . . ν̂3ν̂2 = νr−1 . . . ν3ν2, we get F(ν̂) = F(ν)||ν̂0.
Thus, ê = en−2 . . . e1e0ν̂0 is different from e, unless en−1 = en−2 = · · · = e0 = ν̂0, which is extremely unlikely.
Likewise, if ν0 , ν1, then with overwhelming probability, e , ê. Since h(M) = h(M̂) (because w is a MIM
pattern), we conclude that with overwhelming probability, acceptance means āx + b̄y + z̄ = 0 and rejection
means āx + b̄y + z̄ = 1. The rest of the analysis is the same as in Section 4.2.1, so the only difference is that
the adversary applies ẘ only to the first round instead of to all the rounds. In particular, the adversary may
target only y if |w| < k2.

This attack may be more useful than the attack of Section 4.2.1 when the adversary has to use a MIM
pattern w of length ≥ k1 + k2 + 1 and there is no c such that |w| ≤ c(k1 + k2 + 1) and c|r, for example, if
n + 1 > k1 + k2 + 1 and r is prime. Let c = dm/|w|e and define ẘ = ẘ(c−1)

|| · · · ||ẘ(0) and b(i), a(i), z(i) for
i = 0, . . . , c − 1 as in Section 4.2.1. Now the adversary ”applies” each ẘ(i) only to rounds 0 to c − 1. For
c � r, the tag will still have a high probability of passing the HB+ stage since weight(ν̄) ≤ c. Let d be the
smallest even number, such that νi = ν̂i for all i ≥ d. Then F(ν) = F(νr−1 . . . νd)||F(νd−1 . . . ν0) and F(ν̂) =

F(νr−1 . . . νd)||F(ν̂d−1 . . . ν̂0), so F(ν) = F(ν̂) is almost always equivalent to F(νd−1 . . . ν0) = F(ν̂d−1 . . . ν̂0),
which is quite unlikely (e.g. Pr[|F(νd−1 . . . ν0)| = |F(ν̂d−1 . . . ν̂0)|] ≤ 1/2). By using the same MIM pattern a
constant number of times, the adversary can be confident that the c linear equations (ā(i)x + b̄(i)y + z̄(i) = 0
for every i = 0, . . . , c − 1) hold if and only if all the sessions result in acceptance.

4.2.3 Completion of the Attacks With Known x, y, p

Once the adversary knows x and y, he can always deduce ν (and hence e) from the transcript and learn s via
a passive attack. For each observed session, the adversary can convert U M = t + e (Equation 1), where the
M, t and e are known, into a system of linear equations in the bits of s in time O(mn2) by replacing each of
the mn entries of U by a linear combination of the n bits of s. With O(1) sessions, the adversary collects n
linearly independent linear equations in the bits of s and solves for s by Gaussian elimination in time O(n3).

When the recommended parameter values are used, the query complexity of the MIM attacks of Sections
4.2.1 and 4.2.2 is O(k1 + k2) = O(29). Their time complexity is dominated by the O(mn2) = O(233) steps to
recover s. The memory is needed mostly to store the systems of linear equations, so the memory complexity
of the attacks is O(max((k1 + k2)2, n2)) = O(218).

4.2.4 A Toy Example

Since demonstrating an attack on Trusted-HB with the recommended parameter values would take a lot
of space, we will consider a toy example with unrealistically small parameter values purely for illustrative
purposes. Let k1 = 4, k2 = 10, r = 40, η = 0.25, n = 10, p(X) = X10 + X3 + 1, which corresponds
to ui+10 = ui+7 + ui for −9 = 1 − n ≤ i ≤ m − 1 = r(k1 + k1 + 1) − 1 = 599. Let the secrets be
x = 01012, y = 11001011102, s = 11100010012 and consider the transcript M which is summarized in
Table 1. In the 0’th round, the tag sends b(0) = 11000101002, the reader replies with a(0) = 10002, the tag
generates ν0 = 0 and sends back z0 = xa(0) + yb(0) + ν0 = 1, etc.
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Table 1: Transcript Summary (in binary)
Round i b(i) a(i) z(i) (ν(i))

0 1100010100 1000 1 (0)
1 0101101110 0011 1 (1)
2 1001110110 1010 0 (0)
3 0001001111 0111 1 (0)
4 0010111011 0001 1 (1)
5 1101110100 0111 0 (0)
6 0100010001 1100 0 (0)
7 1101110111 0100 1 (1)
...

