
Extensions of the Cube Attack

Aileen Zhang, Chu-Wee Lim and Khoongming Khoo

DSO National Laboratories
20 Science Park Drive, Singapore 118230

Email: zyinghui,lchuwee,kkhoongm@dso.org.sg

Abstract. At Crypto 2008, Shamir introduced a new algebraic attack
called the cube attack, which allows us to solve black-box polynomials if
we are able to tweak the inputs by varying an initialization vector. We of-
fer a few extensions of this attack by applying it to Boolean functions for
which we can find low-degree multiples. We then extend this to vectorial
Boolean functions by finding relations with low-degree polynomials.

Keywords Cube Attack, Algebraic Attack, Low-Degree Multiple.

1 Introduction

In the history of cryptography, algebraic cryptanalysis is a rather recent trend.
The underlying idea behind this attack is rather simple: in trying to attack a
cryptosystem, write the problem as a set of polynomial equations with coeffi-
cients and unknowns in some common finite field K, most probably of character-
istic 2. One then employs whatever means at one’s disposal to solve this system
of polynomial equations.

It has been long known that the general problem of solving such a system
is NP-complete, even if the system comprises of only quadratic equations over
F2 (see [12]). Nevertheless, many cryptographic systems appear susceptible to
attacks via this approach. Indeed, a large arsenal of attacks have been designed
with the algebraic approach in mind, including (but not restricted to) lineariza-
tion, relinearization [8], eXtended Linearization [4], Gröbner basis [6, 7] and the
fast algebraic attack [5].

In Aug 2008, during the Crypto conference, Adi Shamir [11] presented a
new approach to algebraic attacks in an invited lecture. Termed cube attack, his
method requires the attacker to launch an active attack (e.g. chosen-IV or chosen-
PT) in order to extract useful information from the bits obtained. Roughly
speaking, by skillfully choosing the bits in a systematic manner, the attacker
may lower the degree of the polynomial quickly.

In Section 2, we shall give a description of Shamir’s cube attack. Then, we
offer several variations to the basic cube attack. In Section 3, we extend the cube
attack to polynomials f for which we can find a low degree g such that fg is
also of low degree, and we apply this to the Toyocrypt cipher as an example.
We also consider the special case where the filter function takes few inputs, and

has linear initialization and linear feedback. In Section 4, we consider the cube
attack applied to vectorial filter functions, and also the special case where the
filter function takes few inputs. Finally we give our conclusion on these variations
on the cube attack.

2 Preliminaries: Cube Attack

First let us give a brief overview of the cube attack [11]. Throughout this arti-
cle, all polynomials have coefficients in F2, and x (resp. v) denotes the vector
(x0, x1, . . . xn−1) (resp. (v0, v1, . . . , vm−1)).

The primary idea behind this attack lies in the following theorem:

Theorem 1 Let f(x) be a polynomial in n variables of degree d. Suppose 0 <
k ≤ d and t is the monomial x0x1 . . . xk−1. Write f in the form:

f(x) = t · Pt(x) + Qt(x),

where none of the terms in Qt(x) is divisible by t. Note that deg(Pt) ≤ d− k.
Then the sum of f over all (x0, . . . , xk−1) ∈ Fk

2 , considered as a polynomial
in xk, xk+1, . . . , equals

Pt(

k︷ ︸︸ ︷
1, . . . , 1, xk, xk+1, . . . , xn−1)

and hence is a polynomial of degree at most d− k.

Proof. Consider the equality f = t ·Pt +Qt. Split the sum into
∑

(x0,...,xk−1)
t ·Pt

and
∑

(x0,...,xk−1)
Qt. In the first sum, t = 0 unless x0 = x1 = · · · = xk−1 = 1 in

which case

∑
(x0,...,xk−1)∈Fk

2

t · Pt = Pt(

k︷ ︸︸ ︷
1, . . . , 1, xk, xk+1, . . . , xn−1).

On the other hand Qt is a sum of monomials, each of which is not divisible
by t. Let m be any one of these monomials. Since m is not divisible by t, it
excludes xi for some 0 ≤ i ≤ k − 1. If it excludes (say) x0, then the sum across
all (x0, . . . , xk−1) ∈ Fk

2 can be further split into two sums: the sum for x0 = 0
and for x0 = 1. These two sums are equal since x0 does not appear in m. Hence∑

(x0,...,xk−1)∈Fk
2

m = 0 =⇒
∑

(x0,...,xk−1)∈Fk
2

Qt = 0.

