
Deterministic Polynomial-Time Equivalence of
Computing the CRT-RSA Secret Keys and

Factoring

Subhamoy Maitra and Santanu Sarkar

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India.
{subho, santanu r}@isical.ac.in

Abstract. Let N = pq be the product of two large primes. Consider
CRT-RSA with the public encryption exponent e and private decryption
exponents dp, dq. It is well known that given any one of dp or dq (or both)
one can factorize N in probabilistic poly(log N) time with success prob-
ability almost equal to 1. Though this serves all the practical purposes,
from theoretical point of view, this is not a deterministic polynomial
time algorithm. In this paper, we present a lattice based determinis-
tic poly(log N) time algorithm that uses both dp, dq (in addition to the
public information e, N) to factorize N .

Keywords: CRT-RSA, Cryptanalysis, Factorization, LLL Algorithm, RSA.

1 Introduction

RSA [17] is one of the most popular cryptosystems in the history of cryptology.
Let us first briefly describe the idea of RSA as follows:

– primes p, q, with q < p < 2q;
– N = pq, φ(N) = (p− 1)(q − 1);
– e, d are such that ed = 1 + kφ(N), k ≥ 1;
– N, e are publicly available and plaintext M is encrypted as C ≡ Me mod N ;
– the secret key d is required to decrypt the ciphertext as M ≡ Cd mod N .

The study of RSA is one of the most attractive areas in cryptology research as
evident from many excellent works (one may refer [1, 10, 15] and the references
therein for detailed information). The paper [17] itself presents a probabilistic
polynomial time algorithm that on input N, e, d provides the factorization of N ;
this is based on the technique provided by [16]. One may also have a look at [18,
Page 197]. Recently in [14, 7] it has been proved that given N, e, d, one can factor
N in deterministic polynomial time provided ed ≤ N2.

Speeding up RSA encryption and decryption is of serious interest and for
large N as both e, d cannot be small at the same time. For fast encryption, it
is possible to use smaller e and e as small as 216 + 1 is widely believed to be a



good candidate. For fast decryption, the value of d needs to be small. However,
Wiener [19] showed that for d < 1

3N
1
4 , N can be factorized easily. Later, Boneh-

Durfee [2] increased this bound up to d < N0.292. Thus use of smaller d is in
general not recommendable. In this direction, an alternative approach has been
proposed by Wiener [19] exploiting the Chinese Remainder Theorem (CRT) for
faster decryption. The idea is as follows:

– the public exponent e and the private CRT exponents dp and dq are used
satisfying edp ≡ 1 mod (p− 1) and edq ≡ 1 mod (q − 1);

– the encryption is same as standard RSA;
– to decrypt a ciphertext C one needs to compute M1 ≡ Cdp mod p and M2 ≡

Cdq mod q;
– using CRT, one can get the plaintext M ∈ Zn such that M ≡ M1 mod p

and M ≡ M2 mod q.

This variant of RSA is popularly known as CRT-RSA. One may refer to [12] and
the references therein for state of the art analysis on CRT-RSA.

Let us now outline the organization of this paper. Some preliminaries required
in this area are discussed in Sections 1.1 and 1.2. The lattice based technique is
used in Section 2 to show that one can factorize N in deterministic polynomial
time from the knowledge of N, e, dp, dq. Section 3 concludes the paper.

1.1 Discussion on the known Probabilistic Polynomial time
algorithm

Given N, e and any one of dp, dq (or both), there exists well known solution
to factorize N in probabilistic poly(log N) time with probability almost 1. An
important work in this direction shows that with the availability of decryption
oracle under a fault model, one can factorize N in poly(log N) time [3, Section
2.2] and the idea has been improved by A. Lenstra [3, Section 2.2, Reference 16].

