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Abstract

Traceability codes are combinatorial objects introduced by Chor,
Fiat and Naor in 1994 to be used in traitor tracing schemes to protect
digital content. A k-traceability code is used in a scheme to trace
the origin of digital content under the assumption that no more than
k users collude. It is well known that an error correcting code of
high minimum distance is a traceability code. When does this ‘error
correcting construction’ produce good traceability codes? The paper
explores this question.

The paper shows (using probabilistic techniques) that whenever
k and q are fixed integers such that k ≥ 2 and q ≥ k2 − dk/2e + 1,
or such that k = 2 and q = 3, there exist infinite families of q-ary
k-traceability codes of constant rate. These parameters are of interest
since the error correcting construction cannot be used to construct k-
traceability codes of constant rate for these parameters: suitable error
correcting codes do not exist because of the Plotkin bound. This
answers a question of Barg and Kabatiansky from 2004.

Let ` be a fixed positive integer. The paper shows that there exists
a constant c, depending only on `, such that a q-ary 2-traceability
code of length ` contains at most cqd`/4e codewords. When q is a
sufficiently large prime power, a suitable Reed–Solomon code may be
used to construct a 2-traceability code containing qd`/4e codewords.
So this result may be interpreted as implying that the error correcting
construction produces good q-ary 2-traceability codes of length ` when
q is large when compared with `.

1 Introduction

Traceability codes were first introduced by Chor, Fiat and Naor [7] in order
to construct traitor tracing schemes. We need to introduce some notation
before defining these codes.

Let F be a finite set of cardinality q. For q-ary words x,y ∈ F ` of length
`, we write d(x,y) for the (Hamming) distance between x and y. For a code
C ⊆ F `, we write d(C) for the minimum distance of C. The rate of a q-ary
code C of length ` is defined to be (logq |C|)/`.

Let P ⊆ F ` be a set of q-ary words of length `. We define the set desc(P )
of descendants of P to be the set of words whose components are chosen from
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the corresponding components of words in P :

desc(P ) = {w ∈ F ` | ∀i ∈ {1, 2, . . . , `} ∃x ∈ P : wi = xi}.

For example, if desc({1111, 1231}) then

desc(P ) = {1111, 1211, 1131, 1231}.

We often abuse notation by writing desc(x,y, . . . , z) for desc({x,y, . . . , z}).
Let k be an integer such that k ≥ 2. Let C ⊆ F ` be a code. For a word

w ∈ F `, we say that a codeword x ∈ C is a (possible) parent of w if there
exists a set P ⊆ C of k or fewer codewords such that x ∈ P and w ∈ desc(P ).

A code C is a k-traceability code (or a k-TA code) if the following condition
is satisfied. For all words w ∈ F `, the set of codewords at minimum distance
to w is contained in every set P ⊆ C with |P | ≤ k and w ∈ desc(P ).
This condition means that if we are given a word w that is a descendant of
an unknown set P of k or fewer codewords, we can deduce some information
about P : the codewords at minimum distance to w all lie in P . The following
example of a 2-traceability code of length 3 is simple to define, and seems to
be new:

Example 1 Let q = 2r+1, where r is a positive integer. Let F = {0, 1, . . . 2r}.
Define C = C1 ∪ C2 ∪ C3, where

C1 = {(0, i, i) : 1 ≤ i ≤ r}
C2 = {(i, 0, r + i) : 1 ≤ i ≤ r}
C3 = {(r + i, r + i, 0) : 1 ≤ i ≤ r}.

Then C is a q-ary 2-traceability code of length 3, containing 3r = (3/2)(q−1)
codewords.

An error correcting code of high minimum distance is a k-traceability
code. More precisely, the following result is due to Chor, Fiat and Naor [7]
(a proof can also be found in Blackburn [4]):

Theorem 1 Let C be a q-ary error correcting code of length `. If d(C) >
`− d`/k2e then C is a k-traceability code.
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This theorem is tight for MDS codes: see Jin and Blaum [11]. Fernandez,
Cotrina, Soriano and Domingo [8] show that a linear code which satisfies a
weaker condition than high minimum distance is a k-traceability code, but
do not give any examples of codes meeting this weaker condition.

