
COMPARING TWO PAIRING-BASED AGGREGATE SIGNATURE SCHEMES

SANJIT CHATTERJEE, DARREL HANKERSON, EDWARD KNAPP, AND ALFRED MENEZES

Abstract. In 2003, Boneh, Gentry, Lynn and Shacham (BGLS) devised the first provably-secure aggregate
signature scheme. Their scheme uses bilinear pairings and their security proof is in the random oracle model.
The first pairing-based aggregate signature scheme which has a security proof that does not make the random
oracle assumption was proposed in 2006 by Lu, Ostrovsky, Sahai, Shacham and Waters (LOSSW). In this
paper, we compare the security and efficiency of the BGLS and LOSSW schemes when asymmetric pairings
derived from Barreto-Naehrig (BN) elliptic curves are employed.

1. Introduction

Beginning with the work of Joux [27] in 2000, bilinear pairings have been extensively used to design
cryptographic protocols. Bilinear pairings come in two flavours – symmetric and asymmetric. If n is prime,
and G and GT are two groups of order n, then a symmetric pairing on (G,GT ) is a function e : G×G→ GT

that is bilinear, non-degenerate, and efficiently computable. Following [17], we will refer to these pairings as
Type 1 pairings. On the other hand, if G1, G2 and GT are three groups of order n with G1 6= G2, then an
asymmetric pairing on (G1,G2,GT ) is a function e : G1 × G2 → GT that is bilinear, non-degenerate, and
efficiently computable. Following [17], asymmetric pairings for which an efficiently-computable isomorphism
ψ : G2 → G1 is known will be called Type 2 pairings, while asymmetric pairings for which no efficiently-
computable isomorphism is known either from G1 to G2 or from G2 to G1 are called Type 3 pairings.

Boneh, Lynn and Shacham [9] were the first to observe that an efficiently-computable isomorphism ψ from
G2 to G1 can be essential to the security of a protocol. They showed that their short-signature scheme is
insecure if implemented with a certain bilinear pairing for which the co-Diffie-Hellman problem (co-DHP; see
§2.3 for the definition of co-DHP) is intractable but for which an isomorphism ψ is not known. Boneh, Lynn
and Shacham commented that the requirement for the map ψ can be avoided by using a Type 3 pairing at
“the cost of making a stronger complexity assumption”, namely that co-DHP* is intractable (see §2.3 for the
definition of co-DHP*). They conclude by saying that since ψ naturally exists in Type 2 pairings, there is
no reason to rely on this stronger complexity assumption. It is perhaps because of the prevailing belief that
hardness of co-DHP* is a stronger complexity assumption than hardness of co-DHP that most researchers
who describe their protocols with asymmetric pairings use Type 2 pairings instead of Type 3 pairings.

In this paper we compare the security and efficiency of two provably-secure pairing-based signature schemes
— those of Boneh, Gentry, Lynn and Shacham (BGLS) [7] and Lu, Ostrovsky, Sahai, Shacham and Waters
(LOSSW) [29]. The BGLS scheme was originally described using the setting of a Type 2 pairing, and its
security proof is in the random oracle model (ROM). The LOSSW scheme, on the other hand, was described
in the setting of a Type 1 pairing, and its security proof did not make the random oracle assumption. The
authors of [29] claimed that the LOSSW scheme “in some cases outperform[s] the most efficient random-
oracle-based schemes”, and in particular has faster signature verification than BGLS. The basis for the latter
claim was that a BGLS signature verification requires ℓ+1 pairing computations when ℓ signatures have been
aggregated, whereas LOSSW requires only 2 pairing computations. However, the removal of the relative-
expensive pairing operations is at the expense of introducing other operations including multiplications,
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exponentiations, and group membership testing, and possibly requiring larger public keys and signatures.
Our goal in this paper is a detailed comparison of BGLS and LOSSW using state-of-the-art BN pairings,
and by using the known reductionist security arguments to guide the protocol specification and parameter
selection.

We show that the BGLS and LOSSW schemes, as well as the BLS [9] and Waters [40] signature schemes
upon which they are based, can all be described using Type 3 pairings (and that the Waters and LOSSW
schemes can be described using Type 2 pairings).1 We explain how some of these protocols have to be
modified in order for the known reductionist security proofs to carry over to the different settings. We
argue, contrary to what can be inferred from [9], that the existing evidence suggests that Type 3 pairings
offer at least as much security as Type 2 pairings when used to implement the four signature schemes under
consideration. Furthermore, we compare Type 2 and Type 3 pairings derived from a certain Barreto-Naehrig
(BN) elliptic curve [2] offering 128 bits of security. We show that the elements of the group G2 in Type 2
pairings can always be represented so that operations in G2 have significantly lower cost than suggested
by the high-level estimates of Galbraith, Paterson and Smart [17] and the analysis of Chen, Cheng and
Smart [12]. Despite these improvements, we conclude that Type 2 pairings offer no performance benefits
over Type 3 pairings. Finally, we demonstrate that the BGLS scheme outperforms the LOSSW scheme in
every respect — smaller public keys, smaller signatures, faster signature generation, and faster signature
verification when 10 or fewer signatures have been aggregated.

The remainder of this paper is organized as follows. The construction of Type 2 and Type 3 pairings from
BN curves are reviewed in §2, and their security is contrasted. In §3, we describe a particular BN curve and
offer concrete estimates of the efficiency of fundamental operations in the Type 2 and Type 3 pairings derived
from this curve. The security and efficiency of the BLS and Waters signature schemes are compared in §4.
Finally, §5 compares the security and efficiency of the BGLS and LOSSW aggregate signature schemes.

Notation. In order to maintain consistency with the literature, G, G1, G2, G′

2 will be additively-written
cyclic groups with generators P , P1, P2, P

′

2 in §2 and §3, while in §4 and §5, G, G1, G2, G′

2 will be
multiplicatively-written cyclic groups with generators g, g1, g2, g

′

2. The notation SIG-x is used to denote
the signature scheme SIG implemented with a Type x pairing, where x ∈ {1, 2, 3}.

2. Barreto-Naehrig curves

Barreto-Naehrig elliptic curves [2] are parameterized by an integer z for which both p(z) = 36z4 + 36z3 +
24z2 +6z+1 and n(z) = 36z4 +36z3 +18z2 +6z+1 are prime. For each such z, there is an ordinary elliptic
curve E : Y 2 = X3 + b defined over the finite field Fp where p = p(z), and such that #E(Fp) = n where
n = n(z). Such an elliptic curve has embedding degree k = 12, this being the smallest positive integer for
which n divides pk − 1. If follows that E[n] ⊆ E(Fp12), where E[n] denotes the set of all n-torsion points on
E. (Recall that E[n] is a finite abelian group of rank 2, whence E[n] ∼= Zn⊕Zn and E[n] has n+ 1 different
subgroups of order n.)

2.1. Type 3 pairings from BN curves. Let G1 = E(Fp), and let GT denote the unique order-n subgroup

of F∗

p12 . Now, E has a sextic twist over Fp2 , namely Ẽ/Fp2 : Y 2 = X3 + b′, such that n | #Ẽ(Fp2) and

n2 ∤ #Ẽ(Fp2) [24]. Let T̃ ∈ Ẽ(Fp2) be a point of order n, and define G̃2 = 〈T̃ 〉. Then there is an efficiently-

computable monomorphism φ : Ẽ(Fp2)→ E(Fp12). Letting T = φ(T̃ ) and G2 = 〈T 〉, we have G2 6= G1 and

an efficiently-computable group isomorphism φ : G̃2 → G2. The group G2 is called the trace-0 subgroup of
E[n] since it has the property that Tr(Z) =

∑11
i=0 π

i(Z) = ∞ for all Z ∈ G2, where π : (x, y) 7→ (xp, yp)
is the pth-power Frobenius map. We next define three asymmetric pairings on (G1,G2,GT ). Since no
efficiently-computable isomorphism from G1 to G2 or from G2 to G1 is known, these pairings are of Type 3.

1Type 1 pairings are currently viewed as being significantly slower than their Type 2 and Type 3 counterparts (see [22]) at
the 128-bit security level, and therefore we will restrict our attention in this paper to Type 2 and Type 3 pairings.
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The (full) Tate pairing ê : E[n] × E[n] → GT can be defined as follows. Let P,Q ∈ E[n], and let
R ∈ E(Fp12) with R 6∈ {∞, P,−Q,P −Q}. Then

ê(P,Q) =

(

fn,P (Q+R)

fn,P (R)

)(p12
−1)/n

,

where the Miller function fn,P is a function whose only zeros and poles in E are a zero of order n at P and
a pole of order n at ∞. The (restricted) Tate pairing tn : G1 ×G2 → GT is defined by

tn(P,Q) = (fn,P (Q))
(p12

−1)/n
,

and can be computed using Algorithm 1.

Algorithm 1 (Computing the Tate pairing)

Input: P ∈ G1 and Q ∈ G2.
Output: tn(P,Q).

1. Write n in binary: n =
∑L−1

i=0 ni2
i.

2. T ←P , f← 1.
3. For i from L− 2 downto to 0 do: {Miller operation}

3.1 Let ℓ be the tangent line at T .
3.2 T ← 2T , f← f2 · ℓ(Q).
3.3 If ni = 1 and i 6= 0 then

Let ℓ be the line through T and P .
T ←T + P , f← f · ℓ(Q).

4. Return(f (p12
−1)/n). {Final exponentiation}

The ate pairing an : G1 ×G2 → GT , introduced by Hess, Smart and Vercauteren [24], is defined by

an(P,Q) = (ft−1,Q(P ))
(p12

−1)/n

where t − 1 = p − #E(Fp) = 6z2. The ate pairing is generally faster to compute than the Tate pairing
because the number of iterations in the Miller operation is determined by the bitlength of t− 1 ≈ √n.