Without loss of generality, consider dp is available. One can take any random
integer W in [2, N−1]. If gcd(W,N) 6= 1, then we already have the factors. Else,
we consider gcd(W edp−1 − 1, N). First note that p divides W edp−1 − 1. This is
because, edp ≡ 1 mod (p− 1), i.e., edp − 1 = k(p− 1) for some positive integer k
and hence W edp−1− 1 = W k(p−1)− 1 is divisible by p. Thus if q does not divide
W edp−1− 1 then gcd(W edp−1− 1, N) = p (this happens with probability almost
equal to 1). If q too divides W edp−1 − 1, then gcd(W edp−1 − 1, N) = N and the
factorization is not possible (this happens with a very low probability).

Thus, when both dp, dq are available, one can calculate both gcd(W edp−1 −
1, N) and gcd(W edq−1 − 1, N). If both of them are N (which happens with a
very low probability) then the factorization is not possible by this method.

Given e, dp, dq and N , let us define,

Te,dp,dq,N = {W ∈ [2, N − 1]| gcd(W,N) = 1,

gcd(W edp−1 − 1, N) = N and gcd(W edq−1 − 1, N) = N},
Te,dp,N = {W ∈ [2, N − 1]| gcd(W,N) = 1, gcd(W edp−1 − 1, N) = N} and

Te,dq,N = {W ∈ [2, N − 1]| gcd(W,N) = 1, gcd(W edq−1 − 1, N) = N}.



It is easy to note that Te,dp,dq,N = Te,dp,N ∩ Te,dq,N .

Let us now provide some examples in Table 1. Looking at Table 1, it is clear
that while |Te,dp,dq,N | is quite large for one prime-pair, it is very small for the
other.

p q e dp dq |Te,dp,N | |Te,dq,N | |Te,dp,dq,N |
1021 1601 77 53 1413 81599 543999 27199
1021 1601 179 359 1019 20399 95999 1199
1021 1601 1999 199 1199 203999 31999 3999
1021 1601 10019 479 779 101999 95999 5999

1229 1987 77 925 1367 2455 3971 3
1229 1987 5791 95 1213 2455 3971 3
1229 1987 7793 601 605 2455 7943 7
1229 1987 121121 501 1271 2455 3971 3

Table 1. Cardinality of Te,dp,dq,N : some toy examples.

We like to present the following technical result in this direction.

Proposition 1. Consider CRT-RSA with N = pq, encryption exponent e and
decryption exponents dp and dq. Let g = gcd(p−1, q−1), gp = gcd(edp−1, q−1),
gq = gcd(edq − 1, p− 1) and ge = gcd(edp − 1, edq − 1). Then |Te,dp,N | = gp(p−
1) − 1, |Te,dq,N | = gq(q − 1) − 1 and |Te,dp,dq,N | = gpgq − 1. Further, g2 − 1 ≤
|Te,dp,dq,N | ≤ g2

e − 1.

Proof. We have gp = gcd(edp − 1, q − 1). Then there exists a subgroup Sq of
order gp in Z∗q such that for any w ∈ Sq, we have q|wgp − 1. Now consider any
w1 ∈ Z∗p and w2 from Sq. By CRT, there exists a unique W ∈ Z∗N such that
W ≡ w1 mod p and W ≡ w2 mod q and vice versa. Thus the number of such
W ’s is gp(p− 1). It is evident that for all these W ’s, we have gcd(W,N) = 1 and
N |W edp−1 − 1. We can also observe that any W ∈ Te,dp,N can be obtained in
this way. Discarding the case W = 1, we get |Te,dp,N | = gp(p− 1)− 1.

Similarly, we have gq = gcd(edq − 1, p − 1). Then there exists a subgroup
Sp of order gq in Z∗p such that for any w ∈ Sp, we have p|wgq − 1. In the same
manner, we get |Te,dq,N | = gq(q − 1)− 1.