Most examples of k-traceability codes known to the authors are (explicitly
or implicitly) constructed by exhibiting an error correcting code and then
applying Theorem 1. This is certainly true for the traceability codes in
Staddon, Stinson and Wei [14] and van Trung and Martirosyan [15]. An
exception is a construction due to Lindkvist, Löfvenberg and Svanström [12]:
they construct q-ary codes T (M, q) that have M codewords and are of length(
M
q−1

)
whenever M ≥ q + 1 ≥ 4. They prove that T (M, q) is a k-traceability

code whenever

k − 1

k

((
M

q − 1

)
−
(
M − k
q − 1

))
<

(
M − 1

q − 2

)
+

(
M − k − 1

q − k − 1

)
,

an inequality that is always satisfied when k = 2. Note however that these
codes are small: their rates tend to zero very rapidly. Example 1 is unusual in
that it is a traceability code of short length that cannot be constructed using
Theorem 1. Indeed, the code is larger than any traceability code constructed
using Theorem 1: to see this, note that Theorem 1 constructs 2-traceability
codes of length 3 from error correcting codes with minimum distance 3, and
so codes constructed using Theorem 1 contain at most q codewords.

Example 1 opens up the possibility that there might exist traceability
codes that are much larger than the error correcting codes of high minimum
distance required by Theorem 1. This same possibility is at the core of the
following question due to Barg and Kabatiansky [3]:

Question 1 Let k and q be such that k+1 ≤ q ≤ k2. Do there exist infinitely
many q-ary k-traceability codes whose rate is bounded away from zero?

(It is not difficult to show that when q ≤ k a q-ary k-traceability code
has at most q codewords, and so the rate cannot be bounded away from
zero in this situation. This explains the lower bound on q in Question 1.)
Theorem 1 cannot be used to answer Question 1, since the Plotkin bound
(see van Lint [13, Page 67], for example) forbids the existence of codes with
minimum distance large enough and of rate bounded away from zero. We
answer Barg and Kabatiansky’s question (in the affirmative) as follows.
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Theorem 2 Let k and q be integers such that k ≥ 2. When

k2 − dk/2e+ 1 ≤ q

or when k = 2 and q = 3, the following statement holds. There exists
a positive constant R (depending on q and k) and a sequence of q-ary k-
traceability codes C1, C2, . . . with the property that C` has length ` and |C`| ∼
qR` as `→∞.

One interpretation of Theorem 2 is that the codes constructed by The-
orem 1 are far from optimal when q is fairly small and ` is large. We now
consider the complementary situation when ` is fixed, and q becomes large.
We prove the following theorem.

Theorem 3 Let ` be a positive integer. Then there exists a constant c,
depending only on `, with the following property. A 2-traceability code C of
length ` has at most cqd`/4e codewords.

When q is a sufficiently large prime power, there exists a q-ary code of
length ` and minimum distance ` − d`/4e + 1 containing qd`/4e codewords.
Thus, by Theorem 1, there exists a q-ary 2-traceability code of length ` with
qd`/4e codewords. So the order of magnitude of the bound of Theorem 3 is
tight. We can interpret Theorem 3 as implying that Theorem 1 is a good
way of constructing 2-traceability codes when q is large, as it produces 2-
traceability codes with an optimal number of codewords, up to a constant
(though possibly large) factor.

Traceability codes are a special class of IPP codes: see Hollmann, van
Lint, Linnartz and Tolhuizen [9], and Staddon, Stinson and Wei [14]. Black-
burn [4] contains a survey of these codes (and related objects such as frame-
proof codes and secure frameproof codes). Barg, Blakley and Kabatiansky [2]
discusses analogues of IPP codes with a more general notion of descendant.
We note that Hollmann et al [9] proved that a q-ary 2-IPP code of length
` contains at most 3qd`/3e codewords, but their methods do not extend to
prove Theorem 3.

The structure of the rest of this paper is as follows. We prove Theorem 2
in Section 2, and we prove Theorem 3 in Section 3. Finally, we conclude with
some open problems in Section 4.
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2 Probabilistic existence results

The aim of this section is to establish Theorem 2. An outline of our proof
is as follows. We pick a code at random. We define a ‘bad’ event to be a
set {x} ∪ P of k + 1 codewords that contradicts the k-traceability property:
there is a descendent of P that is closer to another codeword x than to any
of the codewords in P . We show that only a small number of codewords are
involved in a bad event, and so once these codewords are removed we obtain
a k-traceability code.

