
Trade-Off Between Key Size and Efficiency in Universal Hashing
Using Polynomials

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
email: palash@isical.ac.in

Abstract. Consider the following universal hashing set-up. Let IF be a finite field and suppose any
message consists of at most 230 elements of IF. Suppose further that a collision bound of 2−128 is
desired. This can be achieved using usual polynomial hashing with |IF| ≈ 2160 and having a digest
of 160 bits and a key of length also 160 bits; hashing an n-bit message requires approximately n/160
multiplications over IF.
We describe a new hashing method which can achieve the same collision bound of 2−128 for messages
of at most L elements by working over a field IF of size ≈ 2136. Hashing an n-bit message requires
approximately n/136 multiplications over IF. Supposing similar efficiency in implementation of field
arithmetic in both cases, the ratio of the two processing times is 160/136 × [M136]/[M160], where Ma

is the time for one multiplication in a field of size ≈ 2a. Since Ma is quadratic in a, the new algorithm
is expected to be faster than usual polynomial hashing. Further, the size of the digest also reduces to
136 bits. The trade-off is that the key size increases to 5× 136 = 680 bits compared to the key size of
160 bits for usual polynomial hashing.
The method mentioned above is a special case of a general method of combining independent universal
hash functions at multiple levels to obtain a new universal hash function. Other consequences of the
new algorithm are worked out including how it can be instantiated by a class of polynomials introduced
by Bernstein.
Keywords: universal hash function.

1 Introduction

Universal hash functions are of fundamental importance in cryptography and computer science [13,
5]. Being of practical importance, there have been efforts [7, 11, 4, 1] to design hash functions which
are very fast.

Polynomial based universal hashing over a finite field IF has a collision bound of (L − 1)/|IF|
for hashing messages consisting of at most L elements of IF. Both the key and the digest is a single
element of IF. If a collision bound of 2−ρ is desired, then the size of IF has to be ≈ L2ρ and so both
the key and the digest are of size ≈ ρ + log2 L. Hashing an n-bit message requires approximately
n/(ρ+ dlog2 Le) multiplications over IF. Bernstein [2] defined a new class of polynomials for which
the number of multiplications can be halved at the negligible cost of increasing the collision bound
to (2L− 1)/|IF|.

The motivation for our work is to investigate whether the collision bound can be reduced. For
certain hash functions [6, 5], the collision bound can be made 1/|IF| at the cost of making the key
length equal to that of the message. The question that we ask is whether there is some intermediate
trade-off.

To this end, we first propose a general construction of universal hash function. This construction
builds a hash function working on arbitrary length strings from hash functions working on fixed

size domains. In this sense, the new construction can be considered to be a domain extender for
universal hash function. The basic idea is to take mutually independent hash functions f1, . . . , f`
and combine them using a multi-level construction which uses one hash function at each level.
Hashing messages with variable lengths requires an additional subtlety which is taken care of by
using another XOR universal random function ψ.

Instantiating the functions fi using usual polynomial hashing gives rise to a multi-variate poly-
nomial. The collision bound is mdlogm Le/|IF|, where L is as before the maximum number of
elements of IF in any message and m can be any value ≥ 2. To achieve a collision bound of 2−ρ,
we need |IF| ≈ m logm L2ρ. For fixed values of L and ρ and for an appropriately chosen m, the
size of the field in the new algorithm is smaller than the size of the field required for polynomial
hashing. Hashing an n-bit message requires approximately n/(ρ+log2m+log2(logm L)) multiplica-
tions over IF. So the new algorithm requires more multiplications over a smaller field. The ratio of
the time required by the new algorithm to time required for polynomial hashing is approximately
a/b × [Mb]/[Ma], where a = ρ + dlog2 Le and b = ρ + log2m + log2(logm L) with b < a for a
suitably chosen m. Asymptotically, Mk is quadratic in k and hence the new algorithm will require
less time. For concrete values of k, however, Mk may not have a strict quadratic dependence on k.
To a certain extent, this will be determined by the implementation at hand, though, we expect the
decrease in the size of the field to have a more significant impact on the run-time than the increase
in the number of multiplications.

Further, the digest in the new algorithm is a single element of IF and hence is of size b bits. The
trade-off is that the size of key is increased to approximately b(logm L + 1) bits. Putting L = 230,
ρ = 128 and choosing m = 26 justifies the values given in the abstract.