The R-ate pairing Rn : G1 ×G2 → GT , introduced recently by Lee, Lee and Park [28], further decreases
the number of iterations of the Miller operation. It is defined by

Rn(P,Q) =
(

f · (f · ℓaQ,Q(P ))p · ℓπ(aQ+Q),aQ(P )
)(p12

−1)/n
,

where a = 6z + 2, f = fa,Q(P ), and ℓA,B denotes the line through A and B. There is an integer N
such that Rn(P,Q) = ê(Q,P )N for all P ∈ G1 and Q ∈ G2 [28]. The R-ate pairing can be computed using
Algorithm 2. Notice that the number of iterations in the Miller operation is now determined by the bitlength
of a ≈

√
t ≈ n1/4.

Algorithm 2 (Computing the R-ate pairing)

Input: P ∈ G1 and Q ∈ G2.
Output: Rr(Q,P ).

1. Write a = 6z + 2 in binary: a =
∑L−1

i=0 ai2
i.

2. T ←Q, f← 1.
3. For i from L− 2 downto 0 do: {Miller operation}

3.1 Let ℓ be the tangent line at T .
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3.2 T ← 2T , f← f2 · ℓ(P ).
3.3 If ai = 1 then

Let ℓ be the line through T and Q.
T ←T +Q, f← f · ℓ(P ).

4. f← f · (f · ℓT,Q(P ))p · ℓπ(T+Q),T (P ).

5. Return(f (p12
−1)/n). {Final exponentiation}

Table 1 from [22] lists the costs of computing the Tate, ate, and R-ate pairings for a particular BN curve
described in §3, demonstrating the superiority of the R-ate pairing. The cost estimates have been validated
by experiments. For example, [22] reports timings of 81 million and 54 million clock cycles for computing
the ate and R-ate pairings on a 2.8 GHz Pentium 4 machine using general purpose registers.

Pairing Miller operation Final exponentiation Total
Tate 27,934m 7,246m+i 35,180m+i
ate 15,801m 7,246m+i 23,047m+i

R-ate 7,847m+i 7,246m+i 15,093m+2i
Table 1. Costs of the Tate, ate and R-ate pairings for the BN curve described in §3. Here,
m and i denote multiplication and inversion in Fp.

If the product of ℓ R-ate pairings is desired, then the steps of the individual pairing computations can
be interleaved, with the product of the partial results being stored in a common accumulator f [38, 21]. In
that case, the expensive operation f← f2 in step 3.2 of Algorithm 2 and the final exponentiation in step 5
can be shared by all ℓ pairing computations. It follows that the cost of computing the product of ℓ R-ate
pairings for the particular BN curve is 15, 093m+ 2i+ (ℓ− 1)(5507m+ i); i.e., the incremental cost of each
additional pairing is roughly one-third the cost of the first pairing.

2.2. Type 2 pairings from BN curves. Let R ∈ E[n] with R 6∈ G1 and R 6∈ G2, and define G′

2 = 〈R〉.
Then the map en : G1×G′

2 → GT defined by en(P,Q) = ê(Q,P )2N is an asymmetric pairing on (G1,G
′

2,GT ).
It is a Type 2 pairing because the trace map Tr is an efficiently-computable isomorphism from G′

2 to G1.
At first glance, it may appear that evaluating en(P,Q) may be more expensive than evaluating the

Type 3 pairing Rn because the point Q ∈ G′

2 has coordinates that are in Fp12 and not in any proper subfield.
However, the following shows that the task of computing en(P,Q) is easily reduced to the task of computing
an R-ate pairing value.

Lemma 1 ([25]). Let P ∈ G1 and Q ∈ G′

2. Then en(P,Q) = Rn(P, Q̂), where Q̂ = Q− π6(Q).

Proof. First note that Q̂ 6= ∞ since Q 6∈ E(Fp6). Moreover, Tr(Q̂) = Tr(Q) − Tr(π6(Q)) = ∞, and hence

Q̂ ∈ G2. Finally,

en(P,Q) = ê(Q,P )2N

= ê(2Q,P )N

= ê(Q+ Q̂+ π6(Q), P )N

= ê(Q̂, P )N · ê(Q+ π6(Q), P )N

= Rn(P, Q̂),

since Q+ π6(Q) ∈ E(Fp6) whence ê(Q+ π6(Q), P ) = 1 [15, Lemma IX.8]. �
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2.3. Security. Recall that G1 = E(Fp), G2 is the trace-0 subgroup of E[n], G′

2 is any order-n subgroup
of E[n] different from G1 and G2, and GT is the order-n subgroup of F∗

p12 . BN curves are especially well

suited for the 128-bit security level because if p is a 256-bit prime (whence n is also a 256-bit prime) then
Pollard’s rho method [34] for computing discrete logarithms in G1, G2, G′

2 or GT has running time at least
2128, as does the number field sieve algorithm for computing discrete logarithms in the extension field Fp12

[19, 35, 36]. Schirokauer [37] has shown that there are cases where discrete logarithms in prime fields Fp and
degree-two extensions Fp2 of prime fields can be computed significantly faster than standard versions of the
number field sieve if the prime p has low Hamming weight. However, Schirokauer’s method is not known to
be effective for computing discrete logarithms in Fp12 for BN primes p, even if the BN parameter z is chosen
so that p has relatively small Hamming weight. Thus, the fastest algorithms presently known for computing
discrete logarithms in G1, G2, G′

2 and GT have running times at least 2128.
It should be noted that while the discrete logarithm problems in the groups G1, G2, G′

2 and GT are
equivalent in practice, such an equivalence has never been proven. Let us denote the discrete logarithm
problem in a group G by DLPG. The Tate pairing can be used to efficiently reduce the DLP in any order-n
subgroup of E[n] to the DLP in GT . Namely, if P ∈ E[n] and Q ∈ 〈P 〉, then one has logP Q = logα β
where α = ê(P,R), β = ê(Q,R), and R ∈ E[n] is chosen so that ê(P,R) 6= 1. Now, the trace map
Tr : G′

2 → G1 is an efficiently-computable isomorphism and so DLPG′

2
≤ DLPG1

. Furthermore, if Q ∈ G′

2

then Q2 = Q− 1
12 Tr(Q) ∈ G2 since Q2 ∈ E[n] and Tr(Q2) = Tr(Q)− Tr(Q) =∞. Hence the map

(1) ρ : G′

2 → G2, Q 7→ Q− 1

12
Tr(Q)

is an efficiently-computable isomorphism, whence DLPG′

2
≤ DLPG2

. Figure 1 summarizes the known rela-
tionships between the DLP in G1, G2, G′

2 and GT .

DLPG2

DLPG1

co-DHP DLPG′

2
co-DHP* DLPGT

Figure 1. Relative difficulty of the discrete logarithm problems in G1, G2, G′

2, GT , and
the co-DHP and co-DHP* problems. The notation A← B means that there is an efficient
reduction from A to B. The equivalence of co-DHP* and co-DHP holds if the generators
P1, P2, P

′

2 are suitably chosen (cf. Lemma 2).

Suppose now that P1, P2, P
′

2 are fixed generators of G1, G2, G′

2, respectively. Security of the signature
schemes considered in §4 and §5 is based on a variant of the Diffie-Hellman problem (DHP). (Recall that
DHP in a group G = 〈P 〉 is the problem of determining xyP given xP and yP .) If a Type 2 pairing is
employed, then security of the signature schemes is based on the hardness of co-DHP : Given Q ∈ G1 and
zP ′

2 ∈ G′

2, compute zQ. The intractability of DLPG′

2
is a necessary condition for hardness of co-DHP. On

the other hand, if a Type 3 pairing is employed, then security is based on the hardness of co-DHP* : Given
Q, zP1 ∈ G1 and zP2 ∈ G2, compute zQ. The intractability of DLPG1

and DLPG2
are both necessary for

the hardness of co-DHP*.
Note that our definition of co-DHP is with respect to fixed generators of G1 and G′

2, while our definition
of co-DHP* is with respect to fixed generators of G1 and G2. This is appropriate because these generators
are regarded as fixed, public parameters in the signatures schemes under consideration. Moreover, unlike
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the case of the DLP and DHP in a prime-order group, it has not been proven that the hardness of co-DHP
and co-DHP* is independent of the choice of generators.

It is not known whether DLPG1
≤ co-DHP*, or DLPG2

≤ co-DHP*, or DLPG′

2
≤ co-DHP. This is

unlike the case of the DHP in an order-n group G, where there is substantial evidence that DLPG ≤ DHPG.
For example, den Boer [5] proved that DLPG ≤ DHPG if the group order n has the property that n − 1 is
smooth. Furthermore, den Boer’s result was extended by Boneh, Lipton and Maurer [8, 30] to the case where
an elliptic curve over Zn of smooth order is known. Consequently, concerns that DHPG might be easier than
DLPG can be alleviated by selecting an order-n group G for which the appropriate elliptic curves over Zn

are known [31]. The techniques of den Boer, Boneh, Lipton and Maurer do not appear to extend to the case
of co-DHP and co-DHP*, and consequently there is presently no evidence (in the form of a reduction) that
these problems are equivalent to the DLP in G1, G2 or G′

2.
The following shows that co-DHP and co-DHP* are equivalent if the generators P1, P2, P

′

2 are suitably
chosen.

Lemma 2. Let P ′

2 ∈ E[n] be an arbitrary point with P ′

2 6∈ G1 and P ′

2 6∈ G2, and let G′

2 = 〈P ′

2〉. Let

c ∈ [1, n − 1] be an arbitrary integer, and define P2 = c−1ρ(P ′

2) and P1 = 1
12 Tr(P ′

2). If c is known, then

co-DHP ≤ co-DHP* and co-DHP* ≤ co-DHP.

Proof. Note that P ′

2 = P1 + cP2. It can easily be checked that P1 ∈ G1 \ {∞} and P2 ∈ G2 \ {∞}.
Now, given a co-DHP instance (Q, zP ′

2), we compute c−1ρ(zP ′

2) = zP2 and zP ′

2−czP2 = zP1. A co-DHP*
solver is then used to find the solution zQ of the co-DHP* instance (Q, zP1, zP2), thus also obtaining the
solution to the original co-DHP instance. This shows that co-DHP ≤ co-DHP*.