This completes our proof of the theorem.

Let us apply this theorem to cryptanalyze a stream cipher. Write the cipher
in the form:

z = f(x,v),

which takes in an n-bit key x and an m-bit IV v, and outputs the first bit of the
keystream. Suppose d = deg f ≤ m. We describe the cube attack for the term
t = v0v1 · · · vd−2.

Fix the IV bits vd−1, vd, vd+1, · · · ∈ F2 and write C for the set of v with these
values of vd−1, vd, Thus |C| = 2d−1. Sum f(x,v) over v ∈ C. By applying
Theorem 1 to t, this sum is linear in x:∑

v∈C

f(x,v) = L(x). (1)

If L(x) 6= 0, we call t a maxterm in accordance with [11], and obtain one
linear relation in the key bits. To obtain n − 1 more such relations, we can do
the following.

– Use the same f , but use a different maxterm t.
– Use a different f , e.g. by using the second bit of the keystream.

With n linearly independent relations of the key bits, we can easily find
them via Gaussian elimination. Hence, Cube Attack proceeds according to the
following stages:

1. First: the preprocessing stage. This involves finding the coefficients of L for
n such L. Each L has n + 1 coefficients including the constant term; to find
them, we need to compute the sum (1) for n + 1 keys:

x = 0, e0, e1, . . . , en−1,

where ei is the vector where the i-th component is 1 and the rest are 0. The
amount of work required is n(n + 1)2d−1 evaluations of f .
We also compute the inverse of the matrix of linear relations. This requires
n3 operations at most so the amount of work is upper-bounded by

n(n + 1)2d−1 + n3.

2. Second: the online stage. Now we apply a chosen-IV attack on the cipher.
Compute the sum (1) for n linear relations L. Each sum requires 2d−1 eval-
uations of f , so we need n2d−1 evaluations of f in all. Since we already have
the inverse of the L-matrix, we only need to perform matrix multiplication
which takes n2 operations. Hence, the amount of work is upper-bounded by

n2d−1 + n2.

Notice that the attack only assumes deg f ≤ d, and that we can evaluate f .
No knowledge of the coefficients of f is required.

Remark 1. For a given maxterm t, in the case where deg(t) < n − 1, we may
be able to derive multiple equations, since each maxterm gives an equation that
may have monomials containing terms in the IV as well as in the key. Hence, sub-
stituting in different values for the terms in the IV that are not in the maxterm
may produce different equations.

3 Cube Attack with Annihilators

In 2003, Courtois and Meier[5] observed that for some polynomials f , we can
find a low degree g such that h := fg is also of low degree. We shall apply this
observation to derive an enhanced version of the cube attack.

As before, let z = f(x,v) represent the first output bit, where x is the key
and v is the IV. Let g(x,v) be a polynomial such that:

– g(x,v) is of low degree e;
– h(x,v) := f(x,v)g(x,v) is of degree d ≤ deg(f) and d > e.

Our attack works as follows: suppose we pick the maxterm v0v1 · · · vd−e−1.
Fix the IV-bits vd−e, vd−e+1, · · · ∈ F2 and let C be the set of v which has these
values of vd−e, vd−e+1 Consider the sum:∑

v∈C

h(x,v) =
∑
v∈C

f(x,v)g(x,v).

By Theorem 1, on the left, we get a polynomial in x of degree at most
d− (d− e) = e. On the right, note that f(x,v) is known since it is a keystream
bit, so we get a polynomial of degree ≤ e. Now we can solve for the secret bits
by applying a range of techniques, such as linearization [4] or Gröbner basis
techniques [6, 7].

We shall term this method Cube Attack with Annihilators. It proceeds as
follows:

1. First, find g and h. There are many efficient algorithms in literature. See [1]
and [10] for example.

2. Next, the preprocessing stage. We need to compute the polynomial

P (x) :=
∑
v∈C

h(x,v)

which is of degree≤ e. Since this is a linear combination of
(
n
e

)
monomials, we

need to evaluate this sum
(
n
e

)
times (by pumping in different x’s) to find the

coefficients. This requires 2d−e
(
n
e

)
evaluations of h to compute the coefficients

of a single P . For linearization to work, we need
(
n
e

)
such polynomials, so

the total amount of work is:

2d−e

(
n

e

)2

evaluations of h.
3. Finally, the online phase. We must compute

(
n
e

)
sums of

∑
v∈C f(x,v)g(x,v).