The basic multi-level construction can also be combined with the class of polynomials due
to Bernstein [2] based on earlier work due to Rabin and Winograd [8], which we call the BRW
polynomials. More interestingly, it is possible to instantiate some of the fi’s using BRW polynomials
and the others using usual polynomials. The cost analysis of the multi-level hash function when
the fi’s are BRW polynomials and a possible application for combining BRW and usual polynomial
hashing is dicussed later.

Prior and related works. Universal hash functions were introduced in [5] and have been ex-
tensively studied since then [13, 3, 12, 9]. To the best of our knowledge, the construction that we
describe here has not been reported earlier.

2 Preliminaries

A random (but, not necessarily uniform random) function f : {0, 1}∗ → {0, 1}t is said to have a
collision bound of ε, if for distinct x, x′ ∈ {0, 1}∗, Pr[f(x) = f(x′)] ≤ ε. Such a function is said to
be ε-almost universal (ε-AU). The function f is said to be ε-almost XOR universal (ε-AXU) if for
distinct x, x′ ∈ {0, 1}∗ and any α ∈ {0, 1}t, Pr[f(x) ⊕ f(x′) = α] ≤ ε. A weaker notion of AU is
to require that the collision bound holds only if the distinct strings x, x′ have equal lengths. Let
IF be a finite field. Then a random function f : ∪ri=1IFi → IF is defined to be ε-AU or ε-AXU in a
manner similar to above.

Elements in the domain of f are called messages and the value f(x) is called the digest of x
obtained using f . A random function f is realised from a function family {fK}K∈K, where K is
called the key space. A key K is chosen uniformly at random from K and then f is set to fK . The

2

randomness in f comes from the random choice of K and hence, the probabilities mentioned above
are over the random choices of K.

For (x1, . . . , xr) ∈ IFn define polyα(x1, . . . , xr) = xr + xr−1α + · · · + xrα
r−1. Using Horner’s

rule polyα(xr, . . . , x1) can be evaluated using (r− 1) multiplications (over IF) and can be shown to
be (r − 1)/|IF|-AU for equal length messages. Further, αpolyα(x1, . . . , xr) is r/|IF|-AXU for equal
length messages and can be evaluated using r multiplications.

Bernstein [2] has introduced a class of polynomials which builds upon previous work due to
Rabin and Winograd [8]. We call these the BRW polynomials. For n ≥ 2, BRWα(x1, . . . , xr) is
(2r − 1)/|IF|-AU and can be evaluated using br/2c multiplications and lg r squarings (to compute
the powers α2, α4, . . .). Further, αBRWα(x1, . . . , xr) is 2r/|IF|-AXU.

We will need another kind of AXU function. A random function ψ : {1, . . . , r} → GF (2t) is said
to be 1/2t-AXU if for distinct i, j with 1 ≤ i, j ≤ r and any α ∈ GF (2t), Pr[ψ(i)⊕ψ(j) = α] = 1/2t.

Let τ(x) be a primitive polynomial of degree t over GF (2) and suppose that this τ(x) is used
to define GF (2t). Let α be a uniform random element of GF (2t) and define ψ : i 7→ xiα mod τ(x).
The element α is the key to the function ψ. It is not difficult to show that such a ψ satisfies 1

2t -
AXU property if r ≤ 2t− 2. A general definition of ψ and a more efficient instantiation using word
oriented LFSRs can be found in [10].

3 The New Construction

The basic idea behind the construction is given in the following result.

Lemma 1. Let IF be a finite field and for i = 1, 2, fi : IFmi → IF be independent random functions
having collision bounds εi. Define a random function f : IFm1m2 → IF by

f(x1, . . . ,xm2) = f2(f1(x1), . . . , f1(xm2)) (1)

where each xj ∈ IFm1. Then a collision bound for f is ε1 + ε2.

Proof: Let x = (x1, . . . ,xm2) and x′ = (x′1, . . . ,x
′
m2

) be two distinct elements of IFm1m2 . Define
yi = f1(xi), y′i = f1(x′i) and let Eq be the event ∧m2

i=1(yi = y′i).

