
Deterministic Polynomial-Time Equivalence of

Computing the CRT-RSA Secret Keys and Factoring

Subhamoy Maitra and Santanu Sarkar

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India.
{subho, santanu r}@isical.ac.in

Abstract. Let N = pq be the product of two large primes. Consider CRT-RSA with the public
encryption exponent e and private decryption exponents dp, dq. It is well known that given any one
of dp or dq (or both) one can factorize N in probabilistic poly(log N) time with success probability
almost equal to 1. Though this serves all the practical purposes, from theoretical point of view, this is
not a deterministic polynomial time algorithm. In this paper, we present a lattice based deterministic
poly(log N) time algorithm that uses both dp, dq (in addition to the public information e, N) to factorize
N .

Ketwords: CRT-RSA, Cryptanalysis, Factorization, LLL Algorithm, RSA.

1 Introduction

RSA [19] is one of the most popular cryptosystems in the history of cryptology. Let us first
briefly describe the idea of RSA as follows:

– primes p, q, with q < p < 2q;
– N = pq, φ(N) = (p− 1)(q − 1);
– e, d are such that ed = 1 + kφ(N), k ≥ 1;
– N, e are publicly available and message M is encrypted as C ≡ M e mod N ;
– the secret key d is required to decrypt the cipher as M ≡ Cd mod N .

The study of RSA is one of the most attractive areas in cryptology research as evident
from many excellent works (one may refer [2, 11, 17] and the references therein for detailed
information). The paper [19] itself presents a probabilistic polynomial time algorithm that
on input N, e, d provides the factorization of N ; this is based on the technique provided
by [18]. One may also have a look at [20, Page 197]. Recently in [16, 8] it has been proved
that given N, e, d, one can factor N in deterministic polynomial time provided ed ≤ N2.

Speeding up RSA encryption and decryption is of serious interest and for large N as
both e, d cannot be small at the same time. For fast encryption, it is possible to use smaller
e and e as small as 216 + 1 is widely believed to be a good candidate. For fast decryption,
the value of d needs to be small. However, Wiener [21] showed that for d < 1

3
N

1
4 , N can

be factor easily. Later, Boneh-Durfee [3] increased this bound up to d < N0.292. Thus use
of smaller d is in general not recommendable. In this direction, an alternative approach has
been proposed by Wiener [21] exploiting the Chinese Remainder Theorem (CRT) for faster
decryption. The idea is as follows:

– the public exponent e and the private CRT exponents dp and dq are used satisfying
edp ≡ 1 mod (p− 1) and edq ≡ 1 mod (q − 1);

– the encryption is same as standard RSA;
– to decrypt a ciphertext C one needs to compute M1 ≡ Cdp mod p and M2 ≡ Cdq mod q;
– using CRT, one can get the message M ∈ Zn such that M ≡ M1 mod p and M ≡

M2 mod q.

This variant of RSA is popularly known as CRT-RSA.
Given N, e and any one of dp, dq (or both), there exists well known solution to factorize N

in probabilistic poly(log N) time with probability almost 1. In practice, this study is enough
from the security point of view for CRT-RSA. However, from theoretical point of view,
getting a deterministic polynomial time algorithm for factorization of N with the knowledge
of N, e, dp, dq is important and we solve it using lattice based technique.

Without loss of generality, consider dp is available. One can take any random integer W
in [2, N−1] and then gcd(W edp−W, N) provides p with a probability almost equal to 1. The
strategy fails, when q too divides W edp − W and this happens with negligible probability.
Knowing both dp, dq presents the similar scenario.

Another important work in this direction shows that with the availability of decryption
oracle under a fault model, one factorize N in poly(log N) time [4, Section 2.2] and the idea
has been improved by A. Lenstra [4, Section 2.2, Reference 16].

The organization of this paper is as follows. Some preliminaries are discussed in Sec-
tion 2. The lattice based technique is used in Section 3 to show that one can factorize N
in deterministic polynomial time from the knowledge of N, e, dp, dq. Section 4 concludes the
paper.