We will use the following consequence of the Chernoff bound, due to Jan-
son [10] (see Bollobás [6, Page 12]). Recall that Bin(n, p) is the random
variable taking the Binomial distribution with n trials and success probabil-
ity p, so Pr

(
Bin(n, p) = i

)
=
(
n
i

)
pi(1− p)n−i for 0 ≤ i ≤ n.

Lemma 1 Let p ∈ [0, 1] and n be a positive integer. Then for all non-
negative ε,

Pr
(
Bin(n, p) ≤ (p− ε)n

)
≤ exp

(
−ε

2n

2p

)
.

Lemma 2 Let x,y1,y2, . . . ,yk ∈ F ` be chosen uniformly and independently
at random. Let D be the random variable defined by

D = min{d(x, z) : z ∈ desc(y1,y2, . . . ,yk)}.

Define µ0 = (1− q−1)k. Then for any positive real number ε,

Pr
(
D ≤ (µ0 − ε)`

)
≤ exp

(
− ε

2`

2µ0

)
.

Proof: For i ∈ {1, 2, . . . , `}, write Di for the random variable defined to be 1
if x disagrees with all of y1,y2, . . . ,yk in their ith positions, and is defined to
be 0 otherwise. Note that D1, D2, . . . , D` are independent, and each takes the
value 1 with probability µ0. Since D =

∑`
i=1Di, we find that D = Bin(`, µ0)

and so the lemma follows by Lemma 1. �

Lemma 3 Let y1,y2, . . . ,yk ∈ F ` be chosen uniformly and independently at
random, and let P = {y1,y2, . . . ,yk}. Let X be the maximum distance that
any z ∈ desc(P ) can be from the set P . So X is the random variable defined
by

X = max
{

min{d(z,yi) : i ∈ {1, 2, . . . , k}} : z ∈ desc(P )
}
.
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Define µ1 = k−1
k

(1− q−(k−1)). Then for any positive real number ε,

Pr
(
X ≥ (µ1 + ε) `

)
≤ exp

(
−k

2qk−1ε2`

2(k − 1)2

)
.

Proof: For words y1,y2, . . . ,yk ∈ F `, define f(y1,y2, . . . ,yk) to be the
number of components where all of y1,y2, . . . ,yk are equal. We claim that
for any z ∈ desc(y1,y2, . . . ,yk)

min{d(z,yi) : i ∈ {1, 2, . . . , k}} ≤ k−1
k

(`− f(y1,y2, . . . ,yk)).

To see this, let I be the set of positions where y1,y2, . . . ,yk are not all equal,
so |I| = `−f(y1,y2, . . . ,yk). The definition of descendent implies that there
exists a parent yj that agrees with z on at least 1/k of the positions in I
(and so disagrees with z on at most k−1

k
of the positions in I). Moreover, yj

clearly agrees with z on all positions not in I. Hence

min{d(z,yi) : i ∈ {1, 2, . . . , k}} ≤ d(z,yj) ≤ k−1
k

(`− f(y1,y2, . . . ,yk)),

and so our claim follows.
Define the random variable Y by

Y = (k−1)`
k
− k−1

k
f(y1,y2, . . . ,yk).

The argument in the paragraph above shows that

Pr
(
X ≥ (µ1 + ε) `

)
≤ Pr

(
Y ≥ (µ1 + ε) `

)
,

and so it suffices to show that

Pr
(
Y ≥ (µ1 + ε) `

)
≤ exp

(
−k

2qk−1ε2`

2(k − 1)2

)
.

For i ∈ {1, 2, . . . , `}, define Yi to be the random variable which is equal to
1 when all of y1,y2, . . . ,yk are equal at position i, and 0 otherwise. Clearly
Yi = 1 with probability q−(k−1), and Y = (k−1)`

k
− k−1

k

∑`
i=1 Yi. Since the

random variables Yi are independent,
∑`

i=1 Yi = Bin(`, q−(k−1)), and so the
definition of µ1 implies that

Pr
(
Y ≥ (µ1 + ε) `

)
= Pr

(
Bin(`, q−(k−1)) ≤

(
q−(k−1) − k

k−1
ε
)
`
)
.