Pr[f(x) = f(x′)] = Pr[f(x) = f(x′)|Eq] Pr[Eq] + Pr[f(x) = f(x′)|Eq] Pr[Eq]
= Pr[f2(y1, . . . , ym2) = f2(y′1, . . . , y

′
m2

)|Eq] Pr[Eq]
+ Pr[f2(y1, . . . , ym2) = f2(y′1, . . . , y

′
m2

)|Eq] Pr[Eq]
= Pr[Eq] + Pr[f2(y1, . . . , ym2) = f2(y′1, . . . , y

′
m2

)|Eq] Pr[Eq]

≤ Pr

[
m2∧
i=1

(yi = y′i)

]
+ ε2

≤ min
1≤i≤m2

(Pr[yi = y′i)]) + ε2

≤ ε1 + ε2.

In the above, we have used Pr[f2(y1, . . . , ym) = f2(y′1, . . . , y
′
m)|Eq] = 1 and Pr[f2(y1, . . . , ym) =

f2(y′1, . . . , y
′
m)|Eq] Pr[Eq] ≤ Pr[f2(y1, . . . , ym) = f2(y′1, . . . , y

′
m)|Eq] ≤ ε2, the last inequality follow-

ing from the fact that ε2 is a collision bound for f2. ut
A generalization of this result can be obtained using essentially the same proof as given above.

3

Proposition 1. Let g1, . . . , g` be random (not necessarily independent) functions with gi : IFmi →
IF having collision bound εi. Let g be a random function which is independent of g1, . . . , g` with
g : IF` → IF and having collision bound ε. Let m = m1 + · · · + m` and define a random function
h : IFm → IF by

h(x1, . . . ,x`) = g(f1(x1), . . . , f`(x`)).

Then a collision bound for h is ε+ min1≤i≤` εi.

Multi-Level Hashing Scheme. Let IF be a finite field and s and t be integers such that 2s ≤
#IF ≤ 2t. Any s-bit element can be encoded into an element of IF and any element of IF can
be encoded into a t-bit string. The values of s and t would depend on the choice of IF and the
representation of the elements of IF. If IF is a binary extension field, then we can also have s = t
and IF = GF (2t). Given an s-bit string str, an injective function toElem encodes str into an element
of IF; similarly, given an element z ∈ IF, an injective function toStr encodes z into a t-bit string.

Messages to be hashed are bit strings of lengths greater than or equal to zero. Given a message
msg of length n bits, an injective function pad maps msg 7→ msg||0k||bins(n), where k is the minimum
non-negative integer such that n+k is a multiple of s and bins(n) is the s-bit binary representation of
n. Suppose pad(msg) = str1|| · · · ||strr for some r ≥ 1 and each stri is a string of length s. The function
parse(msg) encodes each stri into an element of IF, i.e., parse(msg) = (toElem(str1), . . . , toElem(strr)).
For x ∈ IFr, let #x = r.

Let m be a fixed positive integer and let ` be an integer such that for any message msg,
#parse(msg) ≤ m`. Let f1, . . . , f` be mutually independent random functions where each fi :
Dm → IF with Dm = ∪mi=1IFi having collision bound εi for equal length messages. Here εi could
depend on m and for polynomial hashing it indeed does. Note that 1/2t ≤ 1/#IF ≤ εi for 1 ≤ i ≤ `.
We also need a random function ψ : {1, . . . , `} → GF (2t) such that for 1 ≤ i, j ≤ ` with i 6= j,
Pr[ψ(i) ⊕ ψ(j) = α] = 1/2t for any α ∈ GF (2t). This ψ is to be independent of f1, . . . , f`. The
functions f1, . . . , f` and ψ can be instantiated as mentioned in Section 2.

Given a function f : Dm → IF, the function reduce(f,x) with x ∈ IFi for some i, is defined in
Figure 1. Using reduce and a sequence of functions f = (f1, . . . , f`) as mentioned above, we define a
hash function hash((f , ψ),msg) as given in Figure 2. The message msg to be hashed is a bit string
of length greater than or equal to zero.