2 Preliminaries

Let us present some basics in lattice reduction techniques. Consider the linearly independent
vectors u1, . . . , uω ∈ Zn, when ω ≤ n. A lattice, spanned by < u1, . . . , uω >, is the set
of all linear combinations of u1, . . . , uω, i.e., ω is the dimension of the lattice. A lattice is
called full rank when ω = n. Let L be a lattice spanned by the linearly independent vectors
u1, . . . , uω, where u1, . . . , uω ∈ Zn. By u∗1, . . . , u

∗
ω, we denote the vectors obtained by applying

the Gram-Schmidt process to the vectors u1, . . . , uω.
The determinant of L is defined as det(L) =

∏w
i=1 ||u∗i ||, where ||.|| denotes the Euclidean

norm on vectors. Given a polynomial g(x, y) =
∑

ai,jx
iyj, we define the Euclidean norm as

‖ g(x, y) ‖=
√∑

i,j a2
i,j and infinity norm as ‖ g(x, y) ‖∞= maxi,j |ai,j|.

It is known that given a basis u1, . . . , uω of a lattice L, the LLL algorithm [14] can find
a new basis b1, . . . , bω of L with the following properties.

– ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for 1 ≤ i < ω.

– For all i, if bi = b∗i +
∑i−1

j=1 µi,jb
∗
j then |µi,j| ≤ 1

2
for all j.

– ‖ bi ‖≤ 2
ω(ω−1)+(i−1)(i−2)

4(ω−i+1) det(L)
1

ω−i+1 for i = 1, . . . , ω.

In [5], deterministic polynomial time algorithms have been presented to find small integer
roots of (i) polynomials in a single variable mod N , and of (ii) polynomials in two variables
over the integers. The idea of [5] extends to more than two variables also, but in that event,
the method becomes probabilistic.

Theorem 1. [5] Let p(x, y) be an irreducible polynomial in two variables over Z, of max-
imum degree δ in each variable separately. Let X, Y be the bounds on the desired solutions
x0, y0. Define p′(x, y) = p(xX, yY) and let W be the absolute value of the largest coefficient

of p′. Given XY ≤ W
2
3δ , one can find all integer pairs (x0, y0) with p(x0, y0) = 0, x0 ≤ X

and y0 ≤ Y in time polynomial in (log W, 2δ).

In [6], a simpler algorithm than [5] has been presented in this direction, but it was asymp-
totically less efficient. Later, in [7], a simpler idea than [5] has been presented with the same
asymptotic bound as in [5]. Both the works [6, 7] depend on the following theorem.

Theorem 2. [9] Let f(x, y) ∈ Z[x, y] which is a sum of at most w monomials. Suppose that
f(x0, y0) ≡ 0 mod (N) where |x0| ≤ X and |y0| ≤ Y and ||f(xX, yY)|| < N√

w
. Then f(x0, y0)

holds over integer.

The work of [16], in finding the deterministic polynomial time algorithm to factorize N
from the knowledge of e, d, uses the techniques presented in [5, 6]. Further, the work of [8]
exploits the technique presented in [10].

3 Deterministic Polynomial Time Algorithm

In this section we consider that both dp, dq are known apart from the public information
N, e. In the next result, we use the idea of [5].

Theorem 3. Let e < φ(N), dp < (p− 1) and dq < (q − 1). If N, e, dp, dq are known then N
can be factored in deterministic polynomial time in log N .

Proof. We can write edp = 1+k(p−1) and edq = 1+ l(q−1) where k, l are positive integers.
So we can write edp + k − 1 = kp and edq + l − 1 = lq. Now multiplying these we get
(edp− 1)(edq − 1) + k(edq − 1) + l(edp− 1) + kl = kplq. Substituting k, l by x, y respectively,
we get the equation (edp−1)(edq−1)+x(edq−1)+y(edp−1)+xy = Nxy. Thus, we have to
find the roots (x0, y0) of f(x, y) = (1−N)xy+x(edq−1)+y(edp−1)+(edp−1)(edq−1) = 0.