Conversely, given a co-DHP* instance (Q, zP1, zP2), we compute zP1 + czP2 = zP ′

2. A co-DHP solver is
then used to find the solution zQ of the co-DHP instance (Q, zP ′

2), thus also obtaining the solution to the
original co-DHP* instance. This shows that co-DHP* ≤ co-DHP. �

It is not known whether knowledge of the integer c makes co-DHP or co-DHP* any easier. Suppose
instead that P2 and P ′

2 were chosen independently at random from G2 and E[n] \ (G1 ∪ G2), respectively,
and P1 = 1

12 Tr(P ′

2). In this scenario, the integer c satisfying ρ(P ′

2) = cP2 is not known, and we do not
know efficient reductions from co-DHP to co-DHP* or from co-DHP* to co-DHP. The fact that efficient
reductions DLPG′

2
≤ DLPG1

and DLPG′

2
≤ DLPG2

are known, while efficient reductions DLPG1
≤ DLPG′

2

and DLPG2
≤ DLPG′

2
are not known, might cause some people to have more confidence in the hardness

of DLPG1
and DLPG2

than of DLPG′

2
, and consequently more confidence in hardness of co-DHP* than of

co-DHP. One should also note that the Decisional DHP is easy in G′

2, but not known to be easy in G1 or
in G2 [6]. Thus, the existing evidence does not indicate any weakness in Type 3 pairings relative to Type 2
pairings, but rather that Type 3 pairings are at least as secure as Type 2 pairings.

2.4. Representation of G′

2. In the remainder of the paper, we shall assume that G′

2 = 〈P ′

2〉 where the
point P ′

2 was selected at random from E[n] \ (G1 ∪G2). Furthermore, we choose P1 = 1
12 Tr(P ′

2), whence

(2) ψ : G′

2 → G1, Q 7→ 1

12
Tr(Q)

is an efficiently-computable isomorphism such that ψ(P ′

2) = P1. We either set P2 = c−1ρ(P ′

2) for an arbitrary
integer c ∈ [1, n−1] (in which case co-DHP and co-DHP* are provably equivalent), or set P2 to be a randomly
selected trace-0 point (in which case it is not known how to prove the equivalence of co-DHP and co-DHP*).

Given Q ∈ G′

2, one can efficiently determine the unique Q1 ∈ G1 and Q2 ∈ G2 such that Q = Q1 +Q2;
namely, Q1 = ψ(Q) and Q2 = ρ(Q) = Q−Q1. Writing

(3) D(Q) = (ψ(Q), ρ(Q)),

and letting H′

2 ⊆ G1×G2 denote the image ofD, we have an efficiently-computable isomorphismD : G′

2 → H′

2

whose inverse is also efficiently computable. Note that addition in H′

2 is component-wise.
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3. A particular BN curve

For the remainder of this paper, we will work with the BN curve

E/Fp : Y 2 = X3 + 3

with BN parameter z = 6000000000001F2D (in hexadecimal) [14]. For this choice of BN parameter, p is a
256-bit prime of Hamming weight 87, n = #E(Fp) is a 256-bit prime of Hamming weight 91, t− 1 = 6z2 is
a 128-bit integer of Hamming weight 28, and the R-ate parameter a = 6z+ 2 is a 66-bit integer of Hamming
weight 9. Note that p ≡ 7 (mod 8) (whence −2 is a nonsquare modulo p) and p ≡ 1 (mod 6).

3.1. Field representation. The extension field Fp12 is represented using tower extensions

Fp2 = Fp[u]/(u
2 + 2),

Fp6 = Fp2 [v]/(v3 − ξ) where ξ = −u− 1, and

Fp12 = Fp6 [w]/(w2 − v).
We also have the representation

Fp12 = Fp2 [W ]/(W 6 − ξ) where W = w.

Hence an element α ∈ Fp12 can be represented in any of the following three ways:

α = a0 + a1w where a0, a1 ∈ Fp6

= (a0,0 + a0,1v + a0,2v
2) + (a1,0 + a1,1v + a1,2v

2)w where ai,j ∈ Fp2

= a0,0 + a1,0W + a0,1W
2 + a1,1W

3 + a0,2W
4 + a1,2W

5.

We let (m, s, i), (m̃, s̃, ı̃), (M,S, I) denote the cost of multiplication, squaring, inversion in Fp, Fp2 , Fp12 ,
respectively. Experimentally, we have s ≈ 0.9m and i ≈ 41m on a Pentium 4 processor [22]. In our cost
estimates that follow, we will make the simplifying assumption s ≈ m.

3.1.1. Arithmetic in Fp2 . We have m̃ ≈ 3m using Karatsuba’s method which reduces a multiplication in
a quadratic extension to 3 (rather than 4) small field multiplications; s̃ ≈ 2m using the complex method:
(a+ bu)2 = (a− b)(a+ 2b)− ab+ (2ab)u; and ı̃ ≈ i+ 2m+ 2s since (a+ bu)−1 = (a− bu)/(a2 + 2b2). Note
also that p-th powering is free in Fp2 because (a+ bu)p = a− bu.

3.1.2. Arithmetic in Fp6 . Karatsuba’s method reduces a multiplication in a cubic extension to 6 (rather
than 9) multiplications in the smaller field. Hence a multiplication in Fp6 costs 18m. Squaring in Fp6

costs 2m̃ + 3s̃ = 12m via the following formulae [13]: if β = b0 + b1v + b2v
2 ∈ Fp6 where bi ∈ Fp2 , then

β2 = (A + Dξ) + (B + Eξ)v + (B + C + D − A − E)v2 where A = b20, B = 2b0b1, C = (b0 − b1 + b2)
2,

D = 2b1b2, and E = b22. Finally, as shown in [39, Section 3.2], inversion in Fp6 can be reduced to 1 inversion,
9 multiplications, and 3 squarings in Fp2 .

3.1.3. Arithmetic in Fp12 . Since Fp12 is a tower of quadratic, cubic, and quadratic extensions, Karatsuba’s
method gives M ≈ 54m. By using the complex method for squaring in Fp12 and Karatsuba for multiplication
in Fp6 and Fp2 , we have S ≈ 36m. Since inversion in Fp12 can be reduced to 1 inversion, 2 multiplications,
and 2 squarings in Fp6 , it follows that I ≈ i+ 97m.

3.1.4. Sextic twist. The sextic twist Ẽ of E over Fp2 for which n | #Ẽ(Fp2) is

Ẽ/Fp2 : Y 2 = X3 + 3/ξ.

The monomorphism φ : Ẽ(Fp2) → E(Fp12 ) is given by (x, y) 7→ (xW 2, yW 3). Thus the group isomorphism

φ : G̃2 → G2 as well as its inverse can be computed at no cost.
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3.2. Elliptic curve operations. A point (X,Y, Z) in jacobian coordinates corresponds to the point (x, y)
in affine coordinates with x = X/Z2 and y = Y/Z3. The formulas for doubling a point in E(Fpd) represented
in jacobian coordinates require 3 multiplications and 4 squarings in Fpd , while the formulas for mixed
jacobian-affine addition in E(Fpd) require 8 multiplications and 3 squarings in Fpd .

3.3. Type 2 versus Type 3 pairings. Table 2 lists the bitlengths of elements in G1, G2, G′

2 and GT ,
and the estimated costs of performing essential operations in these groups. Our estimates are consistent
with the high-level comparisons in Table 3 of [17] and Table 5 of [12], with the notable exception that the
representation we use for G′

2 results in elements of significantly smaller bitlengths and significantly faster
exponentiation.2

Type 2 Type 3
Bitlength of elements in G1 257 257

Bitlength of elements in G′

2/G2 770 513
Bitlength of elements in GT 1,024 1,024
Compressing elements in G1 free free

Compressing elements in G′

2/G2 free free
Decompressing elements in G1 315m 315m

Decompressing elements in G′

2/G2 989m 674m
Addition in G1 11m 11m
Doubling in G1 7m 7m

Addition in G′

2/G2 41m 30m
Doubling in G′

2/G2 24m 17m
Exponentiation in G1 1,533m 1,533m

Exponentiation in G′

2/G2 4,585m 3,052m
Fixed-base exponentiation in G1 718m 718m

Fixed-base exponentiation in G′

2/G2 2,624m 1,906m
Hashing into G1 315m 315m

Hashing into G′

2/G2 — 3,726m
en/Rn Pairing 15,175m 15,175m

Testing membership in G1 free free
Testing membership in G′

2/G2 23,775m 3,052m

Table 2. Bitlengths of elements in G1, G2, G′

2 and GT , and estimated costs (in terms of
Fp multiplications) of basic operations.

3.3.1. Representing elements in G1, G2, G′

2 and GT . A point Q = (x, y) ∈ G1 can be represented in
compressed form by x ∈ Fp plus a sign bit of y ∈ Fp. The full y-coordinate can be recovered by solving

y2 = x3 +3 over Fp via y = ±
√
x3 + 3 = (x3 +3)(p+1)/4. The exponentiation can be performed using sliding

windows of width 5, at a cost of 315m.
A point Q ∈ G2 has preimage (x, y) ∈ G̃2 under φ−1 and thus can be represented in compressed form by

x ∈ Fp2 plus a sign bit of y ∈ Fp2 . The full y-coordinate y = ±
√

x3 + 3/ξ can be recovered at a cost of 2
square roots in Fp plus i + m + 2s using Scott’s method for computing square roots in Fp2 [39]. The overall
cost is 674m.