The polynomial g(x,v), for a fixed v ∈ C has typically
(
n
e

)
terms. Hence,

the computation of the above term requires
(
n
e

)
2d−e computations. For

(
n
e

)
such maxterms, we require

(
n
e

)22d−e computations. Finally linearization of∑
v∈C

f(x,v)g(x,v) =
∑
v∈C

h(x,v) = P (x)

gives a system of
(
n
e

)
×
(
n
e

)
linear equations which requires

(
n
e

)3 operations
to solve. Hence, the total amount of work is about:(

n

e

)2

2d−e +
(

n

e

)3

.

Here are some differences between the basic cube attack and this version.

1. This variation of the cube attack requires us to compute h = fg for an
appropriate polynomial g. To find such a g, we most likely need to express
f in algebraic normal form.

2. Here, we cannot perform the matrix inversion during the preprocessing stage,
because the entries of the matrix depends on the keystream output.

3. Each polynomial evaluation (of g or h) requires
(
n
e

)
computations if we ex-

press the polynomials in algebraic normal form.

In the next subsection, we shall provide a concrete example of this variant
of cube attack.

3.1 Application to the Toyocrypt Cipher with Re-synchronization

The main Toyocrypt cipher [14] comprises of a 128-bit MLFSR (modular linear
feedback shift register), filtered through a nonlinear function f of degree 63. This
f is given by:

f(s0, . . . , s127) =s127 +
62∑

i=0

sisαi
+ s10s23s32s42+

s1s2s9s12s18s20s23s25s26s28s33s38s41s42s51s53s59 +
62∏

i=0

si,

where αi, 0 ≤ i ≤ 62, is a permutation of the set {63, . . . , 125}. The output of
the filter function gives a keystream bit. Upon the next clocking, the MLFSR
clocks once and passes through the filter function to give the next keystream
bit. For simplicity of explanation, we can treat the MLFSR as a LFSR because
as shown in [14], there is a one-to-one linear transformation between the states
of the MLFSR and an LFSR.

In [3], Courtois described an algebraic attack on Toyocrypt. He observed that
f can be approximated by a degree-4 polynomial g by ignoring the two terms
of degree 17 and 63 respectively. The error rate in this approximation is given
by 2−17 which is good enough for practical purposes. Later, in [5], Courtois and
Meier found an even better attack by noting that the polynomials

f · (s23 + 1) and f · (s42 + 1)

are cubic since the variables s23 and s42 occur in all terms of f of degree at least
4.

The above observations will come in handy when we apply the two variants
of cube attack on Toyocrypt. We shall assume a simplified variant, where during
initialization, an n-bit key and m-bit IV are linearly mixed to fill up the LFSR.

Let us replace f with a quartic polynomial g as mentioned above. We may
then write the first bit of the keystream as a quartic polynomial in the key (xi)
and the IV (vj). In applying cube attack, we require a preprocessing work factor
of n3 + 8n(n + 1) and an online work factor of n2 + 8n.

The attack fails if f 6= g for one of the evaluations. We may safely assume
that this does not occur during preprocessing (since checks can easily circumvent
that); hence, the probability of success is

(1− 2−17)8n.

Even in the extreme case of n = 128, this is greater than 99%.

Cube Attack with Annihilators We can find a degree-1 polynomial g such
that fg = h is cubic. Hence the cube attack with annihilators requires only
23−1n2 = 4n2 evaluations of a linear function during the preprocessing stage.
During the online phase, the amount of work is 8n + n3.

A Comparison In Table 1, we compare the above variants of the cube attack
(quartic approximation, low degree annihilators) with the basic cube attack on
the filter function of degree 63 and the algebraic attack of [5, 13] using cubic
equations on the Toyocrypt cipher with n = 128. We see that our cube attack
variant has lower complexities and requires much fewer keystream bits.

Table 1. Comparison of Improved Variants of Cube Attack with the Basic Cube Attack
and Algebraic Attack on Toyocrypt with 128-bit State Function Linearly Initialized by
128-bit Key and IV.