Note that reduce does not actually need to count the number of blocks in x; the requirement is
to divide x into m-element groups with the last group possibly having less than m elements. Online
processing is possible using the following strategy. Start the computation at the lowest level. After
m elements have been processed, one element of the next level is available for processing. Each
group of m elements at the bottom level gives rise to one element at the next level and hence,
the processing at the next level can proceed in a synchronised manner with that of the bottom
level. The rate at which this level processes will be 1/m times the rate at which the bottom level
processes. This is not particular to the bottom and the last-but-one level. The same strategy can
be applied to higher levels, i.e., the processing at level i proceeds at a rate of 1/m of the processing
at level i − 1. The requirement will be at most ` variables to store the intermediate values at the
` levels and additionally ` counters, one for each level, to keep track of the fact that a group of m
elements have been processed at that level. The counter for each level would have to be reset to
0 after every group of m elements have been processed at that level. In the case where each fi is
instantiated using poly, the algorithm for online computation is shown in Figure 3. The memory
requirement for processing a message having r = #parse(msg) is proportional to 2dlogm re.

4

Fig. 1. Definition of the function reduce(f,x).

reduce(f,x):
1. parse x as x = (x1, . . . ,xk−1,xk),

where #xi = m for 1 ≤ i ≤ k − 1 and 1 ≤ #xk ≤ m;
2. return (f(x1), . . . , f(xk−1), . . . , f(xk)).

Fig. 2. Definition of multi-level hashing.
hash((f , ψ),msg):
1. let parse(msg) equal x ∈ IFr;
2. i = 1; z = x;
3. while #z > m do
4. z = reduce(fi, z); i = i+ 1;
5. end do;
6. return toStr(fi(z))⊕ ψ(r).

Fig. 3. On-line computation of hash((f = (f1, . . . , f`), ψ),msg) where fi is polyαi
and the key to ψ is α. Variables

required: cnt1, . . . , cnt`−1; R1, . . . , R`. The variable j records the maximum value of the level currently reached in the
algorithm. The sub-routine nextBlk will read the message and return the next m elements of parse(msg), or possibly
less than m elements for the last block.
1. cnt1 = · · · = cnt` = 0;
2. R1 = · · · = R` = 0;
3. β = α; j = 1;
4. while not(endof(msg)) do
5. u = nextBlk();
6. for i = 1 to #u do β = ψ(β);
7. v = polyα1

(u); R1 = α2R1 + v;
8. cnt1 = cnt1 + 1; flg = true; i = 1;
9. while flg is true do
10. if (cnti = m)
11. if (i > j) then j = i;
12. v = Ri; Ri = 0; cnti = 0;
13. Ri+1 = αi+2Ri+1 + v;
14. cnti+1 = cnti+1 + 1;
15. i = i+ 1;
16. else flg = false;
17. end do;
18. end do;
19. return toStr(Rj)⊕ β.

5

Theorem 1. Let msg,msg′ be messages of lengths n, n′ ≥ 0 such that

1. msg 6= msg′,
2. 1 ≤ #parse(msg),#parse(msg′) ≤ m`, and
3. y = hash((f , ψ),msg), y′ = hash((f , ψ),msg).

Then Pr[y = y′] ≤ ε1 + · · ·+ ε` where εi is the collision probability of fi.

Note. The requirement on fi is that they are AU for equal length messages, whereas the theorem
states that hash is AU even for unequal length messages.
Proof: Let x = parse(msg), r = #x and j be such that mj−1 ≤ r ≤ mj . Then the functions
f1, . . . , fj are used by hash on input msg. In the algorithm to compute hash, let z0 = x and denote
the output of reduce in the ith iteration by zi, i.e.,

x = z0, z1 = reduce(f1,m, z0), . . . , zj = reduce(fj ,m, zj−1).

The primed variables denote the similar quantities for msg′.

Case r 6= r′. In this case,

Pr[y = y′] = Pr[toStr(zj)⊕ ψ(r) = toStr(z′j′)⊕ ψ(r′)]
= Pr[ψ(r)⊕ ψ(r′) = toStr(zj)⊕ toStr(z′j′)]
(a)
=

1
2t

≤ 1
|IF|
≤ ε1 + · · ·+ ε`.

The step (a) follows form the XOR universal property of ψ.

Case r = r′. This implies that j = j′ and from the definition of hash, y = y′ if and only if zj = z′j .
The lengths of pad(msg) and pad(msg′) are equal; if n 6= n′, then the last s bits of pad(msg)

and pad(msg′) are not equal; if n = n′, then the equal length messages msg and msg′ themselves
are not equal. In both cases, we have x 6= x′.