2For example, Table 5 of [12] estimates the cost exponentiation in G′

2
as 45 times the cost of exponentiation in G1; our ratio

is 3.
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As noted in §2.4, a point Q = (x, y) ∈ G′

2 can be represented by the pair of points D(Q) = (Q1, Q2) ∈ H′

2,
where Q1 = 1

12 Tr(Q) and Q2 = Q − Q1. Now, πi(Q) for 1 ≤ i ≤ 5 can be computed by successive
application of π, each of which cost 30m since p-th powering of an element in Fp12 costs 15m [22]. And,
since p6-th powering in Fp12 is free, πi(Q) for 6 ≤ i ≤ 11 can thereafter be obtained for free. Then

computing Tr(Q) =
∑11

i=0 π
i(Q) takes 11 additions in E(Fp12), after which computing 1

12 Tr(Q) requires one
exponentiation in G1. Finally, determining Q − Q1 requires one addition in E(Fp12). The overall cost of
deriving the representation (Q1, Q2) from Q is 8,163m. Recovering Q from (Q1, Q2) requires an addition
in E(Fp12) at a cost of (at most) 540m. We will henceforth identify G′

2 and H′

2 and assume that points
in G′

2 are represented as (Q1, Q2). Such points can be compressed by compressing Q1 and Q2, while the
decompression cost is 989m. Point addition and doubling can be done component-wise, at a cost of 41m and
24m, respectively.

Lastly, elements in GT can be compressed from 3072 bits to 1024 bits using the techniques described in
[20]. We will ignore the GT compression and decompression costs in our performance analysis of signature
schemes as they are a negligible portion of overall costs.

3.3.2. Exponentiation in G1, G2 and G′

2. Computing kQ (also known as point multiplication), where k is
an integer and Q is an elliptic curve point, can be performed using the w-NAF method. The expected cost
of this method with ℓ-bit exponents k is

1D + (2w−2 − 1)A+
ℓ

w + 1
A+ ℓD,

whereD is the cost of doubling an elliptic curve point and A is the cost of adding two elliptic curve points (see
[23, Algorithm 3.36]). However, faster exponentiation can be achieved using the Gallant-Lambert-Vanstone
(GLV) strategy [18].

Let β ∈ Fp be an element of order 3 in Fp. Then λ : (x, y) 7→ (βx, y) is an efficiently-computable
endomorphism of E defined over Fp. The GLV strategy computes kQ as k1Q + k2λ(Q) where k1 and k2

are half-length exponents. If interleaving is used to compute k1Q and k2λ(Q), and if k1 and k2 are each
represented in width-w NAF, then the expected cost of exponentiation in G1 is approximately

2
(

1D + (2w−2 − 1)A
)

+
ℓ

w + 1
A+

ℓ

2
D.

Taking w = 5 yields a cost of 1,533m.
Galbraith and Scott [16] presented a 4-dimensional GLV strategy for exponentiation in G2. If interleaving

is used to compute the four exponentiations, and the quarter-length exponents are represented in width-w
NAF, then the expected cost of exponentiation in G2 is approximately

4
(

1D + (2w−2 − 1)A
)

+
ℓ

w + 1
A+

ℓ

4
D.

Taking w = 4 yields a cost of 3,052m.
Lastly, exponentiation of a point (Q1, Q2) in G′

2 can be performed as (kQ1, kQ2); the cost is 4,585m.
If the point Q is fixed or known in advance, then the operation kQ can be significantly accelerated by

precomputing some multiples of Q. For example, the fixed-base comb method with two tables (see [23,
Algorithm 3.45]) with windows of width w has expected cost approximately

(

2w − 1

2w
2e− 1

)

A+ (e− 1)D,

where d = ⌈ℓ/w⌉ and e = ⌈d/2⌉. Taking w = 5 yields the expected costs 718m and 1, 906m for fixed-base
exponentiation in G1 and G2, respectively. As before, fixed-base exponentiation in G′

2 can be performed as
(kQ1, kQ2); the cost is 2,624m.
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3.3.3. Hashing into G1, G2 and G′

2. Hashing into G1 can be defined by first using a standard hash function

(such as SHA-2) to hash to an x-coordinate of E(Fp). A y-coordinate can then be compute as
√
x3 + 3. The

dominant cost is for computing the square root in Fp, yielding our cost estimate of 315m for hashing into
G1.

Hashing into G2 can be defined by first using a standard hash function to hash to an x-coordinate of
Ẽ(Fp2), then computing a y-coordinate as

√

x3 + b/ξ ∈ Fp2 , and finally multiplying the resulting point by

#Ẽ(Fp2)/n to obtain a point of order n. Since square roots in Fp2 cost 674m and point multiplication

in Ẽ(Fp2) costs 3, 052m, hashing into G2 can be performed at a cost of 3, 726m. The alternate hashing
technique of Galbraith and Scott [16] has approximately the same cost for our particular BN curve, but uses
less memory.

As noted in [17], no efficient method is known for hashing into G′

2. More precisely, what is meant is that
no efficient hash function is known for which computing the discrete logarithms of hash values (to the base
of the fixed generator P ′

2) is infeasible. This condition is imposed in order to eliminate from consideration
the hash functions that first map a message to an integer z in the interval [0, n − 1], and thereafter define
the hash value to be zP ′

2. All signature schemes considered in this paper would be insecure if such hash
functions were employed.

3.3.4. Pairing. As Lemma 1 explains, a Type 2 pairing en(P,Q) can be reduced to a Type 3 pairingRn(P, Q̂),

where Q̂ = Q− π6(Q). Given the representation (Q1, Q2) of Q, we have π6(Q) = π6(Q1 +Q2) = π6(Q1) +

π6(Q2) = Q1 − Q2. Hence Q̂ = (∞, 2Q2) and so computing Q̂ requires only one doubling in G2. For
simplicity, we will use the same cost estimate of 15,175m for computing en and Rn.

3.3.5. Testing membership in G1, G2, G′

2. Our descriptions of the signature schemes implicitly assume that
all signature components are valid, i.e., belong to the appropriate group. Since the reductionist security
proofs for these schemes require that signature components be valid, it seems prudent that the signature
schemes include the validity checks. (However, we should mention that no attacks of the signature schemes
have been reported in the literature if the validity checks are omitted.) For example, in the BLS-2 signature
scheme (see §4.1.1) a verifier should first confirm that the signature σ is indeed an element of G1 before
proceeding with the verification, while in Waters-2b (see §4.2.3) the verifier should first confirm that α ∈ G1

and β ∈ G′

2. Note that testing membership of public key elements needs to be performed only once by a
certification authority who issues certificates for public keys.

For the BN curve under consideration, testing membership of a point Q in G1 is very efficient, and simply
amounts to verifying that Q belongs to E(Fp). This costs a small number of Fp multiplications, which we
will henceforth take as ‘free’. Testing membership of a point Q in G2 involves a fast check that φ−1(Q) is

in Ẽ(Fp2), followed by an exponentiation in G2 to verify that nQ =∞. Testing membership of (Q1, Q2) in
G′

2 is more costly — it can be done by first verifying that Q1 ∈ G1 and Q2 ∈ G2, and finally testing that
e(Q1, T2) = e(T1, Q2), where D(P ′

2) = (T1, T2) can be precomputed. The total cost is 23,775m.

4. BLS versus Waters

4.1. BLS signature scheme. The Boneh-Lynn-Shacham (BLS) signature scheme [9] is notable because
signatures can be considerably shorter than ElGamal-type signatures. The scheme was described in [9] in
the setting of Type 1 and Type 2 pairings.

4.1.1. BLS-2 signature scheme. Let e : G1 × G′

2 → GT be a Type 2 pairing, let ψ : G′

2 → G1 be an
efficiently-computable isomorphism with ψ(g′2) = g1, and let H : {0, 1}∗ → G1 be a hash function.

Alice’s private key is an integer x ∈R [1, n− 1], while her public key is X = (g′2)
x. To sign a message M ,

Alice computes h = H(M) and σ = hx. Her signature on M is σ. To verify the signed message (M,σ), Bob
computes h = H(M) and accepts if and only if e(σ, g′2) = e(h,X).



COMPARING TWO PAIRING-BASED AGGREGATE SIGNATURE SCHEMES 11

Correctness of the verification algorithm follows because

e(σ, g′2) = e(hx, g′2) = e(h, (g′2)
x) = e(h,X).

The following security result was proven in [9]. We present an informal outline of a proof that contains the
essential ideas behind the conventional reductionist security argument. Recall that a signature scheme is said
to be secure if it is existentially unforgeable under an adaptive chosen-message attack by a computationally
bounded adversary.

Theorem 1. If co-DHP in (G1,G
′

2) is hard, and H is a random function, then the BLS-2 signature scheme

is secure.

Argument. The adversary A is given a public key X ∈ G′

2 and a signing oracle. Because of the assumption
regarding randomness of the hash function, the choice of messages that A submits to the signing oracle
is irrelevant. Hence the signing oracle provides σ ∈ G1 such that e(σ, g′2) = e(h,X) for random h ∈ G1.
However, since A can generate such (h, σ) pairs itself by selecting random integers y and computing h = gy

1

and σ = ψ(X)y, the signing oracle is effectively useless to A.
Thus A’s task is reduced to computing σ = hx given h ∈R G1 and X ∈ G′

2. This is precisely an instance
of co-DHP in (G1,G

′

2). �

4.1.2. BLS-3 signature scheme. Let e : G1 × G2 → GT be a Type 3 pairing, and let H : {0, 1}∗ → G1 be a
hash function. The BLS-3 signature scheme is identical to the BLS-2 scheme, except that the public key is
X = gx

2 ∈ G2 instead of X = (g′2)
x ∈ G′

2. Theorem 2 asserts that security of BLS-3 in the random oracle
model is implied by the co-DHP* assumption; we omit the standard reductionist security proof.

Theorem 2. If co-DHP* in (G1,G2) is hard, and H is a random function, then the BLS-3 signature scheme

is secure.

It is straightforward to show that BLS-2 is insecure if co-DHP is easy, i.e., the security of BLS-2 is
equivalent to co-DHP. Interestingly, the security of BLS-3 is not known to be equivalent to co-DHP*; that
is, it is not known whether BLS-3 is secure in the event that an efficient algorithm is discovered for solving
co-DHP*.