The lemma now follows, by Lemma 1. �
Before we prove the main theorem of the section, we state the following

technical lemma.
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Lemma 4 Let k and q be positive integers such that k ≥ 2 and q ≥ 2. Then

(k − 1)q(qk−1 − 1) < k(q − 1)k (1)

if and only if either k = 2 and q = 3 or

k2 − dk/2e+ 1 ≤ q. (2)

Our proof of this lemma is straightforward, but is detailed and not espe-
cially illuminating. A brief outline of the proof is as follows. The lemma is
easy to prove when k = 2, so we may assume that k ≥ 3. Let β be a real
number. To prove the lemma, define the real number q by q = k2−(1/2)k+β.
It is sufficient to show that(

q

q − 1

)k
−
(

q

(q − 1)k

)
<

k

k − 1
(3)

holds when β = 1/2, but does not hold when β = 0. Expanding both sides
of (3) as power series in k−1, we find that the coefficients of k−i agree when
i = 0, 1, 2. The coefficient of k−3 on the left hand side of (3) is less than
the coefficient of k−3 on the right hand side if and only if β > 5/12. This
establishes our lemma whenever k is sufficiently large. Crude estimates for
the absolute values of the O(k−4) terms on both sides of (3) show that in fact
the lemma holds for k > 1000. Finally some simple computations (we used
Mathematica) verify that the inequalities are equivalent for 3 ≤ k ≤ 1000.
More details of this proof are included in Appendix A.
Proof of Theorem 2: Let x,y1,y2, . . . ,yk ∈ F ` be chosen uniformly
and independently at random. Let T be the event that there exists z ∈
desc(y1,y2, . . . ,yk) such that

d(x, z) ≤ min{d(z,yj) : j ∈ {1, 2, . . . , k})},

and define p0 = Pr(T ). We claim that there exists a positive constant R
(depending only on q and k) such that

p0 = o(q−kR`) (4)

as ` → ∞. Proving this claim is sufficient to establish the theorem, as the
following argument shows.

Let ` be fixed. Define M = bqR`c. Choose M codewords c1, c2, . . . , cM ∈
F ` uniformly and independently at random. For a sequence of distinct indices
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i0, i1, . . . , ik ∈ {1, 2, . . . ,M}, let T(i0,i1,...,ik) be the ‘bad’ event that there exists
a descendant z ∈ desc(ci1 , ci2 , . . . , cik) such that

d(ci0 , z) ≤ min{d(z, cij ) : j ∈ {1, 2, . . . , k})}.

(We call such an event bad, since the code {ci : i ∈ {1, 2, . . . ,M}} is a k-
traceability code of cardinality M if and only if none of the events T(i0,i1,...,ik)

occur.)
Note that Pr(T(i0,i1,...,ik)) = p0. By linearity of expectation, the expected

number of bad events is (M !/(M − k − 1)!)p0, and so there is a choice of
c1, c2, . . . , cM so that at most b(M !/(M−k−1)!)p0c bad events occur. These
bad events involve at most (k + 1)b(M !/(M − k − 1)!)p0c codewords, and
so by removing these codewords we obtain a k-traceability code C` with M ′

codewords, where

M ′ ≥M − (k + 1)b(M !/(M − k − 1)!)p0c ≥M − (k + 1)Mk+1p0.

Our claim (4) implies that (k + 1)Mk+1p0 = o(M) and so M ′ ∼ M ∼ qR`.
Thus the theorem follows once we have established our claim.

Define µ0 = (1 − q−1)k and µ1 = k−1
k

(1 − q−(k−1)). Our assumption on
k and ` together with Lemma 4 implies that µ1 < µ0. Let ε be a positive
constant chosen so that µ1 +ε < µ0−ε. Recall the definitions of x,y1, . . . ,yk
and the event T from the first paragraph of the proof. Define the random
variables D and X as in Lemmas 2 and 3. Note that

Pr(T ) ≤ Pr(D ≤ X)

≤ Pr
(
D ≤ (µ0 − ε)`

)
+ Pr

(
X ≥ (µ1 + ε)`

)
≤ exp

(
− ε

2`

2µ0

)
+ exp

(
−k

2qk−1ε2`

2(k − 1)2

)
(by Lemmas 2 and 3)

= o(q−kR`)

where R is any constant such that

0 < R < min

{
ε2

2kµ0 log q
,

kqk−1ε2

2(k − 1)2 log q

}
.