Now consider any w1 ∈ Sp and w2 ∈ Sq. By CRT, there exists a unique
W ∈ Z∗N such that W ≡ w1 mod p and W ≡ w2 mod q and vice versa. Thus
the number of such W ’s is gpgq. It is evident that for all these W ’s, we have
gcd(W,N) = 1, N |W edp−1 − 1 and N |W edq−1 − 1. One may observe that any
W ∈ Te,dp,dq,N can be obtained in this manner. Discarding the case W = 1, we
get |Te,dp,dq,N | = gpgq − 1.

Consider edp−1 = k(p−1) and edq−1 = l(q−1). Then we get |Te,dp,dq,N | ≥
g2− 1, as g divides both gp and gq. Since ge = gcd(edp− 1, edq − 1) = gcd(k(p−
1), l(q− 1)), each of gp, gq divides ge. Thus the bounds on |Te,dp,dq,N | follow. ut



Given e,N, dp, dq, one can get ge easily, and thus the upper bound of |Te,dp,dq,N |
is immediately known. If ge is bounded by poly(log N), then it is enough to
try g2

e many distinct W ’s to factorize N in poly(log N) time. However, from
Proposition 1, it is clear that |Te,dp,dq,N | may not be bounded by poly(log N)
as gp, gq may not be bounded by poly(log N) in all the cases. Thus we have the
following question, where an affirmative answer will transform the probabilistic
algorithm to a deterministic one.

– Is it possible to identify a W ∈ [2, N − 1] \ Te,dp,dq,N in poly(log N) time?

To our knowledge, an affirmative answer to the above question is not known.
Thus, from theoretical point of view, getting a deterministic polynomial time
algorithm for factorization of N with the knowledge of N, e, dp, dq is important.
We solve it using lattice based technique.

1.2 Preliminaries on Lattices

Let us present some basics on lattice reduction techniques. Consider the lin-
early independent vectors u1, . . . , uω ∈ Zn, where ω ≤ n. A lattice, spanned by
{u1, . . . , uω}, is the set of all linear combinations of u1, . . . , uω, i.e., ω is the di-
mension of the lattice. A lattice is called full rank when ω = n. Let L be a lattice
spanned by the linearly independent vectors u1, . . . , uω, where u1, . . . , uω ∈ Zn.
By u∗1, . . . , u

∗
ω, we denote the vectors obtained by applying the Gram-Schmidt

process to the vectors u1, . . . , uω.
The determinant of L is defined as det(L) =

∏w
i=1 ||u∗i ||, where ||.|| denotes

the Euclidean norm on vectors. Given a polynomial g(x, y) =
∑

ai,jx
iyj , we

define the Euclidean norm as ‖ g(x, y) ‖=
√∑

i,j a2
i,j and infinity norm as

‖ g(x, y) ‖∞= maxi,j |ai,j |.
It is known that given a basis u1, . . . , uω of a lattice L, the LLL algorithm [13]

can find a new basis b1, . . . , bω of L with the following properties.

– ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for 1 ≤ i < ω.
– For all i, if bi = b∗i +

∑i−1
j=1 µi,jb

∗
j then |µi,j | ≤ 1

2 for all j.

– ‖ bi ‖≤ 2
ω(ω−1)+(i−1)(i−2)

4(ω−i+1) det(L)
1

ω−i+1 for i = 1, . . . , ω.

In [4], deterministic polynomial time algorithms have been presented to find
small integer roots of (i) polynomials in a single variable mod N , and of (ii)
polynomials in two variables over the integers. The idea of [4] extends to more
than two variables also, but in that event, the method becomes probabilistic.

Theorem 1. [4] Let p(x, y) be an irreducible polynomial in two variables over
Z, of maximum degree δ in each variable separately. Let X, Y be the bounds
on the desired solutions x0, y0. Define p′(x, y) = p(xX, yY ) and let W be the
absolute value of the largest coefficient of p′. Given XY ≤ W

2
3δ , one can find all

integer pairs (x0, y0) with p(x0, y0) = 0, x0 ≤ X and y0 ≤ Y in time polynomial
in (log W, 2δ).