Let us denote by BLS-3b the variant of BLS-3 where Alice’s public key is (W = gx
1 , X = gx

2 ). A certification
authority who issues a certificate to Alice is responsible for checking that (W,X) is a valid public key; this
entails verifying that W ∈ G1, X ∈ G2, W 6= 1, X 6= 1, and e(W, g2) = e(g1, X). Signature generation
and verification for BLS-3b are identical to that of BLS-3. It is easy to see that an efficient algorithm for
co-DHP* can be used to break BLS-3b. Conversely, the argument for Theorem 1 can be modified to show
that hardness of co-DHP* implies the security of BLS-3b.

Theorem 3. If co-DHP* in (G1,G2) is hard, and H is a random function, then the BLS-3b signature

scheme is secure.

Argument. The adversary A is given a public key (W,X) and a signing oracle. Because of the assumption
regarding randomness of the hash function, the choice of messages that A submits to the signing oracle
is irrelevant. Hence the signing oracle provides σ ∈ G1 such that e(σ, g2) = e(h,X) for random h ∈ G1.
However, since A can generate such (h, σ) pairs itself by selecting random integers y and computing h = gy

1

and σ = W y, the signing oracle is effectively useless to A.
Thus A’s task is reduced to computing σ = hx given h ∈R G1 and (W,X) ∈ G1 × G2. This is precisely

an instance of co-DHP* in (G1,G2). �

4.2. Waters signature scheme. The Waters signature scheme [40] is notable because it has a security
proof that does not make the random oracle assumption. The scheme was originally described in the setting
of a Type 1 pairing.
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4.2.1. Waters-1 signature scheme. Let e : G × G → GT be a Type 1 pairing, let k denote the security
parameter, and let H̄ : {0, 1}∗ → {0, 1}k be a collision-resistant hash function. Let u0, u1, . . . , uk be randomly
selected elements of G, and denote U = (u0, u1, . . . , uk). The Waters hash function H : {0, 1}∗ → G is defined

as H(M) = u0

∏k
i=1 u

mi

i , where H̄(M) = (m1,m2, . . . ,mk) and each mi ∈ {0, 1}.
Alice’s private key is a randomly chosen group element Z = gz ∈ G, while her public key is ζ = e(g, g)z.

To sign a message M , Alice selects r ∈R [1, n − 1] and computes h = H(M), α = Zhr, and β = gr. Her
signature on M is σ = (α, β). To verify the signed message (M,σ), Bob computes h = H(M) and accepts if
and only if e(α, g) = ζ · e(β, h). Correctness of the verification algorithm follows because

e(α, g) = e(Zhr, g) = e(Z, g) · e(hr, g) = e(g, g)z · e(β, h) = ζ · e(β, h).
Observe that if a party knows the logarithms xi = logg ui for each 0 ≤ i ≤ k, then that party can recover

Alice’s private key Z from a single signed message (M,σ). This is because if H̄(M) = (m1,m2, . . . ,mk) and

c = x0 +
∑k

i=1mixi mod n, then

h = H(M) = u0

k
∏

i=1

umi

i = gx0

k
∏

i=1

gximi = gx0+
Pk

i=1
mixi = gc,

and consequently the party can compute c and Z = α/βc. Thus it is imperative that no party know the
discrete logarithms of the hash function parameters ui. This property can be ensured by requiring that the
ui’s be generated verifiably at random by a third party, i.e., a third party selects the ui as outputs of a
one-way function and makes the inputs publicly available.

Observe also that an attacker who learns the per-message secret r corresponding to a single signed message
(M,σ) can recover Alice’s private key Z = α/hr. Thus, per-message secrets in the Waters-1 signature scheme
(and also in the variants of Waters and LOSSW considered in this paper) have to be securely generated,
used, and destroyed, just as in the ElGamal signature scheme and its many variants. The BLS and BGLS
schemes, which are deterministic and do not have any per-message secrets, do not have this drawback.

The following result was proven in [40]. We present an informal outline of the proof.

Theorem 4. If DHP in G is hard, and H̄ is collision-resistant, then the Waters-1 signature scheme is

secure.

Argument. Suppose we are given an instance (gx, gy) of the DHP in G. We show how an adversary A of the
Waters-1 scheme can be used to compute gxy.

Set ζ = e(gx, gy) = e(g, g)xy; the corresponding (unknown) private key is Z = gxy. Let q be an upper
bound on the number of signing queries made by A, and select t ∈R [0, k]. Select a0, a1, . . . , ak ∈R [0, q − 1]
and b0, b1, . . . , bk ∈R [0, n − 1], and compute u0 = (gx)a0−tqgb0 and ui = (gx)aigbi for 1 ≤ i ≤ k. Note

that H(M) = u0

∏k
i=1 u

mi

i = gxF+J , where F = F (M) = −tq + a0 +
∑k

i=1 aimi mod n and J = J(M) =

b0 +
∑k

i=1 bimi mod n. Next, run A with public key ζ and hash function parameters U = (u0, u1, . . . , uk).
A request by A for a signature on a message M ′ is handled as follows. Compute F = F (M ′) and J =

J(M ′). If F = 0, then the experiment is aborted. Otherwise, select r̂ ∈R [1, n− 1] and return the signature
σ = (α, β) where α = (gy)−J/Fhr̂ and β = gr̂(gy)−1/F . To see that (α, β) is a valid signature on M ′, set
r = r̂ − y/F and observe that β = gr+y/F g−y/F = gr and α = g−yJ/F g(xF+J)(r+y/F ) = gxyg(xF+J)r = Zhr.

Suppose now that A eventually outputs a valid signature σ = (α, β) on a (new) message M . If F (M) 6= 0,
then the experiment is aborted. Otherwise, we must have β = gr and α = Zhr = Z(gr)J , and hence
Z = α/βJ can be computed. It can be verified that the probability3 of not aborting is at least

(

1− 1

q

)q
1

(k + 1)q
≈ 1

(k + 1)q
.

3The derivation of this probability assumes that the H̄(M ′) are pairwise distinct for the messages M ′ whose signatures were
requested by A. This assumption is valid because of the collision resistance of H̄.
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�

4.2.2. Waters-2a signature scheme. Let e : G1 ×G′

2 → GT be a Type 2 pairing, and let ψ : G′

2 → G1 be an
efficiently-computable isomorphism with ψ(g′2) = g1. There are many ways in which the Waters-1 signature
scheme can be implemented in the setting of a Type 2 pairing. We consider two variants — one having very
short signatures, and the other having short, shared hash function parameters.

Suppose first that we insist on short signatures, i.e., α, β ∈ G1. Then the verification equation must be
e(α, g′2) = ζ · e(β, h), and hence h = H(M) ∈ G′

2. However, as mentioned in §3.3.3, no efficient method
is known for hashing into G′

2 and hence the hash function parameters U cannot be generated verifiably at
random by a third party. Thus, it would appear that each user Alice must generate her own hash function
parameters U = (u0, u1, . . . , uk) by selecting xi ∈r [0, n− 1] and computing ui = (g′2)

xi for 0 ≤ i ≤ k; Alice’s
public key then consists of U in addition to ζ = e(g1, g

′

2)
z . In order to accelerate signature generation, Alice

stores X = (x0, x1, . . . , xk) as a private key in addition to Z = gz
1 .

To sign a messageM , Alice selects r ∈R [1, n−1] and computes h′ = g
x0+

P

mixi

1 ; note that h′ = ψ(H(M)).
Then Alice’s signature on M is σ = (α, β), where α = Z(h′)r and β = gr

1. To verify the signed message
(M,σ), Bob computes h = H(M) and accepts if and only if e(α, g′2) = ζ · e(β, h). The proof of Theorem 4
can be readily modified to obtain the following.

Theorem 5. If co-DHP in (G1,G
′

2) is hard, and H̄ is collision-resistant, then the Waters-2a signature
scheme is secure.

4.2.3. Waters-2b signature scheme. One disadvantage of the Waters-2a scheme is that public keys are very
large. If one insists on short and shared hash function parameters U , then the following variant of the Waters
scheme can be deployed.

A third party generates the hash function parameters U ∈ Gk+1
1 verifiably at random. Alice’s private

key is Z = gz
1 , and her public key is ζ = e(g1, g

′

2)
z. To sign a message M , Alice selects r ∈R [1, n − 1] and

computes h = H(M), α = Zhr and β = (g′2)
r. Alice’s signature on M is σ = (α, β). To verify the signed

message (M,σ), Bob computes h = H(M) and accepts if and only if e(α, g′2) = ζ · e(h, β). As before, the
proof of Theorem 4 can be readily modified to obtain the following.

Theorem 6. If co-DHP in (G1,G
′

2) is hard, and H̄ is collision-resistant, then the Waters-2b signature
scheme is secure.

4.2.4. Waters-3a signature scheme. Let e : G1×G2 → GT be a Type 3 pairing, and let ψ : G2 → G1 be the
isomorphism satisfying ψ(g2) = g1. There are many ways in which the Waters-1 signature scheme can be
implemented in the setting of a Type 3 pairing. As in the case of Waters-2, we consider two variants — one
having very short signatures, and the other having short, shared hash function parameters.

Suppose first that we insist on short signatures, i.e., α, β ∈ G1. Then the verification equation must be
e(α, g2) = ζ · e(β, h), and hence h = H(M) ∈ G2. However, the signer computes α = Zhr, and so we also
require h ∈ G1. To get around the fact that an efficient algorithm for computing ψ is not known, we require
that each user Alice select xi ∈R [0, n− 1] and compute ui = gxi

2 for 0 ≤ i ≤ k. Then Alice’s private key is
Z = gz

1 and X = (x0, x1, . . . , xk), while her public key is ζ = e(g1, g2)
z and U = (u0, u1, . . . , uk).

To sign a messageM , Alice selects r ∈R [1, n−1] and computes h′ = g
x0+

P

mixi

1 ; note that h′ = ψ(H(M)).
Then Alice’s signature on M is σ = (α, β), where α = Z(h′)r and β = gr

1. To verify the signed message
(M,σ), Bob computes h = H(M) and accepts if and only if e(α, g2) = ζ · e(β, h). The proof of Theorem 4
can be readily modified to obtain the following.