Algebraic Basic Basic Cube Attack Cube Attack
Attack Cube Attack with Quartic with Annihilators
[5, 13] [11] Approximation (new)

Keystream Bits 218 262 23 22

Pre-Computation 230 276 221 216

Online Complexity 220 269 214 221

Note that the keystream bits for algebraic attack can be obtained from one keystream
while those of the other attacks have to be obtained across different keystreams from
re-synchronizations.

Implementation We implemented both variants of the cube attack (quartic
approximation and low-degree annihilators). In both versions, the Toyocrypt

cipher can be broken in a few milliseconds on an ordinary PC. Although both
variants seem to have comparable pre-computation + online attack time from
Table 1, the cube attack with annihilators runs about twice as fast as the basic
cube attack using quartic approximation. It also has the slight advantage of
being 100% reliable and uses fewer re-synchronizations.

In a Nutshell The example of Toyocrypt is used to illustrate our cube attack
variant. It demonstrates its effectiveness against ciphers in which multiplying f
with a low-degree polynomial g dramatically lowers its degree.

3.2 Sliding Window Cube Attack on Filter Function Taking Few
Inputs

Consider the case where our key is of size N and our filter function f takes only
n < N inputs from the state. Suppose we have the following two conditions:

– Linear initialization
– Linear feedback

There is a known re-synchronization attack on such a cipher with complexity
dN/ne× 2n, see [9, Section 3]. We shall describe an extension of the cube attack
with annihilators on this cipher where the complexity is generally better than
the re-synchronization attack of [9].

Because of the linear initialization, we can write the inputs from the state at
time t as lt(x,v), where lt is linear, and consider the filter function as a function
of the inputs (as opposed to the entire state). Now its output at time t is

zt = f(lt(x,v)) = f(yt + lt(0,v))

where yt = lt(x,0).
As before, suppose we have g and h of low degrees e and d respectively such

that fg = h and e < d ≤ deg(f). Let us write ft(yt,v) = f(yt + lt(0,v)), and
define gt and ht similarly. We can apply the cube attack with annihilators to
ftgt = ht to find yt for any t. We choose dN/ne values of t such that the corre-
sponding yt give us N linearly independent equations in the (xi), and solve for
the yt. We can then solve the N linear equations in (xi) by Gaussian elimination.

The attack works as follows:

1. Find g and h. We use known algorithms from [1, 10] to find suitable g and
h.

2. The preprocessing stage. We pick dN/ne values of t such that the yt give us
N linearly independent equations in the (xi). For each value of t, we pick(
n
e

)
maxterms. For a given maxterm, we denote C to be the cube of 2d−e

vectors which have all possible combinations of values for the terms in the
maxterm, and have all other terms fixed in some configuration.

For each maxterm, we compute
∑

C ht(yt,v) by finding the coefficient of
every yt-monomial, of which there are

(
n
e

)
, so ht gets evaluated 2d−e

(
n
e

)
times.
Hence the total complexity of this stage is

dN/ne
(

n

e

)2

2d−e

3. The online phase. Each value of t has
(
n
e

)
corresponding maxterms, and

for each maxterm we can compute
∑

ft(yt,v)gt(yt,v) since we know the
keystream bits ft(yt,v). This is a polynomial in yt, and we find the coeffi-
cient of every yt-monomial as before. This has complexity

(
n
e

)
2d−e. We then

equate it to
∑

ht(yt,v) to obtain an equation in yt of degree at most e.
Since there are

(
n
e

)
maxterms for each t, we get

(
n
e

)
equations in yt of degree

at most e, and we can solve for yt by linearization. This has complexity
(
n
e

)3.
After solving for all dN/ne of the yt, which are linear combinations of (xi),
we get N linear equations in (xi), and can then solve for x using Gaussian
elimination with complexity N3.
The total complexity of this stage is

dN/ne

((
n

e

)2

2d−e +
(

n

e

)3
)

+ N3

Remark 2. This argument also applies in the more general case where the filter
function can be written as a function of αt(x) and βt(v) where αt, βt are not
necessarily linear, and the αt are of degree at most c for some small c. In this
case, we need to solve for

(
n
c

)
of the αt(x), and then solve for x by linearization.

Comparison with the Re-synchronization Attack of [9] Consider a stream
cipher where a 128-bit LFSR is linearly initialized by a 128-bit key and IV, and
filtered by an n-bit Boolean function. The re-synchronization attack on this
stream cipher [9] has complexity d128/ne × 2n. In Table 2, we tabulate the
smallest n where our sliding window cube attack using equations of degrees e
and d performs better than the re-synchronization attack of [9], i.e. when

d128/ne

((
n

e

)2

2d−e +
(

n

e

)3
)

+ 1283 < d128/ne × 2n,

Therefore, we can use the re-synchronization attack of [9] when n is small and
use the sliding window cube attack when n is bigger.