Thus our claim (4) is established, and the theorem follows. �
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3 An upper bound on 2-traceability codes

We aim to prove Theorem 3 in this section. The following lemma is easy to
prove.

Lemma 5 Let x,y and w be words. Then w ∈ desc(x,y) if and only if

d(x,w) + d(w,y) = d(x,y).

For a code C of length `, a codeword x ∈ C and a subset I ⊆ {1, 2, . . . , `}
of positions, define

FC(x, I) = |{y ∈ C : xi = yi for all i ∈ I}| .

Lemma 6 Let t be a fixed positive integer, and let ` = 4t. There exists a
constant c′ (depending only on `) with the following property. Suppose that
C is a q-ary 2-traceability code of length ` containing two or more codewords.
Then there is a set X of at most c′qt codewords such that the subcode C ′ =
C \X of C has d(C ′) ≥ d(C) + 1.

Proof: Suppose that d(C) > ` − t. The Singleton bound (see van Lint [13,
Page 67], for example) implies that |C| ≤ qt, and so we may take X = C and
C ′ = ∅ in this case. Thus we may assume that d(C) ≤ `− t = 3t.

Suppose that d(C) ≤ t. Define a subcode C ′ of C by removing all code-
words in C that possess t positions that are not shared with another codeword.
So

C ′ = {x ∈ C : FC(x, I) > 1 for all t-subsets I ⊆ {1, 2, . . . , `}}.
Note that |X| = |C \ C ′| ≤

(
`
t

)
qt. We claim that there are no distinct code-

words x,y ∈ C ′ with d(x,y) = d(C). Assume, for a contradiction, that such a
pair exists. Let I be a t-subset of positions that contains all positions where
x and y disagree. Note that I exists, since d(C) ≤ t. Let z ∈ C \ {x} be such
that xi = zi for i ∈ I. Note that a choice for z exists, since FC(x, I) ≥ 2 by
the definition of C ′. But then x ∈ desc(y, z), which contradicts the fact that
C is a 2-traceability code. Thus d(C ′) > d(C), and so the lemma follows in
this case. Thus we may assume that d(C) > t.

Write d(C) = `− (t+ δ) for some integer δ. The previous two paragraphs
show that we may assume that 0 ≤ δ < 2t.

Define C ′ by

C ′ = {x ∈ C : FC(x, I) >
(
`−t
δ+1

)
for all t-subsets I ⊆ {1, 2, . . . , `}}.
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x ∈ C ′
A︷ ︸︸ ︷

0000 · · · 00

I︷ ︸︸ ︷
0000 · · · 00

D︷ ︸︸ ︷
0000 · · · 00

y ∈ C ′ 0000 · · · 00 1111 · · · 11 1111 · · · 11
z ∈ C ∗∗∗∗ · · · ∗∗ 0000 · · · 00 ∗∗∗∗ · · · ∗∗

w ∈ desc(y, z) 0000 · · · 00︸ ︷︷ ︸
|A|=t+δ

0000 · · · 00︸ ︷︷ ︸
|I|=t

1111 · · · 11︸ ︷︷ ︸
|D|=2t−δ

Figure 1: When t < δ < 2t

Note that

|C \ C ′| ≤
(
`− t
δ + 1

)(
`

t

)
qt ≤ 22`qt.

We claim that there are no distinct codewords x,y ∈ C ′ with d(x,y) =
d(C). To prove the lemma, it is sufficient to prove this claim. Assume, for a
contradiction, that such a pair exists. Let A be the set of positions where x
and y agree. So |A| = t + δ. Let I be a t-subset of positions disjoint from
A, so xi 6= yi for all i ∈ I. Note that such a subset exists, since d(C) ≥ t.
Write D for the set of positions not in A ∪ I. So |D| = 2t− δ. See Figure 1
for an illustration of our notation. The minimum distance of C implies that
a codeword is specified uniquely once t+ δ + 1 of its components have been
given. Thus there are at most

(
`−t
δ+1

)
codewords c ∈ C such that ci = xi for

all i ∈ I and such that ci = yi for δ + 1 or more of the positions i ∈ A ∪D.
Since FC(x, I) >

(
`−t
δ+1

)
, there is at least one choice for z ∈ C such that zi = xi

for i ∈ I and such that z and y agree in at most δ positions. In particular,
d(z,y) ≥ `− δ and z 6= x.