Theorem 7. If co-DHP* in (G1,G2) is hard, and H̄ is collision-resistant, then the Waters-3a signature

scheme is secure.
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4.2.5. Waters-3b signature scheme. One disadvantage of the Waters-3a scheme is that public keys are very
large. If one insists on short and shared hash function parameters U , then the following variant of the Waters
scheme can be deployed.

A third party generates the hash function parameters U ∈ Gk+1
1 verifiably at random. Alice’s private

key is Z = gz
1 , and her public key is ζ = e(g1, g2)

z. To sign a message M , Alice selects r ∈R [1, n − 1] and
computes h = H(M), α = Zhr, β = gr

2, and γ = gr
1. Alice’s signature on M is σ = (α, β, γ). To verify

the signed message (M,σ), Bob computes h = H(M) and accepts if and only if e(α, g2) = ζ · e(h, β) and
e(γ, g2) = e(g1, β).

The extra signature component γ appears to be necessary in order for the security reduction to go through;
that is, when the adversary A (see the proof of Theorem 4) returns a forgery (M,σ) where σ = (α, β, γ), we
have α = Zhr ∈ G1, β = gr

2 ∈ G2, and γ = gr
1 ∈ G1. Hence the co-DHP* solver can compute Z = α/γJ .

With this change in mind, the proof of Theorem 7 can be modified to establish the following.

Theorem 8. If co-DHP* in (G1,G2) is hard, and H̄ is collision-resistant, then the Waters-3b signature
scheme is secure.

4.3. Comparisons. Table 3 compares the BLS and Waters signature schemes when implemented using
Type 2 and Type 3 pairings derived from the BN curve described in §3. The sizes and operation costs were
derived from the estimates given in Table 2. Note that the operation costs include the cost of testing group
membership (cf. §3.3.5).

BLS-2 BLS-3 Waters-2a Waters-2b Waters-3a Waters-3b

Security
assumptions

ROM
co-DHP

ROM
co-DHP*

collision resistance
co-DHP

collision resistance
co-DHP*

Public key size 770 513 48.3KB 1,024 32.1KB 1,024
Signature size 257 257 514 1027 514 1027
Sig. generation 1,848 1,848 1,447 5,576 1,447 5,576
Sig. verification 22,342 22,027 26,601 47,210 25,193 47,210

Table 3. Comparisons of the BLS and Waters signature schemes implemented with Type 2
and Type 3 pairings derived from the BN curve described in §3. Public key and signature
sizes are given in bits or kilobytes (KB), while signature generation and verification costs
are in terms of Fp multiplications.

For example, in the Waters-2a scheme (cf. §4.2.2), a public key consists of an element ζ ∈ GT and 257
hash function parameters ui ∈ G′

2. Recall that in our representation of G′

2, we have ui = (Qi,1, Qi,2) where
Qi,1 ∈ G1 and Qi,2 ∈ G2. These elements are not compressed due to the high decompression cost, so
the public key size is 48.3 kilobytes. A signature has two components, α, β ∈ G1, each of which can be
compressed to 257 bits, giving a signature size of 514 bits. Signature generation requires two fixed-based

exponentiations in G1 — one to compute (h′)r = g
(x0+

P

mixi)r
1 and the other to compute β = gr

1 — and one
multiplication in G1 to compute α, yielding a total cost of 1, 447m. Signature verification requires 128 G′

2

multiplications on average to compute h = u0

∏256
i=1 u

mi

i , two G1-decompressions (of α and β), and a product
of pairings e(α, g′2) · e(β−1, h), for a total cost of 26, 601m.

Examining Table 3, we see that BLS-2 and BLS-3 have similar performance metrics, except that public
key sizes in the former are slightly larger and signature verification slightly slower. Waters-3a outperforms
Waters-2a in terms of verification speed and public key size while, somewhat surprisingly, Waters-2b and
Waters-3b have identical performance metrics.

However, the differences between BLS-2 and BLS-3 are quite superficial. The BLS-2 public key X ∈ G′

2 is
larger than the BLS-3 public key only because the former includes an extra G1-component. This component
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is not actually used in signature generation or verification (recall from §3.3.4 that computing the Type 2
pairing en(h,X) is equivalent to computing a Type 3 pairing Rn(h,X2) where X2 is derived solely form
the G2-component of X). BLS-2 signature verification is slightly slower than BLS-3 because of the cost of
decompressing the unnecessary G1-component of X . Thus, if the generators P1, P2, P

′

2 are chosen so that
co-DHP and co-DHP* are provably equivalent (see §2.4), then there is no reason to include the extra G1

component in the BLS-2 public key — in that case BLS-2 is identical to BLS-3 in every respect. If, on the
other hand, P1, P2, P

′

2 are chosen so that co-DHP and co-DHP* cannot be proven equivalent, then the only
significant difference between BLS-2 and BLS-3 is that the former’s reductionist proof is with respect to
co-DHP instead of co-DHP*.

Similarly, the differences between Waters-2a and Waters-3a arise because hashing in the former produces
both a G1-component and a G2-component. If P1, P2, P

′

2 are chosen so that co-DHP and co-DHP* are
provably equivalent, then the extra G1-component in Waters-2a can be dropped in which case Waters-2a
and Waters-3a become identical.

Overall, BLS-3 is the superior scheme, outperforming both Waters-3a and Waters-3b (except that signa-
ture generation is slightly slower than for Waters-3a), with its only drawback being that the security proof
makes the random oracle assumption.

5. BGLS versus LOSSW

Roughly speaking, an aggregate signature scheme is a signature scheme which has the additional property
that, given signatures σ1, σ2, . . . , σℓ on messages M1,M2, . . . ,Mℓ generated by ℓ entities A1, A2, . . . , Aℓ,
anyone can compute a single signature σ which can be used by a verifier to confirm the authenticity of
M1,M2, . . . ,Mℓ. Aggregate signature schemes have found applications in secure routing protocols [41, 42],
storing ballots on voting machines [4], and micropayment systems [10].

5.1. BGLS aggregate signature scheme. BGLS, which is based on the BLS signature scheme, was
originally described in the setting of a Type-2 pairing [7]. We present BGLS-2 in §5.1.1, and then describe
BGLS-3, the BGLS variant that is based on the BLS-3b signature scheme.

5.1.1. BGLS-2 aggregate signature scheme. Let e : G1 × G′

2 → GT be a Type 2 pairing, let ψ : G′

2 → G1 be
an efficiently-computable isomorphism with ψ(g′2) = g1, and let H : {0, 1}∗ → G1 be a hash function.

In the BGLS-2 scheme, each user Ai has a BLS-2 private key xi and public key Xi = (g′2)
xi . In the

signature generation stage, each user Ai generates its BLS-2 signature σi = hxi

i on message Mi, where
hi = H(Mi). The aggregate signature is σ =

∏

σi, and can be computed by any party. To verify an
aggregate signature σ, a verifier first checks that the Mi are pairwise distinct4, then computes hi = H(Mi),
and finally accepts if and only if e(σ, g′2) =

∏

e(hi, Xi). Correctness of the verification algorithm follows
because

e(σ, g′2) = e(
∏

σi, g
′

2) =
∏

e(σi, g
′

2) =
∏

e(hi, Xi).

An aggregate signature scheme is said to be secure [7] if no computationally bounded adversary is suc-
cessful in the following task. The adversary A is given a victim’s target public key X1 and a signing oracle
with respect to X1. A’s task is to produce ℓ − 1 public keys X2, . . . , Xℓ (for any ℓ > 1 of A’s choosing),
ℓ messages M1, . . . ,Mℓ, and a valid aggregate signature σ (on M1, . . . ,Mℓ with respect to X1, . . . , Xℓ). Of
course, A cannot have queried the signing oracle with M1.

The following security result was proven in [7]. We present an informal outline of a proof that contains
the essential ideas behind the conventional reductionist security argument.

Theorem 9. If co-DHP in (G1,G
′

2) is hard, and H is a random function, then the BGLS-2 aggregate
signature scheme is secure.

4The requirement that the messages Mi be pairwise distinct can be removed by hashing the public key Xi together with
Mi; see [3].
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Argument. For simplicity, we assume that ℓ = 2. The adversary A is given a public key X1 ∈ G′

2 and a
signing oracle with respect to X1. As was argued in the proof of Theorem 1, the assumption regarding
randomness of H implies that the signing oracle is effectively useless to A.

Since H is a random function, A may as well select M1 and M2 first (with M1 6= M2, and consequently
H(M1) = H(M2) with negligible probability). Its task then is to find X2 ∈ G′

2 and σ ∈ G1 such that

(4) e(σ, g′2) = e(h1, X1) · e(h2, X2),

where h1 = H(M1) and h2 = H(M2). It can now be seen that an algorithm P for solving this problem yields
an algorithm for solving co-DHP. Namely, given a co-DHP instance (h1, X1), select random y2 and compute
h2 = gy2

1 . Then use P to find X2 ∈ G′

2 and σ ∈ G1 satisfying (4). Then σ = hx1

1 hx2

2 = hx1

1 ψ(X2)
y2 , where

x1 = logg′

2
X1 and x2 = logg′

2
X2. Thus the co-DHP solution can be obtained by computing σ/ψ(X2)

y2 =

hx1

1 . �

5.1.2. BGLS-3 aggregate signature scheme. Let e : G1×G2 → GT be a Type 3 pairing, and let H : {0, 1}∗ →
G1 be a hash function. Let ψ : G2 → G1 be the isomorphism satisfying ψ(g2) = g1.

In the BGLS-3 scheme, each user Ai has a BLS-3b private key xi and public key (Wi = gxi

1 , Xi = gxi

2 ).
A certification authority who issues a certificate for Ai’s public key is responsible for checking that (Wi, Xi)
is a valid public key. Signature generation, signature aggregation, and signature verification are identical
to BGLS-2. Since Wi is not used during signature generation, aggregation or verification, it need not be
included in the public key; however its inclusion in the certification process appears to be necessary for a
reductionist security proof to go through.