In [5], a simpler algorithm than [4] has been presented in this direction, but it
was asymptotically less efficient. Later, in [6], a simpler idea than [4] has been
presented with the same asymptotic bound as in [4]. Both the works [5, 6] depend
on the following theorem.

Theorem 2. [8] Let f(x, y) ∈ Z[x, y] which is a sum of at most w monomi-
als. Suppose that f(x0, y0) ≡ 0 mod (N) where |x0| ≤ X and |y0| ≤ Y and
||f(xX, yY )|| < N√

w
. Then f(x0, y0) holds over integer.

The work of [14], in finding the deterministic polynomial time algorithm to
factorize N from the knowledge of e, d, uses the techniques presented in [4, 5].
Further, the work of [7] exploits the technique presented in [9].

2 Deterministic Polynomial Time Algorithm

In this section we consider that both dp, dq are known apart from the public
information N, e. In the next result, we use the idea of [4].

Theorem 3. Let e < φ(N), dp < (p − 1) and dq < (q − 1). If N, e, dp, dq are
known then N can be factored in deterministic polynomial time in log N .

Proof. We can write edp = 1 + k(p − 1) and edq = 1 + l(q − 1) where k, l are
positive integers. So we can write edp + k − 1 = kp and edq + l − 1 = lq. Now
multiplying these we get (edp− 1)(edq − 1)+ k(edq − 1)+ l(edp− 1)+ kl = kplq.
Substituting k, l by x, y respectively, we get the equation (edp − 1)(edq − 1) +
x(edq − 1) + y(edp − 1) + xy = Nxy. Thus, we have to find the roots (x0, y0) of
f(x, y) = (1−N)xy + x(edq − 1) + y(edp − 1) + (edp − 1)(edq − 1) = 0.

As p, q are not known, we need some estimate of p, q. Assume p = Nγ1 ,
q = Nγ2 , where γ1 +γ2 = 1. If p, q are of same bit size, we consider γ1 = γ2 = 1

2 .
Otherwise, we estimate p, q are of different bit sizes, such that pq = N . As the
number of bits in p is log2 p, we need to try at most log N many estimates for
the bit size of p and run the strategy as described below that many times.

Let e = Nα, dp = N δ1 and dq = N δ2 . Let us denote X = Nα+δ1−γ1 and
Y = Nα+δ2−γ2 . Clearly one can take (X, Y ) as upper bounds of the root (k, l)
of f neglecting the constant terms.

Let W = ||f(xX, yY )||∞ ≥ (edp − 1)(edq − 1) ≈ e2dpdq. Following Theo-
rem 1 [4], one can find the root of f in deterministic polynomial time in log N (as
the degree of the polynomial f is 1) if XY < W

2
3 . Thus we need kl < (e2dpdq)

2
3

to get the root of f , which is proved below. Thus it guarantees that one can
factor N from the knowledge of N, e, dp, dq in deterministic polynomial time in
log N .

– We have edp > k(p − 1) and edq > l(q − 1). So e2dpdq > kl(p − 1)(q − 1),
i.e., (e2dpdq)

2
3 > (kl(p− 1)(q − 1))

2
3 .

– Thus, to show that kl < (e2dpdq)
2
3 , we need to prove, kl < (kl(p−1)(q−1))

2
3 ,

i.e., kl < (p− 1)2(q − 1)2.



– Since we assume dp < (p − 1), dq < (q − 1), we have e > k and e > l, i.e.,
e2 > kl. As we take φ(N) = (p−1)(q−1) > e, we get that (p−1)2(q−1)2 > kl.