For 0 ≤ i ≤ j, let Eqi be the event zi = z′i. We are interested in the event Eqj and since z0 =
x 6= x′ = z′0, the probability of Eq0 is 0. Write zi = (zi,1, . . . , zi,li) with #zi,k = m for 1 ≤ k ≤ li−1
and 1 ≤ #zi,li ≤ m. Then we can write zi+1 = (yi+1,1, . . . , yi+1,li) where yi+1,k = fi+1(zi,k). Since
r = r′, we have li = l′i for 1 ≤ i ≤ `. Now the event Eqi+1 can be written as

∧li
k=1

(
yi+1,k = y′i+1,k

)
.

The event Eqi means that (zi,1, . . . , zi,li) 6= (z′i,1, . . . , z
′
i,li

) so that for at least one k, zi,k 6= z′i,k and
then for this k, Pr[fi+1(zi,k) = fi+1(z′i,k)] ≤ εi+1 by the collision bound on fi+1. So,

Pr

 li∧
k=1

(yi+1,k = y′i+1,k)|Eqi

 = Pr

 li∧
k=1

(fi+1(zi,k) = fi+1(z′i,k))|Eqi

≤ min

1≤k≤li
Pr[fi+1(zi,k) = fi+1(z′i,k)|Eqi]

≤ εi+1. (2)

6

For 0 ≤ i ≤ j − 1,

Pr[Eqi+1] = Pr[zi+1 = z′i+1] = Pr

 li∧
k=1

(yi+1,k = y′i+1,k)

= Pr

 li∧
k=1

(yi+1,k = y′i+1,k)|Eqi

Pr[Eqi]

+ Pr

 li∧
k=1

(yi+1,k = y′i+1,k)|Eqi

Pr[Eqi]

= Pr[Eqi] + Pr

 li∧
k=1

(yi+1,k = y′i+1,k)|Eqi

Pr[Eqi]

≤ Pr[Eqi] + Pr

 li∧
k=1

(yi+1,k = y′i+1,k)|Eqi

≤ Pr[Eqi] + εi+1.

The last step follows from (2). Note that the above calculation is similar to the one given in the
proof of Lemma 1. Extending this we obtain

Pr[Eqj] ≤ Pr[Eqj−1] + εj ≤ · · · ≤ Pr[Eq0] + εj + · · ·+ ε1 ≤ εj + · · ·+ ε1.

ut

XOR Universal. The hash function defined in Figure 2 provides almost universality. For certain
applications, the requirement is to obtain XOR universality. It is possible to modify the algorithm
to obtain XOR universality. Suppose each f is instantiated using either poly or BRW. As mentioned
earlier, both αpolyα and αBRWα are XOR universal. We refer to these variants by fXOR. Suppose
in algorithm hash, mj−1 < r ≤ mj . To obtain XOR universality, in Figure 2, the last line is changed
to

return toStr(fXOR
i (z))⊕ ψ(r).

This means that the message is processed with f1, . . . , fj−1, f
XOR
j instead of being processed with

f1, . . . , fj−1, fj . In other words, for the first (j−1) layers the usual functions are used, while for the
last layer we use the variant which is XOR universal. It is not difficult to show that this achieves
XOR universality of the entire construction.

Instantiating ψ and f = (f1, . . . , f`). Let α1, . . . , α` be independent and uniform random elements
of IF. Further, let α be a uniform random element of GF (2t) which is independent of α1, . . . , α`.

The key for the function ψ is α and fi is instantiated as either polyαi or as BRWαi. The collision
bound and the number of multiplications required depend on the instantiations of fi.

Case f as poly. In this case, each fi has collision bound (m − 1)/|IF| and from Theorem 1, the
collision bound for hash((f , ψ),msg) is `(m− 1)/|IF|.

7

Proposition 2. Suppose that in Figure 2, fi is instantiated as polyαi. Then the number of multi-
plications required by hash to process msg with #parse(msg) = r equals r − 1.