Theorem 10. If co-DHP* in (G1,G2) is hard, and H is a random function, then the BGLS-3 aggregate

signature scheme is secure.

Argument. For simplicity, we assume that ℓ = 2. The adversary A is given a public key (W1, X1) and a
signing oracle with respect to (W1, X1). As was argued in the proof of Theorem 3, the assumption regarding
randomness of H implies that the signing oracle is effectively useless to A.

Since H is a random function, A may as well select M1 and M2 first (with M1 6= M2, and consequently
H(M1) = H(M2) with negligible probability). Its task then is to find X2 ∈ G2, W2 = ψ(X2), and σ ∈ G1

satisfying (4). It can now be seen that an algorithm P for solving this problem yields an algorithm for solving
co-DHP*. Namely, given a co-DHP* instance (h1,W1, X1) (where h1 ∈ G1, X1 ∈ G2 and W1 = ψ(X1)),
select random y2 and compute h2 = gy2

1 . Then use P to find X2 ∈ G2, W2 = ψ(X2), and σ ∈ G1 satisfying
(4). Then σ = hx1

1 hx2

2 = hx1

1 W y2

2 , where x1 = logg2
X1 and x2 = logg2

X2. Thus the co-DHP* solution can

be obtained by computing σ/W y2

2 = hx1

1 . �

5.2. LOSSW aggregate signature scheme. LOSSW, which is based on the Waters signature scheme,
was originally described in the setting of a Type 1 pairing [29]. We present LOSSW-1 in §5.2.1. In §5.2.2 and
§5.2.3, we present the LOSSW variants that are based on the Waters-3a and Waters-3b signature schemes.
We will not consider LOSSW in the setting of a Type 2 pairing because, as seen in §4.3, Type 2 pairings do
not offer any advantages over Type 3 pairings for the Waters signature scheme.

5.2.1. LOSSW-1 aggregate signature scheme. Let e : G × G → GT be a Type 1 pairing. In the LOSSW-1
scheme, signature aggregation is sequential. The first user A1 generates a Waters-1 signature (α1, β1) on a
message M1 and forwards the signed message to A2. The second user verifies the signature of the received
message, sets β2 = β1 and generates her signature (α′

2, β2) for message M2; in order to compute α′

2, A2

needs to know the discrete logarithm of the hash function parameters, and therefore should have her own
hash function parameters. A2 then sets α2 = α1 ·α′

2, randomizes β2 and α2, and forwards the messages M1,
M2, and the aggregated-thus-far signature (α2, β2) to A3. Similarly, A3 proceeds to sign her message M3,
and aggregates her signature to obtain (α3, β3). LOSSW-1 signature verification is not sequential. We next
describe LOSSW-1 in further detail.
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Each user Aj has a private key (Xj , Zj), where Xj = (xj,0, xj,1, . . . , xj,k) with xj,i ∈R [0, n − 1], and
Zj = gzj with zj ∈R [0, n−1]. The corresponding public key is (Uj , ζj), where Uj = (uj,0, uj,1, . . . , uj,k) with
uj,i = gxj,i , and ζj = e(g, g)zj . The parameters Uj define Aj ’s own Waters hash function Hj : {0, 1}∗ → G.

User A1’s Waters-1 signature on M1 is (α1, β1), where α1 = Z1h
r1

1 with h1 = H1(M1), and β1 = gr1 .
Upon receiving (M1, α1, β1) from A1, user A2 first verifies the signature. She then computes α′

2 = Z2h
r1

2

where h2 = H2(M2). Since A2 does not know r1, she obtains hr1

2 by computing βc
1 where c = logg H2(M2)

(using her private key X2). She then computes α2 = α1α
′

2, selects r2 ∈R [0, n− 1], and computes β2 = β1g
r2

and α2←α2h
r2

1 h
r2

2 . Note that β2 = gr1+r2 and α2 = Z1Z2h
r1+r2

1 hr1+r2

2 . A2 forwards (M1,M2, α2, β2) to A3

who first verifies the aggregated-thus-far signature (using the verification algorithm described next), signs
M3, and aggregates in a similar fashion.

Given a list of ℓ messages M1,M2, . . . ,Mℓ purportedly signed by (pairwise distinct) users A1, A2, . . . , Aℓ,
and aggregate signature (αℓ, βℓ), a verifier computes hj = Hj(Mj) for 1 ≤ j ≤ ℓ and accepts if and only if

e(αℓ, g) = (
∏ℓ

j=1 ζj) · e(βℓ,
∏ℓ

j=1 hj).
For ℓ = 2, correctness of the verification algorithm follows because

e(α2, g) = e(Z1Z2h
r1+r2

1 hr1+r2

2 , g) = e(Z1, g) · e(Z2, g) · e((h1h2)
r1+r2 , g) = ζ1 · ζ2 · e(β2, h1h2).

Correctness for ℓ > 2 can be similarly checked.
A sequential aggregate signature scheme (for which signature verification is not sequential) is said to be

secure [29] if no computationally bounded adversary is successful in the following task. The adversary A is
given a victim’s target public key X1. A can request certification for any public key of its choosing, provided
that it furnishes the corresponding private key. A’s task is to produce ℓ− 1 certified public keys X2, . . . , Xℓ

(for any ℓ > 1 of A’s choosing), ℓ messages M1, . . . ,Mℓ, and a valid aggregate signature σ (on M1, . . . ,Mℓ

with respect to X1, . . . , Xℓ). During its attack, A can, upon providing a valid aggregated-thus-far signature
on a sequence of messages corresponding to a sequence of certified public keys (not including X1), request
the aggregation of the victim’s signature on any message M ′. Of course, M1 cannot be one of the messages
M ′ queried to its sequential aggregate signing oracle.

The security proof for LOSSW-1 shows how a successful LOSSW-1 forger can be used to break the
Waters-1 signature scheme.

Theorem 11 ([29]). If DHP in G is hard, and H̄ is collision-resistant, then the LOSSW-1 aggregate signature

scheme is secure.

Argument. The LOSSW-1 adversary A is given the victim’s Waters-1 public key (U1, ζ1). For simplicity,
we assume that A selects exactly one key pair (U2, ζ2), (X2, Z2). Also for simplicity, we assume that all
aggregate signatures are derived from two signatures, the first contributed by A and the second by the
victim.

Now, a request byA for the aggregate signature on (M ′

2,M
′

1), where (α2, β2) isA’s (valid) signature onM ′

2,
can be handled by asking the Waters-1 signing oracle for a signature (α1, β1) on M ′

1. It can easily be verified

that (α, β) is a valid aggregate signature where β = β1 and α = α1Z2β
c
1, and where c = x2,0 +

∑k
i=1m2,ix2,i

and H̄(M ′

2) = (m2,1, . . . ,m2,k). Thus A’s requests can be properly answered by using the Waters-1 signing
oracle.

Eventually A produces a valid aggregate signature (α, β) on (M1,M2), where M1 was not previously
provided to its aggregate signing oracle (and hence M1 was not queried to the Waters-1 signing oracle).
Since α = Z1Z2H1(M1)

rH2(M2)
r where β = gr, A’s private key (X2, Z2) can then be used to produce the

victim’s signature (Z1H1(M1)
r, β) on M1, i.e., produce a Waters-1 forgery. The proof is now completed by

appealing to Theorem 4. �

The security proof for LOSSW-1 makes essential use of the requirement that a user present its private key
(Xj , Zj) to the certification authority in order to get its public key (Uj , ζj) certified. A security model with
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this requirement is called the certified-key model. Requiring the certified-key model for LOSSW-1 and its
variants is, of course, a significant drawback compared to the BGLS scheme where the certification authority
is not entrusted with user private keys.

5.2.2. LOSSW-3a aggregate signature scheme. Let e : G1×G2 → GT be a Type 3 pairing, and let ψ : G2 →
G1 be the isomorphism satisfying ψ(g2) = g1.

Each user Aj has a private key (Xj , Zj), where Xj = (xj,0, xj,1, . . . , xj,k) with xj,i ∈R [0, n − 1], and
Zj = g

zj

1 with zj ∈R [0, n− 1]. The corresponding public key is (Uj , Vj , ζj), where Uj = (uj,0, uj,1, . . . , uj,k)
with uj,i = g

xj,i

2 , Vj = (vj,0, vj,1, . . . , vj,k) with vj,i = g
xj,i

1 , and ζj = e(g1, g2)
zj . The parameters Uj define

Aj ’s own Waters hash function Hj : {0, 1}∗ → G2, while Vj defines ψ(Hj), i.e., ψ(Hj)(M) = ψ(Hj(M)).
User A1’s Waters-3a signature on M1 is (α1, β1), where α1 = Z1(h

′

1)
r1 with h′1 = ψ(H1)(M1), and

β1 = gr1

1 . Upon receiving (M1, α1, β1) from A1, user A2 verifies the signature, and uses her private key X2

to compute α′

2 = Z2(h
′

2)
r1 where h′2 = ψ(H2)(M2). She then computes α2 = α1α

′

2, selects r2 ∈R [0, n− 1],
and computes β2 = β1g

r2

1 and α2←α2(h
′

1)
r2(h′2)

r2 . A2 forwards (M1,M2, α2, β2) to A3 who verifies the
aggregated-thus-far signature (using the verification algorithm described next), signs M3, and aggregates in
a similar fashion.

Given a list of ℓ messages M1,M2, . . . ,Mℓ purportedly signed by (pairwise distinct) users A1, A2, . . . , Aℓ,
and aggregate signature (αℓ, βℓ), a verifier computes hj = Hj(Mj) for 1 ≤ j ≤ ℓ and accepts if and only if

e(αℓ, g2) = (
∏ℓ

j=1 ζj) · e(βℓ,
∏ℓ

j=1 hj).
Theorem 12 can be established by reducing an LOSSW-3a forger to a Waters-3a forger, where the Waters-

3a signature scheme described in §4.2.4 is slightly modified to include V = (v0, v1, . . . , vk) with vi = gxi

1 in
the public key.