As p, q are not known, we need some estimate of p, q. Assume p = Nγ1 , q = Nγ2 , where
γ1 + γ2 = 1. If p, q are of same bit size, we consider γ1 = γ2 = 1

2
. Otherwise, we estimate

p, q are of different bit sizes, such that pq = N . As the number of bits in p is log2 p, we need
to try at most log N many estimates for the bit size of p and run the strategy as described
below that many times.

Let e = Nα, dp = N δ1 and dq = N δ2 . Let us denote X = Nα+δ1−γ1 and Y = Nα+δ2−γ2 .
Clearly one can take (X,Y) as upper bounds of the root (k, l) of f neglecting the constant
terms.

Let W = ||f(xX, yY)||∞ ≥ (edp−1)(edq−1) ≈ e2dpdq. Following Theorem 1 [5], one can
find the root of f in deterministic polynomial time in log N (as the degree of the polynomial

f is 1) if XY < W
2
3 . Thus we need kl < (e2dpdq)

2
3 to get the root of f , which is proved below.

Thus it guarantees the one can factor N from the knowledge of N, e, dp, dq in deterministic
polynomial time in log N .

– We have edp > k(p− 1) and edq > l(q− 1). So e2dpdq > kl(p− 1)(q− 1), i.e., (e2dpdq)
2
3 >

(kl(p− 1)(q − 1))
2
3 .

– Thus, to show that kl < (e2dpdq)
2
3 , we need to prove, kl < (kl(p − 1)(q − 1))

2
3 , i.e.,

kl < (p− 1)2(q − 1)2.

– Since we assume dp < (p− 1), dq < (q − 1), we have e > k and e > l, i.e., e2 > kl. As we
take φ(N) = (p− 1)(q − 1) > e, we get that (p− 1)2(q − 1)2 > kl.

This concludes the proof. ut

Let us now present some experimental results in Table 1. Our experiments are based on
the strategy of [6] as it is easier to implement. According to the formula presented in [6,
Theorem 4], the lattice dimension (denote it by LD) is (δ + m + 1)2, where δ is the degree
of the polynomial f (here δ = 1) and m is a non-negative integer related to the shifts of the
polynomial (in the proof of [6, Theorem 4], this m is denoted by k). We have written the
programs in SAGE 3.1.1 over Linux Ubuntu 8.04 on a computer with Dual CORE Intel(R)
Pentium(R) D CPU 1.83 GHz, 2 GB RAM and 2 MB Cache. We take large primes p, q such
that N is of 1000 bits. As we experiment with low lattice dimensions, we cannot demonstrate
the success of the experiments when dp, dq are of the order of p, q respectively.

N p q e dp dq LD m L3-time

1000 bit 500 bit 500 bit 1000 bit 240 bit 240 bit 16 2 14.82 sec

1000 bit 400 bit 600 bit 1000 bit 230 bit 265 bit 16 2 16.09 sec

1000 bit 500 bit 500 bit 1000 bit 350 bit 350 bit 49 5 5914.08 sec

Table 1. Experimental results corresponding to Theorem 3.

Now we present a more general form of Theorem 3. The constraints in Theorem 3 are
α < 1, dp < p − 1, dq < q − 1. In Theorem 4 we try to get rid of these constraints, but
naturally that impose some other conditions.

Theorem 4. Let e = Nα, dp ≤ N δ1 , dq ≤ N δ2. Suppose p is estimated1 as Nγ1. Suppose we
know an approximation p0 of p such that |p − p0| < Nβ. If both dp, dq are known then one

can factor N in deterministic poly(log N) time if α2

2
+ α(δ1+δ2)

2
+ δ1δ2

2
+ αβ + (δ1+δ2)β

2
− 3β2

2
−

αγ1 − δ2γ1 + 3βγ1 − 2γ1
2 − α

2
− δ1

2
+ 3β

2
− γ1 − 1

2
< 0.