...
...

...
...

The transcript consists of m = 600 bits:

M = . . . 1︸︷︷︸
z(3)

0111︸︷︷︸
a(3)

0001001111︸         ︷︷         ︸
b(3)

0︸︷︷︸
z(2)

1010︸︷︷︸
a(2)

1001110110︸         ︷︷         ︸
b(2)

1︸︷︷︸
z(1)

0011︸︷︷︸
a(1)

0101101110︸         ︷︷         ︸
b(1)

1︸︷︷︸
z(0)

1000︸︷︷︸
a(0)

11000101002︸          ︷︷          ︸
b(0)

(9)

The noise generated by the tag has r = 40 bits: ν = . . . 100100102, so, according to the von Neumann
procedure, e = . . . 0102. The first few columns of the LFSR-generated Toeplitz matrix U, written as a
sequence of (transposed) binary numbers with the tap bits underlined, are:

s = s(0) = 11100010012

s(1) = 01110001002

s(2) = 10111000102

etc.

Then

t = h(M) + e = ( 0︸︷︷︸
b(0)

0

· 11100010012︸          ︷︷          ︸
s(0)

+

0︸︷︷︸
b(0)

1

· 01110001002︸          ︷︷          ︸
s(1)

+

1︸︷︷︸
b(0)

2

· 10111000102︸          ︷︷          ︸
s(2)

+

· · · ) + . . . 0102︸   ︷︷   ︸
e

Based on the feedback function ui+10 = ui+7 + ui, let ∆ = 100100000012. Since |∆| = n + 1 = 11 ≤
k1 + k2 + 1 = 15, the adversary may set ∆̊ = Shiftk1+k2+1(∆, j) for j = 0, . . . , k1 + k2 − n = 4 and, using the
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attack of Section 4.2.1, learn the following 5 linear equations in the bits of x, y:

y0 + y7 + x0 = 1 (10)

y1 + y8 + x1 = 0 (11)

y2 + y9 + x2 = 1 (12)

y3 + x0 + x3 = 0 (13)

y4 + x1 = 0 (14)

The adversary needs k1 + k2 = 14 linearly independent linear equations in total, and he can get them by
using additional MIM patterns. For example, let

w = Shift2n+1(∆, n) + Shift2n+1(∆, 0) = 1001000000100000000002 + 0000000000100100000012

= 1001000000000100000012

Since |w| = 2n+1 = 21 ≤ 30 = 2(k1+k2+1) and 2|r = 40, the adversary may use ẘ = Shift2(k1+k2+1)(w, j)
with j = 0, . . . , 9 in the 2-round version of the attack of Section 4.2.1 or 4.2.2. For example, with j = 0, he
uses:

ẘ = Shift2(k1+k2+1)(w, 0) = 0︸︷︷︸
z̄(1)

0000︸︷︷︸
ā(1)

0000100100︸         ︷︷         ︸
b̄(1)︸                          ︷︷                          ︸

ẘ(1)

0︸︷︷︸
z̄(0)

0000︸︷︷︸
ā(0)

00100000012︸          ︷︷          ︸
b̄(0)︸                           ︷︷                           ︸

ẘ(0)

Since both ā(0)x + b̄(0)y + z̄(0) = 0 and ā(1)x + b̄(1)y + z̄(1) = 0, the identification session results in acceptance
with overwhelming probability, yielding 2 linear equations:

j = 0, y0 + y7 = 0 (15)

y2 + y5 = 0 (16)