Theorem 12. If co-DHP* in (G1,G2) is hard, and H̄ is collision-resistant, then the LOSSW-3a aggregate

signature scheme is secure.

5.2.3. LOSSW-3b aggregate signature scheme. Each userAj has a private key (Xj , Zj), whereXj = (xj,0, xj,1,
. . . , xj,k) with xj,i ∈R [0, n− 1], and Zj = g

zj

1 with zj ∈R [0, n− 1]. The corresponding public key is (Uj , ζj),
where Uj = (uj,0, uj,1, . . . , uj,k) with uj,i = g

xj,i

1 , and ζj = e(g1, g2)
zj . The parameters Uj define Aj ’s own

Waters hash function Hj : {0, 1}∗ → G1.
User A1’s Waters-3b signature on M1 is (α1, β1, γ1), where α1 = Z1h

r1

1 with h1 = H1(M1), β1 = gr1

2 , and
γ1 = gr1

1 . Upon receiving (M1, α1, β1, γ1) from A1, user A2 verifies the signature, and uses her private key
X2 to compute α′

2 = Z2h
r1

2 where h2 = H2(M2). She then computes α2 = α1α
′

2, selects r2 ∈R [0, n− 1], and
computes β2 = β1g

r2

2 , γ2 = γ1g
r2

1 , and α2←α2h
r2

1 h
r2

2 . A2 forwards (M1,M2, α2, β2, γ2) to A3 who verifies
the aggregated-thus-far signature (using the verification algorithm described next), signs M3, and aggregates
in a similar fashion.

Given a list of ℓ messages M1,M2, . . . ,Mℓ purportedly signed by (pairwise distinct) users A1, A2, . . . , Aℓ,
and aggregate signature (αℓ, βℓ, γℓ), a verifier computes hj = Hj(Mj) for 1 ≤ j ≤ ℓ and accepts if and only

e(αℓ, g2) = (
∏ℓ

j=1 ζj) · e(
∏ℓ

j=1 hj , βℓ) and e(γℓ, g2) = e(g1, βℓ).
Theorem 13 can be established by reducing an LOSSW-3b forger to a Waters-3b forger.

Theorem 13. If co-DHP* in (G1,G2) is hard, and H̄ is collision-resistant, then the LOSSW-3b aggregate

signature scheme is secure.

5.3. Comparisons. Table 4 compares the BGLS and LOSSW aggregate signature schemes when imple-
mented using Type 2 and Type 3 pairings derived from the BN curve described in §3. The sizes and
operation costs were derived from the estimates given in Table 2. Note that the operation costs include the
cost of testing group membership (cf. §3.3.5).

For example, in the LOSSW-3a scheme (cf. §5.2.2), a public key consists of an element ζj ∈ GT , 257
(uncompressed) hash function parameters vj,i ∈ G1, and 257 (uncompressed) hash function parameters
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BGLS-2 BGLS-3 LOSSW-3a LOSSW-3b

Security
assumptions

ROM
co-DHP

ROM
co-DHP*

collision resistance
co-DHP*

certified key model
Public key size 770 513 48.3KB 16.2KB
Signature size 257 257 514 1027
Sig. generation 1,848 1,848 26,505+5,343d 52,920+1,473d
Sig. verification 15,490+6,852ℓ 15,490+6,537ℓ 21,269+3,924ℓ 45,737+1,473ℓ

Table 4. Comparisons of the BGLS and LOSSW aggregate signature schemes implemented
with Type 2 and Type 3 pairings derived from the BN curve described in §3. Public key and
signature sizes are given in bits or kilobytes (KB), while signature generation and verification
costs are in terms of Fp multiplications. The number of signatures aggregated thus far is
denoted by d. The total number of signatures aggregated is denoted by ℓ.

uj,i ∈ G2, so the public key size is 48.3 kilobytes. An aggregate signature has two components αd, βd ∈ G1,
each of which can be compressed to 257 bits, giving a signature size of 514 bits. Signature verification requires
two G1-decompressions (of αℓ and βℓ), ℓ evaluations of the hash functions Hj and (ℓ − 1) multiplications

in G2 to compute
∏

hj, a product of pairings e(αℓ, g2) · e(β−1
ℓ ,

∏

hj), and (ℓ − 1) multiplications in GT to
compute

∏

ζj , for a total cost of 21, 269 + 3, 924ℓ Fp-multiplications. The (d + 1)-th signer first verifies
the aggregated-thus-far signature at a cost of 21, 269 + 3, 924d Fp-multiplications. Generating her signature
component α′

d+1 requires one exponentiation and one multiplication in G1, while producing βd+1 requires
one fixed-based exponentiation and one multiplication in G1. Computing (

∏

h′j)
rd+1 requires one evaluation

each of ψ(H1), . . . , ψ(Hd+1), d multiplications in G1, and one exponentiation in G1. Finally, αd+1 can be
computed with 2 further multiplications in G1. The total cost of signature generation by the (d + 1)-th
signer is thus 26, 505 + 5, 343d Fp-multiplications.

Examining Table 4, we see that BGLS-2 and BGLS-3 have similar performance metrics, except that public
key sizes in the former are slightly larger and signature verification slightly slower. Signature generation
for LOSSW-3a is faster than for LOSSW-3b for d ≤ 6, while LOSSW-3a signature verification is faster
than LOSSW-3b verification for ℓ ≤ 9. BGLS-3 has far smaller public keys, shorter signatures, and faster
signature generation than LOSSW-3a and LOSSW-3b. It should be noted, however, that for applications of
aggregate signatures where signing is inherently sequential and where a signer must verify the aggregated-
thus-far signature before adding its own signature, the cost of BGLS-2 and BGLS-3 signature generation is
effectively 17,338+6,852d and 17,338+6,537d, respectively. Signature verification for BGLS-3 is slower than
LOSSW-3a if ℓ ≥ 3 and slower than LOSSW-3b if ℓ ≥ 6. However, BGLS-3 signature verification is not
as slow as the preliminary analysis in [29] would suggest, even though BGLS-3 verification requires ℓ + 1
pairings, while LOSSW-3a and LOSSW-3b only require 2 and 4 pairings, respectively. For example, if ℓ = 10
signatures have been aggregated, then BGLS-3 signature verification costs 80,860m, while LOSSW-3a and
LOSSW-3b verification cost 60,509m and 60,467m, respectively.

BGLS-3 signature verification times can be improved to 14,145+4,518ℓ Fp-multiplications at the expense
of increasing the public key size to 9.25 kilobytes. This speedup can be achieved by not compressing the
public key Xi, and by precomputing and storing the 73 lines needed in Algorithm 2; these lines depend
on Xi when the pairing e(hi, Xi) is evaluated, and on the fixed parameter g2 when the pairing e(σ, g2) is
evaluated. With these modifications, BGLS-3 signature verification is faster than LOSSW-3a for ℓ ≤ 12,
and faster than LOSSW-3b for ℓ ≤ 10. In particular, if ℓ = 10 then BGLS-3 verification costs 59,325m.

It would appear that the evaluation of a product of eta pairings [1] (for supersingular elliptic curves with
embedding degrees k = 4 and k = 6) cannot be accelerated in the same manner as was done for the product
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of R-ate pairings in §2.1. Thus, LOSSW signature verification can be expected to be faster than BGLS when
implemented with a Type 1 pairing.

6. Concluding remarks

We have shown that there is no performance or security benefit to be gained by using a Type 2 pairing
instead of a Type 3 pairing when implementing the BLS, Waters, BGLS and LOSSW signature schemes using
BN pairings. Our observations extend to Type 2 and Type 3 pairings derived from any elliptic curve with
even embedding degree. Furthermore, they suggest more broadly that Type 2 pairings are merely inefficient
implementations of Type 3 pairings, and offer no benefit for protocols based on asymmetric pairings from
the point of view of functionality, security, and performance.

We also demonstrated that the BGLS aggregate signature scheme outperforms the LOSSW scheme in
every respect except that signature verification in the latter is faster when a large number of signatures
have been aggregated. Furthermore, any criticism of the use of the random oracle model in the reductionist
security proof for BGLS would appear to be outweighed by the use of the certified-key model for LOSSW.
Thus the removal of the random oracle assumption that was the main motivation for the design of the
LOSSW scheme comes at a considerable price.

Our analysis of the various signature scheme is deficient in four respects.

(1) It neglects to account for the lack of tightness in the reductionist security proofs. This is not a
concern for the BLS and BGLS schemes, as tight reductions can be achieved for slight variants
obtained by applying the Katz-Wang trick [26] (see also [3]). However, the Katz-Wang trick does
not appear to be applicable to the Waters and LOSSW schemes, whose reductionist security proofs
are not tight.

(2) We did not utilize the Chatterjee-Sarkar/Naccache strategy [11, 32] to reduce the size of the hash
function parameters in the Waters-2a, Waters-3a, LOSSW-3a and LOSSW-3b signature schemes.
However, the possible reduction in the size of hash function parameters results in a very significant
loss in the tightness of the security reduction (and no significant improvement in the signature
generation and verification speeds), so the overall effectiveness of deploying the strategy is debatable
in the present context. For example, the public key size for LOSSW-3b can be reduced from 16.2
kilobytes to 2,312 bits by grouping the bits of H̄(M) into 64-bit segments, but then the reductionist
security proof becomes less tight by a factor of 264.

(3) The concrete estimates in Tables 3 and 4 are for a specific BN curve. Other well-chosen BN curves,
such as the one with BN parameter z = 4080000000000001 (in hexadecimal) [33] may have dif-
ferent performance characteristics. Nonetheless, we expect that our conclusions about the relative
performance of the various signature schemes will not drastically change for well-chosen BN curves.

(4) Even though our cost estimates are quite detailed, they ignore additions, subtractions and other
overhead, and furthermore do not account for memory usage. Thus, the relative performance of the
various signature schemes may change when implemented on a particular platform.
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