This concludes the proof. ut
Let us now present some experimental results in Table 2. Our experiments

are based on the strategy of [5] as it is easier to implement. According to the
formula presented in [5, Theorem 4], the lattice dimension (denote it by LD) is
(δ + m + 1)2, where δ is the degree of the polynomial f (here δ = 1) and m is a
non-negative integer related to the shifts of the polynomial (in the proof of [5,
Theorem 4], this m is denoted by k). We have written the programs in SAGE
3.1.1 over Linux Ubuntu 8.04 on a computer with Dual CORE Intel(R) Pen-
tium(R) D 1.83 GHz CPU, 2 GB RAM and 2 MB Cache. We take large primes
p, q such that N is of 1000 bits. As we experiment with low lattice dimensions,
we cannot demonstrate the success of the experiments when dp, dq are of the
order of p, q respectively.

N p q e dp dq LD m L3-time

1000 bit 500 bit 500 bit 1000 bit 240 bit 240 bit 16 2 14.82 sec

1000 bit 400 bit 600 bit 1000 bit 230 bit 265 bit 16 2 16.09 sec

1000 bit 500 bit 500 bit 1000 bit 350 bit 350 bit 49 5 5914.08 sec

Table 2. Experimental results corresponding to Theorem 3.

Now we present a more general form of Theorem 3. The constraints in The-
orem 3 are α < 1, dp < p− 1, dq < q− 1. In Theorem 4 we try to get rid of these
constraints, but naturally that impose some other conditions.

The main motivation of CRT-RSA [19] was to make dp, dq small. Thus, the
issue of considering dp, dq large is completely theoretical. However, the issue of
large e (i.e., e = Nα, where α > 1) has earlier been considered, e.g., the case
ed ≈ N2 has been studied in [7, Table 1, Section 6] and the case e > N1.5 has
been analyzed in [2, Section VI].

Theorem 4. Let e = Nα, dp ≤ N δ1 , dq ≤ N δ2 . Suppose p is estimated1 as
Nγ1 . Suppose we know an approximation p0 of p such that |p − p0| < Nβ. If
both dp, dq are known then one can factor N in deterministic poly(log N) time if
α2 +αδ1 +2αβ + δ1β−2αγ1−γ2

1 +αδ2 + δ1δ2 +βδ2−2γ1δ2−α− δ1 +β−1 < 0
provided 1 + 3γ1 − 2β − δ1 − α ≥ 0.

Proof. We have edp = 1 + k(p − 1) and edq = 1 + l(q − 1). So k = edp−1
p−1 . Let

k0 = edp

p0
. Then

|k − k0| = |edp − 1
p− 1

− edp

p0
| ≈ |edp

p
− edp

p0
| = edp|p− p0|

pp0
≤ Nα+δ1+β−2γ1 .

1 As described in the proof of Theorem 3, the bit size of p can be correctly estimated
in log N many attempts.



Considering q0 = N
p0

, it can be shown that |q − q0| < N1+β−2γ1 , neglecting the

small constant. Assume, q = Nγ2 , where γ2 = 1 − γ1. So if we take l0 = edq

q0
,

then |l − l0| = | edq−1
q−1 − edq

q0
| ≈ | edq

q − edq

q0
| = edq|q−q0|

qq0
≤ Nα+δ2+1+β−2γ1−2γ2 =

Nα+δ2+β−1. Let k1 = k − k0 and l1 = l − l0. We have edp + k − 1 = kp. So
edp+k0+k1−1 = (k0+k1)p. Similarly, edq+l0+l1−1 = (l0+l1)q. Now multiplying
these equations, we get (edp−1+k0)(edq−1+ l0)+k1(edq−1+ l0)+ l1(edp−1+
k0) + k1l1 = (k0 + k1)p(l0 + l1)q. Now if we substitute k1, l1 by x, y respectively,
then we get (edp−1+k0)(edq −1+ l0)+x(edq −1+ l0)+ y(edp−1+k0)+xy =
(k0 + x)p(l0 + y)q. Hence we have to find the solution k1, l1 of

(edp−1+k0)(edq−1+l0)+x(edq−1+l0)+y(edp−1+k0)+xy = (k0+x)p(l0+y)q,

i.e., we have to find the roots of f(x, y) = 0, where f(x, y) = (1−N)xy+x(edq−
1 + l0 − l0N) + y(edp − 1 + k0 − k0N) + (edp − 1 + k0)(edq − 1 + l0)− k0l0N .