1 As described in the proof of Theorem 3, the bit size of p can be correctly estimated in log N many attempts.

Proof. We have edp = 1 + k(p− 1) and edq = 1 + k(q− 1). So k = edp−1

p−1
. Let k0 = edp

p0
. Then

|k − k0| = |edp − 1

p− 1
− edp

p0

| ≈ |edp

p
− edp

p0

| = edp|p− p0|
pp0

≤ Nα+δ1+β−2γ1 .

Considering q0 = N
p0

, it can be shown that |q−q0| < N1+β−2γ1 , neglecting the small constant.

Assume, q = Nγ2 , where γ2 = 1− γ1. So if we take l0 = edq

q0
, then

|l − l0| = |edq − 1

q − 1
− edq

q0

| ≈ |edq

q
− edq

q0

| = edq|q − q0|
qq0

≤ Nα+δ2+1+β−2γ1−2γ2 .

Let k1 = k − k0 and l1 = l − l0. We have edp + k − 1 = kp. So edp + k0 + k1 − 1 =
(k0 + k1)p. Similarly, edq + l0 + l1 − 1 = (l0 + l1)q. Now multiplying these equations, we get
(edp − 1 + k0)(edq − 1 + l0) + k1(edq − 1 + l0) + l1(edp − 1 + k0) + k1l1 = (k0 + k1)p(l0 + l1)q.
Now if we substitute k1, l1 by x, y respectively, then we get (edp − 1 + k0)(edq − 1 + l0) +
x(edq − 1+ l0)+ y(edp− 1+k0)+xy = (k0 +x)p(l0 + y)q. Hence we have to find the solution
k1, l1 of

(edp − 1 + k0)(edq − 1 + l0) + x(edq − 1 + l0) + y(edp − 1 + k0) + xy = (k0 + x)p(l0 + y)q,

i.e., we have to find the roots of f(x, y) = 0, where f(x, y) = (1−N)xy + x(edq − 1 + l0 −
l0N) + y(edp − 1 + k0 − k0N) + (edp − 1 + k0)(edq − 1 + l0)− k0l0N .

Let X = Nα+δ1+β−2γ1 and Y = Nα+δ2+1+β−2γ1−2γ2 . Clearly X, Y are the upper bounds of
(k1, l1), the root of f . Thus, W = ||f(xX, yY)||∞ ≥ (edp−1+k0)(edq−1+l0)−k0l0N ≈ e2dpdq.

In the “Basic Strategy” of [12, Page 273], the set S is the set of all monomials of fm−1

for a given positive integer m. The set M is defined as the set of all monomials that appear
in xiyjf , with xiyj ∈ S. This strategy will work well when k1 and l1 are of the same order,
that is not significantly different in magnitude.

Otherwise, without loss of generality, let us assume that k1 is significantly smaller than
l1. Following the “Extended Strategy” of [12, Page 274], we exploit extra t many shifts of
x where t is a non-negative integer (in the “Basic Strategy”, t = 0). Our aim is to find a
polynomial f0 that share the root (k1, l1) over the integers.

From [12], we know that these polynomials can be found by lattice reduction if Xs1Y s2 <
W s for sj =

∑
xi1yi2∈M\S ij where s = |S|, j = 1, 2 and W = ||f(xX, yY)||∞. One can check

that s1 = 3
2
m2+ 7

2
m+ t2

2
+ 5

2
t+2mt+2, s2 = 3

2
m2+ 7

2
m+t+mt+2, and s = (m+1)2+mt+t.