Continuing with j = 1, . . . , 9, the adversary gets the following 4 additional linear equations (note that no
equations are generated for j = 1 or j ≥ 4):

j = 2, y2 + y9 = 0 (17)

y4 + y7 = 0 (18)

j = 3, y3 + x0 = 0 (19)

y5 + y8 = 0 (20)

At this point the adversary has 11 linearly independent linear equations (10-20) in the k1 + k2 = 14 bits of
x and y and can get the remaining three equations, for example, by trying some other MIM pattern. Due to
space limitations (the matrix U has m = 600 columns), we also omit the detailed description of the recovery
of s, assuming it should already be pretty clear from Section 4.2.3.

4.3 A Passive Attack

When p and e are secret, the signature scheme used in Trusted-HB is ε-otp-secure. Based on this proven
fact, Theorem 1 of [15] states that any MIM attack on Trusted-HB has a probability of success of at most ε
because the reader’s view of the noise is unknown to the adversary. In fact, this claim is incorrect since e is
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a recycled version of ν, and resembles the situation in which someone re-uses a one-time pad, in which all
bets are off. Consequently, there is no reason why Trusted-HB should be secure even against passive attacks.
While the attack that we are about to describe is based on the specific extraction procedure recommended by
the developers of Trusted-HB, it simply highlights the fundamental flaw in the security proof of the scheme.

The von Neumann randomness extraction rule, described in (5), states that if ν(0) , ν(1), then e0 = ν(0).
Since at least one of (ν(0) + ν(1)) = 0 and (ν(0) + e0) = 0 must be true, this can be expressed by the following
equation which is always true:

(ν(0) + ν(1))(ν(0) + e0) = 0 (21)

Denote the first row of the Toeplitz matrix U by w = um−1 . . . u0. Then we can re-write (21) as a quadratic
equation in the bits of x, y, and w:

0 = (a(0)x + b(0)y + z(0) + a(1)x + b(1)y + z(1))(a(0)x + b(0)y + z(0) + t0 + Mw)

= a(1)x · a(0)x + a(0)x · (z(1) + t0 + 1) + a(1)x · (z(0) + t0)︸                                                                 ︷︷                                                                 ︸
≤

k1(k1+1)
2 monomials

+ b(1)y · b(0)y + b(0)y · (z(1) + t0 + 1) + b(1)y · (z(0) + t0)︸                                                                ︷︷                                                                ︸
≤

k2(k2+1)
2 monomials

+ (a(1)x) · (b(0)y) + (a(0)x) · (b(1)y)︸                                     ︷︷                                     ︸
≤k1k2 monomials

+ ((a(0) + a(1))x + (b(0) + b(1))y + (z(0) + z(1))) · (Mw)︸                                                               ︷︷                                                               ︸
≤(k1+k2+1)m monomials

+ (z(0) + z(1))(z(0) + t0)

(22)

where a(0), b(0), z(0), a(1), b(1), z(1), and M are known.
All the monomials that appear in (22) are of degree at most 2, and their number is

Q ≤ k1(k1 + 1)/2 + k2(k2 + 1)/2 + k1k2 + (k1 + k2 + 1)m = O(k2
2r)

assuming k2 > k1. If the adversary passively observes O(Q) identification sessions, he can get Q linearly
independent linear equations in all these monomials and solve the system for x, y,w by linearization in
time O(Q3) = O((k2

2r)3). Note that the knowledge of w = um−1 . . . u0 gives us u0, . . . , un−1, and since the
sequence u1−n, . . . , u0, . . . is generated by an LFSR, the adversary can express every bit of s = u0 . . . u1−n as
a linear combination of u0, . . . , un−1. However, the complexity of this straightforward implementation of the
attack is high: the query complexity in terms of the number of sessions is Q = O(k2

2r), the time complexity
is O(Q3) = O((k2

2r)3), and the memory complexity, dominated by the storage needed for the system of
equations, is O(Q2) = O((k2

2r)2). For the recommended parameter values k2 = 512 = 29, r = 1164 ≈ 210,
this attack requires O(228) queries, time of O(284), and memory of O(256), which makes it infeasible in
practice.