4 Cube Attack on Vectorial Filter Function with low
(x, v)-Degree

4.1 Applying the Cube Attack to Vectorial Filter Functions

We now consider the case where the state function (e.g. LFSR) is filtered by a
vectorial Boolean function F : Fn

2 → Fr
2, r > 1. In 2005, Canteaut [2] introduced

Table 2. Size of Boolean function n where the Sliding Window Cube Attack is Faster
than the Re-synchronization Attack of [9], Key Size is N = 128.

Degree of zg(x, z) Degree of f(x, z)g(x, z) Size of Boolean Function

e = 2 2 ≤ d ≤ 8 n ≥ 25

e = 2 9 ≤ d ≤ 11 n ≥ 26

e = 3 3 ≤ d ≤ 13 n ≥ 40

e = 4 4 ≤ d ≤ 21 n ≥ 56

e = 5 5 ≤ d ≤ 24 n ≥ 71

a method for finding implicit equations of the form G(x,v, z) = 0 where z =
F (x,v) and G(x,v, z) has low (x,v)-degree and is of unrestricted degree in
the output variable z. Then this low degree equation can be solved by XL or
linearization methods to recover the secret key.

In a similar way, we can extend the cube attack with annihilators to vectorial
filter functions. Let a vectorial filter function be denoted by

z = F (x,v)

where x is the key of size n, v is the IV of size m, and z is a vector of multiple
output bits. We can find G(x,v, z) of low (x,v)-degree e such that H(x,v) :=
G(x,v, F (x,v)) also has low (x,v)-degree d, with e < d ≤ deg(F).

In contrast with Canteaut’s method, we need not have H(x,v) = 0 for all
x,v, and so we do not need the condition that 2r

(
n+m

e

)
> 2n+m. Instead, we

require that

2r

(
n + m

e

)
+
(

n + m

d

)
> 2n+m.

See the Appendix part A for details.
We can apply an adaptation of the attack on 1-bit filter functions to G and

H. For a given maxterm, we denote C to be the cube of 2d−e vectors which
have all possible combinations of values for the terms in the maxterm, and have
all other terms fixed in some configuration. For each v ∈ C, z = F (x,v) is
known as it is a keystream bit, so by substituting these keystream bits into∑

C G(x,v, z) =
∑

C H(x,v), we get a polynomial of degree at most e. We do
this for

(
n
e

)
maxterms to find

(
n
e

)
polynomials of degree at most e, and then

solve for x by linearization.
The attack is as follows:

1. Find G and H. See the Appendix part A for a method to find G and H.
2. The preprocessing stage. First, we pick

(
n
e

)
maxterms. For each maxterm,

we compute
∑

C H(x,v) by finding the coefficient of every x-monomial, of
which there are

(
n
e

)
, so H gets evaluated

(
n
e

)
2d−e times.

The total complexity of this stage is(
n

e

)2

2d−e

3. The online phase. For each maxterm we can compute
∑

C G(x,v, z) as a
polynomial of x, since we have the keystream bits z. This has complexity(
n
e

)
2d−e. We equate this to

∑
H(x,v) to obtain an equation in x of degree

at most e. Since there are
(
n
e

)
maxterms, we get

(
n
e

)
equations in x of degree

at most e, and we can solve for x by linearization. This has complexity
(
n
e

)3.
The total complexity of this stage is(

n

e

)2

2d−e +
(

n

e

)3

Remark 3. Given a stream cipher filtered by the vectorial function

z = (z1, . . . , zr) = F (x,v).

A straightforward attack would be to apply the cube attack on a linear combina-
tion of output bits, which we denote by z =

∑
i∈I zi = f(x,v). If the attacker is

able to find a multiple f(x,v)g(x,v) of low degree d where zg(x,v) has low de-
gree e, the attack complexity can be much reduced as in the attack on Toyocrypt
in Section 3.1.