Let t = τm. Neglecting the lower order terms we get that Xs1Y s2 < W s is satisfied when
(3

2
+ τ2

2
+ 2τ)(α + δ1 + β− 2γ1) + (3

2
+ τ)(α + δ2 + 1 + β− 2γ1− 2γ2) < (1 + τ)(2α + δ1 + δ2),

i.e., when
(α

2
+ δ1

2
+ β

2
− γ1)τ

2 + (α + δ1 + 3β − 4γ1 − 1)τ + (α + δ1+δ2
2

+ 3β − 3γ1 − 3
2
) < 0.

In this case the value of τ for which the left hand side of the above inequality is minimum
is τ = 1+4γ1−3β−δ1−α

α+δ1+β−2γ1
. Putting this value of τ we get the required condition as α2

2
+ α(δ1+δ2)

2
+

δ1δ2
2

+ αβ + (δ1+δ2)β
2

− 3β2

2
− αγ1 − δ2γ1 + 3βγ1 − 2γ1

2 − α
2
− δ1

2
+ 3β

2
− γ1 − 1

2
< 0.

The strategy presented in [12] works in polynomial time in log N . As we follow the same
strategy, N can be factored from the knowledge of N, e, dp, dq in deterministic polynomial
time in log N . ut

For practical purposes, p, q are same bit size and if we consider that no information about
the bits of p is known, then we have γ1 = γ2 = β = 1

2
. In this case the required condition is

α2

2
+ 1

2
α(δ1 + δ2) + δ1δ2

2
− α

2
− δ1+δ2

4
− 3

8
< 0.

As the condition given in Theorem 4 is quite involved, we present a few numerical values
in Table 2. What we like to identify here is to show that the bound of e can indeed exceed
φ(N) (and also N) for which deterministic polynomial time equivalence of computing the
CRT-RSA secret keys and factoring can be proved. This is also true when dp, dq exceeds the
bound of max{p− 1, q − 1}. Indeed, in some cases, the knowledge of a few most significant
bits (MSBs) of one prime may be required.

α δ1 δ2 β γ1

1.02 0.5 0.5 0.49 0.5

1.0 0.5 0.5 0.49 0.49

1.02 0.45 0.5 0.5 0.5

1.01 0.51 0.51 0.49 0.5

0.98 0.51 0.51 0.5 0.5

1.02 0.47 0.47 0.5 0.5

Table 2. Numerical values of α, δ1, δ2, β, γ1 following Theorem 4 for which N can be factored in poly(log N) time.

Now we present the experimental results corresponding to Theorem 4 in the set-up that
has already mentioned earlier in this section. Once again, we like to point out that the
experimental results cannot reach the theoretical bounds due to the small lattice dimensions.
However, the values in Table 3 clearly demonstrates the cases where

– e exceeds N ,

– dp exceeds p− 1.

N p q e dp dq LD (m, t) MSBs of p to be known L3-time

1000 bit 500 bit 500 bit 1001 bit 100 bit 500 bit 20 (2, 1) 5 63.40 sec

1000 bit 500 bit 500 bit 1001 bit 100 bit 502 bit 30 (3,1) 5 187.49 sec

1000 bit 500 bit 500 bit 1010 bit 100 bit 510 bit 20 (2, 1) 15 63.55 sec

1000 bit 500 bit 500 bit 1020 bit 100 bit 550 bit 35 (3, 2) 10 269.58 sec

1000 bit 500 bit 500 bit 1050 bit 100 bit 550 bit 35 (3, 2) 20 275.81 sec

1000 bit 500 bit 500 bit 1070 bit 100 bit 550 bit 35 (3, 2) 30 281.14 sec

1000 bit 400 bit 600 bit 1020 bit 100 bit 520 bit 35 (3, 2) 10 262.03 sec

1000 bit 500 bit 500 bit 1070 bit 100 bit 550 bit 48 (4, 2) 10 1227.20 sec

1000 bit 500 bit 500 bit 1001 bit 200 bit 502 bit 35 (3, 2) 20 266.52 sec

1000 bit 500 bit 500 bit 1020 bit 200 bit 520 bit 48 (4, 2) 10 1217.45 sec

Table 3. Experimental results corresponding to Theorem 4. LD is the lattice dimension and m, t are the parameters
as explained in the proof of Theorem 4.