As explained in 4.1, the feedback polynomial is usually known, and in this case (22) can be greatly sim-
plified, leading to a much lower complexity. Each bit of w can be expressed as a known linear combination
of the bits of s, so given M, one can compute M′ of length n such that Mw = M′s. Thus, (22) becomes:

0 = (a(0)x + b(0)y + z(0) + a(1)x + b(1)y + z(1))(a(0)x + b(0)y + z(0) + t0 + M′s) (23)
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The number of monomials of degree ≤ 2 is

Q′ ≤ k1(k1 + 1)/2 + k2(k2 + 1)/2 + k1k2 + (k1 + k2 + 1)n = O(k2
2) (24)

assuming k2 > k1, n.
The complete algorithm is as follows:

• Observe O(Q′) sessions and convert each equation of type (22) into a quadratic equation in the bits of
x, y, s. (To simplify checking for linear independence, this step can be combined with the next step).

To produce the M′ of length n such that M′s = Mw, we use the MIM pattern ∆ of (7). Let

M′′ = Shiftm+n−1(M, n − 1)

w′′ = w||u−1 . . . u1−n = um−1 . . . u1−n

Thus, Mw = M′′w′′. Since ∆ is a complete MIM pattern,

∀A ∈ {0, 1}m+n−1, j = 0, . . . ,m − 2, Aw′′ = (A + Shiftm+n−1(∆, j)) · w′′

Therefore, we can obtain the M′ by the following procedure:

for j← m + n − 1 downto n do
if w′′j = 1 then

set M′′ ← M′′ + Shiftm+n−1(∆, j − n); /* force M′′j = 0 */
end

end
Set M′ ← M′′n−1 . . . M′′0 ; /* M′′ = 0 . . . 0︸︷︷︸

m−1

||M′ */

The output of the algorithm satisfies M′s = M′ · u0 . . . u1−n = M′′w′′ = Mw. The computation
requires minimal extra memory and is performed in time O(ml).

• Solve for x, y, s by linearization in time O(Q′3) = O(k6
2).

Thus, the query complexity is O(k2
2) and the time complexity is O(k6

2). Memory is used mainly for two
purposes: storing transcripts M one at a time (m bits) and storing O(Q′) precomputed equations (23) to solve
the system (O(Q′2) bits), so the total memory complexity is O(m + Q′2) = O(k4

2). Note that the complexity
of the attack does not depend on η. While the query complexity is pretty small, if fewer than Q′ queries are
available, it could still be possible to solve the quadratic system reasonably fast using the methods described
in [33].

Consider the concrete values k1 = 80, k2 = 512, n = 101 recommended for Trusted-HB. The query
complexity is Q′ = 235320 = O(218) = O(k2

2), so the total time complexity is O(254) and the memory
complexity is O(236), which are (barely) feasible.

4.3.1 A Toy Example

Consider the following toy example with unrealistically small parameter values: k1 = 1, k2 = 1, r = 4, n = 2,
so m = (k1 + k2 + 1)r = 12. The number of rounds r is artificially small to keep the transcript short, so we
will only consider those sessions where the von Neumann procedure succeeds in producing at least one bit
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of output needed for the passive attack; if only a single bit is produced, we denote the other bit by ’?’ (the
adversary does not look at it anyway). Let the connection polynomial of the LFSR be p(X) = X2 + X + 1,
which corresponds to ui+2 = ui+1 + ui for −1 = 1 − n ≤ i ≤ m − 1 = r(k1 + k2 + 1) − 1 = 11 and ∆ = 1112.
Let the secrets be x = 1, y = 0, s = 012, so the Toeplitz matrix is

U =

[
u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11
u−1 u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

]
=

[
0 1 1 0 1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0 1 1 0 1

] (25)