However, it is easy to see that low-degree equations f(x,v)g(x,v) and zg(x,v)
are special cases of the equation G(x,v, F (x,v)) of low (x,v)-degree d and
G(x,v, z) of low (x,v)-degree e, considered in Section 4. Therefore we expect
the vectorial cube attack in Section 4 to utilize lower degree equations than the
single-bit cube attack. This will translate into lower attack complexity when we
linearize and solve the resulting system of equations for the secret keys.

4.2 Sliding Window Cube attack on Vectorial Filter Function
Taking Few Inputs

As in the 1-bit case above, we can consider the case where our key is of size N
and our vectorial filter function F takes only n < N inputs from the state, and
has r outputs. Suppose we have the following two conditions:

– Linear initialization
– Linear feedback for the state function, e.g. LFSR

We can then write the inputs from the state at time t as lt(x,v), where lt is
linear, and consider the filter function as a function of the inputs (as opposed to
the entire state). Now its output at time t is

zt = F (lt(x,v)) = F (yt + lt(0,v))

where yt = lt(x,0).
As in the attack on the vectorial filter function, suppose we have G(y,w, z)

of low (y,w)-degree e such that H(y,w) := G(y,w, F (y + w)) has low (y,w)-
degree d, and e < d ≤ deg(F). Let us write Gt(yt,v, z) = G(yt + lt(0,v), zt))
and Ht(yt,v) = H(yt + lt(0,v)). We can apply the attack on the vectorial filter

function to Gt = Ht to find yt for any t. This gives us n linear equations in the
(xi), so we can apply the attack to dN/ne values of t such that the corresponding
yt give us N linearly independent equations in the (xi). We can then solve these
equations by Gaussian elimination.

The attack works as follows:

1. Find G and H. See the Appendix part A for a method to find G and H.
2. The preprocessing stage. We pick dN/ne values of t such that the yt give us

N linearly independent equations in the (xi). For each value of t, we pick(
n
e

)
maxterms. For a given maxterm, we denote C to be the cube of 2d−e

vectors which have all possible combinations of values for the terms in the
maxterm, and have all other terms fixed in some configuration.
For each maxterm, we compute

∑
C Ht(yT ,v) by finding the coefficient of

every yt-monomial, of which there are
(
n
e

)
, so Ht gets evaluated

(
n
e

)
2d−e

times.
The total complexity of this stage is

dN/ne
(

n

e

)2

2d−e

3. The online phase. Each value of t has
(
n
e

)
corresponding maxterms, and for

each maxterm we can compute
∑

C G(x,v, z) as a polynomial of x, since we
have the keystream bits z. This has complexity

(
n
e

)
2d−e. We equate this to∑

C Ht(yt,v) to obtain an equation in yt of degree at most e. Since there
are

(
n
e

)
maxterms for each t, we get

(
n
e

)
equations in yt of degree at most e,

and we can solve for yt by linearization. This has complexity
(
n
e

)3.
After solving for all dN/ne of the yt, which are linear combinations of (xi),
we get N linear equations in (xi), and can then solve for x using Gaussian
elimination with complexity N3.
The total complexity of this stage is

dN/ne

((
n

e

)2

(2d−e +
(

n

e

)3
)

+ N3

Remark 4. As explained in Section 3.2, the vectorial sliding window cube at-
tack is faster than the re-synchronization attack of [9] when n is not too small.
Therefore it can be used in conjunction with the attack of [9] to tackle vectorial
filter functions of different input size n.

5 Conclusion

We have proposed two variants of the cube attack, which makes use of low degree
equations. First, the cube attack with annihilators works on single-bit output
stream ciphers and it combines the low degree multiples used in algebraic attack
with cube attack to get attack complexities that are much better than those of

the individual attacks. This is demonstrated in the attack on Toyocrypt where
the attack complexities are lower and the keystream needed is greatly reduced.
Second, the vectorial cube attack works on multi-output stream ciphers and it
combines the cube attack with a new form of low degree vectorial equations,
which can be obtained from rank computation of certain “monomial” matrices.
It improves on the low-degree cube attack on a linear combination of output
bits.

We also described sliding window cube attacks on single and multi-output
Boolean functions. These improve the cube attack complexities for filter function
generators when the size of the Boolean function is smaller than the size of the
LFSR. This can be used in conjunction with the linear re-synchronization attack
of [9] for better attack complexities across different input size n.

An open question is to find an efficient algorithm to find the low degree
vectorial equations G(x,v, F (x,v)) and G(x,v, z) for the attack of Section 4.