Let X = Nα+δ1+β−2γ1 and Y = Nα+δ2+β−1. Clearly X, Y are the upper
bounds of (k1, l1), the root of f . Thus, W = ||f(xX, yY )||∞ ≥ X(edq − 1 + l0 −
l0N) ≈ XlN = N2α+δ1+δ2+β−γ1 . Then from [4] we need XY < W

2
3 , which

implies 2α + δ1 + δ2 < 3 + 4(γ1 − β).
However if one of the variables x, y is significantly smaller than other we give

some extra shifts on x or y. Without loss of generality, let us assume that k1

is significantly smaller than l1. Following the “Extended Strategy” of [11, Page
274], we exploit extra t many shifts of x where t is a non-negative integer. Our
aim is to find a polynomial f0 that share the root (k1, l1) over the integers. We
define two sets of monomials as follows.

S =
⋃

0≤k≤t

{xi+kyj : xiyj is a monomial of fm},

M = { monomials of xiyjf : xiyj ∈ S}.

From [11], we know that these polynomials can be found by lattice reduction
if Xs1Y s2 < W s for sj =

∑
xi1yi2∈M\S ij where s = |S|, j = 1, 2. One can check

that s1 = 3
2m2 + 7

2m + t2

2 + 5
2 t + 2mt + 2, s2 = 3

2m2 + 7
2m + t + mt + 2, and

s = (m + 1)2 + mt + t.
Let t = τm. Neglecting the lower order terms we get that Xs1Y s2 < W s

is satisfied when ( 3
2 + τ2

2 + 2τ)(α + δ1 + β − 2γ1) + ( 3
2 + τ)(α + δ2 + β − 1) <

(1 + τ)(2α + δ1 + δ2 + β − γ1), i.e., when
(α

2 + δ1
2 + β

2 −γ1)τ2 +(α+δ1 +2β−3γ1−1)τ +(α+ δ1+δ2
2 +2β−2γ1− 3

2 ) < 0.
In this case the value of τ for which the left hand side of the above inequality

is minimum is τ = 1+3γ1−2β−δ1−α
α+δ1+β−2γ1

. Putting this value of τ we get the required
condition as α2 + αδ1 + 2αβ + δ1β− 2αγ1 − γ2

1 + αδ2 + δ1δ2 + βδ2 − 2γ1δ2 −α−
δ1 + β − 1 < 0.

The strategy presented in [11] works in polynomial time in log N . As we
follow the same strategy, N can be factored from the knowledge of N, e, dp, dq

in deterministic polynomial time in log N . ut



For practical purposes, p, q are same bit size and if we consider that no
information about the bits of p is known, then we have γ1 = γ2 = β = 1

2 . In this
case the required condition is α2 + α(δ1 + δ2) + δ1δ2 − α− 1

2 (δ1 + δ2)− 3
4 < 0.

As the condition given in Theorem 4 is quite involved, we present a few nu-
merical values in Table 3. What we like to identify here is to show that the bound
of e can indeed exceed φ(N) (and also N) for which deterministic polynomial
time equivalence of computing the CRT-RSA secret keys and factoring can be
proved. This is also true when dp, dq exceeds the bound of max{p − 1, q − 1}.
Indeed, in some cases, the knowledge of a few most significant bits (MSBs) of
one prime may be required.

α δ1 δ2 β γ1

1.01 0.5 0.5 0.49 0.5

1.02 0.45 0.5 0.5 0.5

1.01 0.50 0.51 0.49 0.5

0.98 0.51 0.51 0.5 0.5

1.02 0.47 0.47 0.5 0.5

1.02 0.411 0.55 0.5 0.5

1.02 0.35 0.62 0.5 0.5

Table 3. Numerical values of α, δ1, δ2, β, γ1 following Theorem 4 for which N can be
factored in poly(log N) time.