Proof: Let n0 = blks(x). The function hash defines the sequence of integers n0, n1, . . . , ns, ns+1

where ni = (ni+1 − 1)m + ri, 0 ≤ i ≤ r − 1 with ns = 1 and 1 ≤ r1, . . . , rs ≤ m. At the ith step,
the number of multiplications required is ai = (ni− 1)(m− 1) + ri− 1 = (ni−1− 1)− (ni− 1). The
total number of multiplications is equal to a1 + a2 + · · ·+ as = n0 − 1. ut

Case f as BRW. Using Theorem 1, the collision bound is `(2m − 1)/|IF| and the number of
multiplications required to process msg with parse(msg) = r is at most equal to

n

2
×
(
mj+1 − 1
mj(m− 1)

)
=
n

2
×
(

1 +
1

m− 1

(
mj − 1
mj

))
.

Here j is the unique positive integer such that mj−1 < r ≤ mj .
Let n0 = n and ni = dni−1/me for 0 < i ≤ s with ns = 1. The number of multiplications equals

⌊
m

2

⌋ j∑
i=1

(ni − 1) +
⌊
r1
2

⌋
+ · · ·+

⌊
rs
2

⌋
≤
⌊
n0

2

⌋
+
⌊
n1

2

⌋
+ · · ·+

⌊
ns−1

2

⌋
.

If n0 = mj for some j, then the number of multiplications required is m
2

(
mj−1
m−1

)
.

Combination of poly and BRW. It is possible to combine the two options, i.e., instantiate some
of the f ’s using poly and the other f ’s using BRW. One reason for doing this could be the issue of
pre-computation. The computation of polyα can be speeded up using a pre-computed table based on
α and this cannot be done for BRWα. So, one option is to use poly to instantiate f1 while f2, . . . , f`
are instantiated using BRW. Since most of the multiplications are done at the lowest level, the
pre-computed table can be used to speed-up these multiplications. Further, keeping multiplication
tables for each αi can be costly in terms of storage and so one can use BRW hashing for the higher
levels since this requires lesser number of multiplications.

If each fi is instantiated with either poly or BRW, then the final value at the end of the while
loop in Figure 2 can be written as a polynomial in the variables α1, . . . , α`. Viewed differently, the
construction can be considered to be using multi-variate polynomials to reduce the collision bound.

4 Conclusion

A new universal hash construction has been described. For hashing messages of a maximum specified
length and achieving a desired security level, the new algorithm improves over usual polynomial
hashing by reducing the size of the underlying field over which computations take place. This can
lead to efficiency improvement in the speed of hashing. The trade-off is an increase in the key size.

References

1. Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Henri Gilbert and Helena Handschuh,
editors, FSE, volume 3557 of Lecture Notes in Computer Science, pages 32–49. Springer, 2005.

2. Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http://cr.yp.to/papers.html#

pema.

8

3. Jürgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, and Ben J. M. Smeets. On families of hash
functions via geometric codes and concatenation. In Douglas R. Stinson, editor, CRYPTO, volume 773 of
Lecture Notes in Computer Science, pages 331–342. Springer, 1993.

4. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC: Fast and secure message
authentication. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science,
pages 216–233. Springer, 1999.

5. Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci., 18(2):143–154,
1979.

6. Edgar N. Gilbert, F. Jessie MacWilliams, and Neil J. A. Sloane. Codes which detect deception. Bell System
Technical Journal, 53:405–424, 1974.

7. Shai Halevi and Hugo Krawczyk. MMH: Software message authentication in the gbit/second rates. In Eli Biham,
editor, Fast Software Encryption, volume 1267 of Lecture Notes in Computer Science, pages 172–189. Springer,
1997.

8. Michael O. Rabin and Shmuel Winograd. Fast evaluation of polynomials by rational preparation. Communications
on Pure and Applied Mathematics, 25:433–458, 1972.

9. Phillip Rogaway. Bucket hashing and its application to fast message authentication. J. Cryptology, 12(2):91–115,
1999.

10. Palash Sarkar. A general mixing strategy for the ECB-Mix-ECB mode of operation. Information Processing
Letters. To appear.

11. Victor Shoup. On fast and provably secure message authentication based on universal hashing. In Neal Koblitz,
editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 313–328. Springer, 1996.

12. Douglas R. Stinson. Universal hashing and authentication codes. Des. Codes Cryptography, 4(4):369–380, 1994.
13. Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and set equality. J.

Comput. Syst. Sci., 22(3):265–279, 1981.

9