Assume that t < δ < 2t. Define w ∈ desc(y, z) by wi = zi when i ∈ I
and wi = yi otherwise. Note that d(w,y) = t, since for all i ∈ I we have
wi = zi = xi 6= yi. Moreover, by Lemma 5,

d(w, z) = d(y, z)− d(w,y) ≥ `− δ − t > t

since δ < 2t. So w is at distance t from its nearest parent. But wi = zi = xi
whenever i ∈ I, and wi = yi = xi in the t+ δ positions i where xi = yi. Thus
d(w,x) ≤ `− t− (t+δ) = 2t−δ < t. Since x is not a parent, this contradicts
the traceability property of the code, as required.

Finally, assume that δ ≤ t. At most δ positions in D are such that yi = zi,
and so there are at least 2(t−δ) positions i ∈ D such that yi 6= zi and xi 6= yi.
Choose a set J of these positions of size t − δ. (Note that this makes sense
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x ∈ C ′
A︷ ︸︸ ︷

0000 · · · 00

I︷ ︸︸ ︷
0000 · · · 00

J︷ ︸︸ ︷
0000 · · · 00

D \ J︷ ︸︸ ︷
0000 · · · 00

y ∈ C ′ 0000 · · · 00 1111 · · · 11 1111 · · · 11 1111 · · · 11
z ∈ C ∗∗∗∗ · · · ∗∗ 0000 · · · 00 2302 · · · 05 ∗∗∗∗ · · · ∗∗

w ∈ desc(y, z) 0000 · · · 00︸ ︷︷ ︸
|A|=t+δ

0000 · · · 00︸ ︷︷ ︸
|I|=t

2302 · · · 05︸ ︷︷ ︸
|J |=t−δ

1111 · · · 11︸ ︷︷ ︸
|D\J |=t

Figure 2: When 0 ≤ δ ≤ t

since δ ≤ t.) See Figure 2 for an illustration of our situation. Define a
descendent w ∈ desc(y, z) by wi = zi for i ∈ I ∪ J and wi = yi otherwise.
Note that d(w,y) = 2t− δ, since whenever i ∈ I we have wi = zi = xi 6= yi
and whenever i ∈ J we have that wi = zi 6= yi by our choice of J . Moreover,
by Lemma 5,

d(w, z) = d(y, z)− d(w,y) ≥ (`− δ)− (2t− δ) = 2t ≥ 2t− δ,

so w is at distance 2t − δ from its nearest parent. Note that wi = zi = xi
when i ∈ I, and wi = yi = xi when i ∈ A. Thus

d(w,x) ≤ `− (t+ δ)− t = 2t− δ.

Since x is not a parent, this contradicts the traceability property of the code,
as required. �
Proof of Theorem 3: Write ` = 4t − r, where t ∈ Z and 0 ≤ r ≤ 3.
By concatenating all codewords with the word 0r, we may realise C as a
traceability code of length 4t. So we may assume that ` is divisible by 4.

Let d = d(C). By applying Lemma 6 at most `−d times, we obtain a code
C ′ which has at most one codeword. We have removed at most (` − d)c′qt

codewords to obtain C ′, and so |C| ≤ (` − d)c′qt + 1 ≤ cqt where we define
c = `c′. So the theorem follows. �

4 Open problems

Theorem 2 completely settles Barg and Kabatiansky’s question in the case
when k = 2. So the following question is a natural and interesting one:
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Question 2 For which values of q and k such that k ≥ 3 and

k + 1 ≤ q ≤ k2 − dk/2e

is it the case that there exists an infinite family of q-ary k-traceability codes
of rate bounded away from zero?

In particular, does there exist an infinite family of q-ary 3-traceabilty codes
of rate bounded away from zero, when 4 ≤ q ≤ 7? We do not see how the
probabilistic methods of Theorem 2 can be used to answer this question;
indeed, perhaps there exists a ‘Plotkin bound’ for traceability codes that
forbids the existence of such codes.

Can the bound of Theorem 3 be extended to k-traceability codes? (For
IPP codes, the corresponding bound due to Hollmann et al [9] does indeed
generalise: see Alon and Stav [1] and Blackburn [5].) The following general-
isation is the most natural one.