According to (24), we need about k1(k1 + 1)/2 + k2(k2 + 1)/2 + k1k2 + (k1 + k2 + 1)n = 9 identification
sessions to recover the secrets. The transcripts of the eavesdropped identification sessions are summarized
in Table 2. For example,

[
1
1

]
︸︷︷︸

t(0)

=

[
0 1 1 0 1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0 1 1 0 1

]
︸                                                     ︷︷                                                     ︸

U

·



0
1
0
0
0
0
1
0
0
0
1
0

︸︷︷︸
M(0)

+

[
1
0

]
︸︷︷︸

e(0)

Using the assumed knowledge of p, the adversary can compute:

w =



s1
s1 + s0

s0
s1

s1 + s0
s0
s1

s1 + s0
s0
s1

s1 + s0
s0


Since |x| = |y| = 1, let x = x0, y = y0 and write a system of equations of type (23), one per eavesdropped
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Table 2: Transcript Summaries (in binary)
Session j Round i (b(i))( j) (a(i))( j) (z(i))( j) ((ν(i))( j)) (e( j)) t( j) = U M( j) + e( j)

0
0 0 1 0 (1) ([

1
0

]) [
1
1

]
1 0 0 0 (0)
2 1 0 0 (0)
3 0 1 0 (1)

1
0 1 0 1 (1) ([

1
?

]) [
0
?

]
1 1 1 0 (1)
2 1 0 1 (1)
3 0 1 1 (0)

2
0 1 0 0 (0) ([

0
0

]) [
0
1

]
1 1 1 0 (1)
2 0 0 0 (0)
3 0 0 1 (1)

3
0 0 1 0 (1) ([

1
0

]) [
1
0

]
1 1 1 1 (0)
2 0 1 1 (0)
3 1 1 0 (1)

4
0 1 0 1 (1) ([

1
?

]) [
0
?

]
1 0 0 1 (1)
2 0 0 1 (1)
3 0 1 1 (0)

5
0 1 0 1 (1) ([

1
?

]) [
0
?

]
1 1 1 1 (0)
2 0 1 0 (1)
3 1 0 1 (1)

6
0 0 0 1 (1) ([

0
?

]) [
1
?

]
1 1 1 0 (1)
2 0 1 1 (0)
3 0 0 1 (1)

7
0 1 0 0 (0) ([

0
1

]) [
0
1

]
1 0 1 0 (1)
2 1 0 1 (1)
3 0 1 1 (0)

8
0 0 0 1 (1) ([

1
?

]) [
0
?

]
1 0 0 0 (0)
2 0 0 0 (0)
3 1 1 1 (0)
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session: 

x(x + 1 + s1) = 0
(x + 1)(y + 1 + s0 + s1) = 0
x(y + s1) = 0
(y + 1)(x + 1) = 0
y(y + 1 + s0) = 0
x(y + 1 + s0 + s1) = 0
(x + y + 1)(s0 + s1) = 0
(y + x)y = 0
1 + s0 = 0

⇔



0 0 0 0 0 0 1 0 0
1 1 1 1 1 1 1 0 0
0 0 0 0 1 0 1 0 0
1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 1 1 1 0 0
0 0 1 1 0 1 1 1 1
0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0


·



x
y
s0
s1
xy
xs0
xs1
ys0
ys1


=



0
1
0
1
0
0
0
0
1


The system contains 9 linearly independent linear equations in 9 monomials and, thus, can be easily solved
for x, y, s0, s1 by Gaussian elimination.

5 Conclusion

In this paper, we described several attacks on Trusted-HB in the realistic scenario when the connection
polynomial of the LFSR is known, described a potential problem with generating a sufficiently long random-
looking bitstring for low noise rates, and showed why Trusted-HB cannot be trusted even when the connec-
tion polynomial is secret. However, the complexity of our attack is relatively high, and finding a more
efficient attack in this case is left as an open problem. More generally, the problem of finding lightweight
LPN-based identification schemes that are provably secure against arbitrary man-in-the-middle attacks re-
mains an open direction for research.
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