4 Conclusion

Towards theoretical interest, we present a deterministic poly(log N) time algorithm that can
factorize N given e, dp, dq. This algorithm is based on lattice reduction techniques.

References

1. J. Blömer and A. May. A generalized Wiener attack on RSA. PKC 2004, LNCS 2947, pp. 1–13, 2004.
2. D. Boneh. Twenty Years of Attacks on the RSA Cryptosystem. Notices of the AMS, 46(2):203–213, February,

1999.
3. D. Boneh and G. Durfee. Cryptanalysis of RSA with Private Key d Less Than N0.292. IEEE Trans. on Infor-

mation Theory, 46(4):1339–1349, 2000.
4. D. Boneh, R. A. DeMillo and R. J. Lipton. On the importance of eliminating errors in cryptographic compu-

tations. Journal of Cryptology, 14(2):101–119, 2001.
5. D. Coppersmith. Small Solutions to Polynomial Equations and Low Exponent Vulnerabilities. Journal of Cryp-

tology, 10(4):223–260, 1997.
6. J. -S. Coron. Finding Small Roots of Bivariate Integer Equations Revisited. Eurocrypt 2004, LNCS 3027, pp.

492–505, 2004.
7. J. -S. Coron. Finding Small Roots of Bivariate Integer Equations: a Direct Approach. Crypto 2007, LNCS

4622, pp. 379–394, 2007.
8. J. -S. Coron and A. May. Deterministic polynomial-time equivalence of computing the RSA secret key and

factoring. Journal of Cryptology, 20(1):39–50, 2007.
9. N. Howgrave-Graham. Finding Small Roots of Univariate Modular Equations Revisited. Proceedings of Cryp-

tography and Coding, LNCS 1355, pp. 131–142, 1997.
10. N. Howgrave-Graham. Approximate integer common divisors. Proceedings of CaLC’01, LNCS 2146, pp. 51–66,

2001.
11. E. Jochemsz. Cryptanalysis of RSA Variants Using Small Roots of Polynomials. Ph. D. thesis, Technische

Universiteit Eindhoven, 2007.
12. E. Jochemsz and A. May. A Strategy for Finding Roots of Multivariate Polynomials with new Applications in

Attacking RSA Variants. Asiacrypt 2006, LNCS 4284, pp. 267–282, 2006.
13. E. Jochemsz and A. May. A Polynomial Time Attack on RSA with Private CRT-Exponents Smaller Than

N0.073. Crypto 2007, LNCS 4622, pp. 395–411, 2007.
14. A. K. Lenstra, H. W. Lenstra and L. Lovász. Factoring Polynomials with Rational Coefficients. Mathematische

Annalen, 261:513–534, 1982.
15. S. Maitra, S. Sarkar. A New Class of Weak Encryption Exponents in RSA. Indocrypt 2008, LNCS 5365, pp.

337–349, 2008.
16. A. May. Computing the RSA secret key is deterministic polynomial time equivalent to factoring. Crypto 2004,

LNCS 3152, pp. 213–219, 2004.
17. A. May. Using LLL-Reduction for Solving RSA and Factorization Problems: A Survey. LLL+25 Confer-

ence in honour of the 25th birthday of the LLL algorithm, 2007. Available at http://www.informatik.tu-
darmstadt.de/KP/alex.html [last accessed 23 December, 2008].

18. G. L. Miller. Riemann’s hypothesis and test of primality. 7th Annual ACM Symposium on the Theory of
Computing, pp. 234–239, 1975.

19. R. L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryp-
tosystems. Communications of ACM, 21(2):158–164, Feb. 1978.

20. D. R. Stinson. Cryptography - Theory and Practice. 2nd Edition, Chapman & Hall/CRC, 2002.
21. M. Wiener. Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on Information Theory,

36(3):553–558, 1990.