Question 3 Let k and ` be fixed positive integers such that k ≥ 2. Does
there exist a constant c (depending only on k and `) such that the number
of codewords in a q-ary k-traceability code of length ` is bounded above by
cqd`/k

2e?

We believe this generalisation is true. It might be possible to extend the
methods of Theorem 3 to settle this question, but we cannot currently see
how this can be done.

Question 4 What is the best possible constant c in Theorem 3?

We see that we must have c ≥ 1, by using a suitable MDS code and The-
orem 1. Moreover, Example 1 shows that c > 1 in some situations. The
constant implicit in the proof of Theorem 3 is exponential in `: is this actu-
ally the case, or is this an artifact of our proof?
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A The equivalence of two inequalities

The purpose of this appendix is to give more details of the proof of Lemma 4.
The lemma is clearly true when k = 2, so we may assume that k ≥ 3. First,
to establish the lemma whenever k is sufficiently large, we aim to show that
whenever k ≥ 3 and q ≥ 2 are integers, with k sufficiently large:

qk − q
(q − 1)k

<
k

k − 1
(5)

if and only if
q ≥ k2 − dk/2e+ 1. (6)

We firstly note that the left hand side of (5) is a decreasing function of
q. To see this, we differentiate with respect to q to obtain

(q − 1)k(kqk−1 − 1)− (qk − q)k(q − 1)k−1

(q − 1)2k
.

But any power of q − 1 is positive, and

(q − 1)(kqk−1 − 1)− (qk − q)k = −kqk−1 + (k − 1)q + 1

< −kq + (k − 1)q + 1

= 1− q < 0.

So the left hand side of (5) is a decreasing function of q, as required.
Set q = k2 − (1/2)k + β for some fixed constant β (so we have now

dropped the requirement that q has to be an integer). We will prove that the
inequality (5) holds when β = 1/2, but the inequality does not hold when
β = 0. Since the left hand side of (5) is a decreasing function of q, this is
sufficient to prove the inequalities (5) and (6) are equivalent when q and k
are integers.

Let’s begin by expanding both sides of (5) as power series in k−1. Clearly
the right hand side is

1 + k−1 + k−2 + k−3 +O(k−4). (7)

Turning to the left hand side, we first note that q/(q − 1)k = O(k−2k+2) =
o(k−4). Hence the left hand side is equal to(

q

q − 1

)k
+ o(k−4) =

(
1 +

1

q − 1

)k
+ o(k−4)

= 1 +

(
k

1

)
1

q − 1
+

(
k

2

)
1

(q − 1)2
+

(
k

3

)
1

(q − 1)3
+O(k−4).
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and this expression is at most

1 +
k

q − 1
+

1

2

(
k

q − 1

)2

− k

2(q − 1)2
+

1

6

(
k

q − 1

)3

+O(k−4). (8)

If we set β′ = β − 1, we have that

k

q − 1
= k−1

[
k2

q − 1

]
= k−1

[
1

1− 1
2
k−1 + β′k−2

]
= k−1

[
1 +

(
1
2
k−1 − β′k−2

)
+
(

1
2
k−1 − β′k−2

)2
+O(k−3)

]
= k−1 + 1

2
k−2 + (1

4
− β′)k−3 +O(k−4).

Moreover,
k

2(q − 1)2
= 1

2
k−3 +O(k−4).

So (8) becomes

1+k−1+k−2+( 5
12
−β′)k−3+O(k−4) = 1+k−1+k−2+(1+ 5

12
−β)k−3+O(k−4).

This estimate for the left hand side of (5) combines with our estimate (7)
for the right hand side to show that whenever β > 5

12
the inequality holds

for all sufficiently large k, and whenever β < 5
12

the inequality fails to hold
for all sufficiently large k. (This is enough to prove the equivalence we want
whenever k is sufficiently large, but we have not been explicit with our error
terms and so we don’t have any specific lower bound on k yet.)

We are interested in the cases when β = 0 or β = 1
2
. It is easy to

check (using, for example, Mathematica) that the equivalence between our
inequalities holds for k ≤ 1000. Crude bounds on the error terms in the above
approximations shows that sum of the magnitudes of the O(k−4) terms in
our approximations of the left hand and right hand sides of (5) is bounded
above by 76k−4, and this is less than 1

12
k−3 for k ≥ 1000. So, in fact, our

inequalities are equivalent for all k ≥ 2, as required.
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