6 Acknowledgement

We would like to thank Prof. Josef Pieprzyk for his careful reading of the paper
and many invaluable suggestions.

References

1. F. Armknecht, C. Carlet, P. Gaborit, S. Knzli, W. Meier and O. Ruatta, “Efficient
Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks”,
LNCS 4004, Eurocrypt 2006, pp. 147-164, Springer-Verlag, 2006.

2. A. Canteaut, “Open Problems Related to Algebraic Attacks on Stream Ciphers”,
LNCS 3969, WCC 2005, pp. 120-134, Springer-Verlag, 2006.

3. N. Courtois, “Higher Order Correlation Attacks, XL algorithm and Cryptanalysis
of Toyocrypt”, LNCS 2587, ICISC 2002, pp. 182-199, Springer-Verlag, 2002.

4. N. Courtois, A. Klimov, J. Patarin and A. Shamir, “Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations”, LNCS 1807, Euro-
crypt 2000, pp. 392-407, Springer-Verlag, 2000.

5. N. Courtois and W. Meier, “Algebraic Attacks on Stream Ciphers with Linear
Feedback”, LNCS 2656, Eurocrypt 2003, pp. 345-359, Springer-Verlag, 2003.

6. J.-C. Faugère, “A New Efficient Algorithm for Computing Gröbner Bases (F4)”,
Journal of Pure and Applied Algebra 139 (1), pp. 61-88, Elsevier Science, 1999.

7. J.-C. Faugère, “”A New Efficient Algorithm for Computing Gröbner Bases With-
out Reduction to Zero (F5)”, Proceedings of the 2002 international symposium on
Symbolic and algebraic computation (ISSAC), pp. 75-83, ACM Press, 2002.

8. A. Kipnis and A. Shamir, “Cryptanalysis of the HFE Public Key Cryptosystem
by Relinearization”, LNCS 1666, Crypto 1999, Springer-Verlag, 1999.

9. J. Daemen, R. Govaerts and J. Vandewalle, “Resynchronization Weaknesses in
Synchronous Stream Ciphers”, LNCS 765, Eurocrypt’93, pp. 159-167, Springer-
Verlag, 1994.

10. F. Didier and J.-P. Tillich, “Computing the Algebraic Immunity Efficiently”, LNCS
4047, FSE 2006, pp. 359-374, Springer-Verlag, 2006.

11. I. Dinur and A. Shamir, “Cube Attacks on Tweakable Black Box Polynomials”, ...

12. M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the
Theory of NP-Completeness”, Freeman and Company, 1979.

13. P. Hawkes and G. Rose, “Rewriting Variables: The Complexity of Fast Algebraic
Attacks on Stream Ciphers”, LNCS 3152, Crypto 2004, pp. 390-406, Springer-
Verlag, 2004.

14. M. Mihaljevic and H. Imai, “Cryptanalysis of Toyocrypt-HS1 Stream Cipher”,
IEICE Transactions on Fundamentals, vol. E85-A, pp. 66-73, Jan. 2002.

Appendix

A Method to find Implicit Low Degree Equations for
Vectorial Boolean Functions

Here we present a method such that given F (x,v), where x is of size n and v is
of size m, we can find G(x,v, z) and H(x,v) so that

H(x,v) = G(x,v, F (x,v))

and G and H are of low degrees e and d respectively, with e < d ≤ n.
We construct the matrix M where the rows range over all the possible values

of (x,v), so there are 2n+m rows. We let its columns range over all (x,v, z)-
monomials with (x,v)-degree at most e, and z-degree unrestricted, as well as
all the (x,v)-monomials with degree at most d. There are 2r

(
(n+m)

e

)
+
(
(n+m)

d

)
such monomials.

We define the (i, j)th entry of M to be the value of the monomial corre-
sponding to the jth column evaluated with the value of (x,v) corresponding to
the ith row, where z = F (x,v) in the monomial.

If this matrix has more columns than rows, i.e.

2r

(
(n + m)

e

)
+
(

(n + m)
d

)
≥ 2n+m

then we can find a vector y ∈ F2r((n+m)
e)+((n+m)

d)
2 such that My = 0. Then for

every value of (x,v), corresponding to row i, we have∑
j

yjMij = 0

Hence we have a linear equation of the monomials that is true for all values
of (x,v). Let G be equal to all the terms containing z, and H be equal to the
rest of the terms.