N p q e dp dq LD (m, t) # MSBp L3-time

1000 bit 500 bit 500 bit 1001 bit 100 bit 500 bit 20 (2, 1) 5 63.40 sec

1000 bit 500 bit 500 bit 1001 bit 100 bit 502 bit 30 (3,1) 5 187.49 sec

1000 bit 500 bit 500 bit 1010 bit 100 bit 510 bit 20 (2, 1) 15 63.55 sec

1000 bit 500 bit 500 bit 1020 bit 100 bit 550 bit 35 (3, 2) 10 269.58 sec

1000 bit 500 bit 500 bit 1050 bit 100 bit 550 bit 35 (3, 2) 20 275.81 sec

1000 bit 500 bit 500 bit 1070 bit 100 bit 550 bit 35 (3, 2) 30 281.14 sec

1000 bit 400 bit 600 bit 1020 bit 100 bit 520 bit 35 (3, 2) 10 262.03 sec

1000 bit 500 bit 500 bit 1070 bit 100 bit 550 bit 48 (4, 2) 10 1227.20 sec

1000 bit 500 bit 500 bit 1001 bit 200 bit 502 bit 35 (3, 2) 20 266.52 sec

1000 bit 500 bit 500 bit 1020 bit 200 bit 520 bit 48 (4, 2) 10 1217.45 sec

Table 4. Experimental results corresponding to Theorem 4. LD is the lattice dimension
and m, t are the parameters as explained in the proof of Theorem 4. The number of
MSBs of p to be known is denoted by # MSBp.

Now we present the experimental results corresponding to Theorem 4 in the
set-up that has already mentioned earlier in this section. Once again, we like to
point out that the experimental results cannot reach the theoretical bounds due



to the small lattice dimensions. However, the values in Table 4 clearly demon-
strates the cases where e exceeds N and dq exceeds q − 1.

3 Conclusion

Towards theoretical interest, we have presented a deterministic poly(log N) time
algorithm that can factorize N given e, dp and dq. This algorithm is based on
lattice reduction techniques.

Acknowledgments: The authors like to thank the anonymous reviewers for
detailed comments that improved the technical as well as editorial quality of
this paper. We also thank Dr. A. Venkateswarlu for explaining Proposition 1
and presenting detailed comments on this version. The second author likes to
acknowledge the Council of Scientific and Industrial Research (CSIR), India for
supporting his research fellowship.

References

1. D. Boneh. Twenty Years of Attacks on the RSA Cryptosystem. Notices of the
AMS, 46(2):203–213, February, 1999.

2. D. Boneh and G. Durfee. Cryptanalysis of RSA with Private Key d Less Than
N0.292. IEEE Trans. on Information Theory, 46(4):1339–1349, 2000.

3. D. Boneh, R. A. DeMillo and R. J. Lipton. On the importance of eliminating er-
rors in cryptographic computations. Journal of Cryptology, 14(2):101–119, 2001.

4. D. Coppersmith. Small Solutions to Polynomial Equations and Low Exponent
Vulnerabilities. Journal of Cryptology, 10(4):223–260, 1997.

5. J. -S. Coron. Finding Small Roots of Bivariate Integer Equations Revisited.
Eurocrypt 2004, LNCS 3027, pp. 492–505, 2004.

6. J. -S. Coron. Finding Small Roots of Bivariate Integer Equations: a Direct Ap-
proach. Crypto 2007, LNCS 4622, pp. 379–394, 2007.

7. J. -S. Coron and A. May. Deterministic polynomial-time equivalence of com-
puting the RSA secret key and factoring. Journal of Cryptology, 20(1):39–50,
2007.

8. N. Howgrave-Graham. Finding Small Roots of Univariate Modular Equations
Revisited. Proceedings of Cryptography and Coding, LNCS 1355, pp. 131–142,
1997.

9. N. Howgrave-Graham. Approximate integer common divisors. Proceedings of
CaLC’01, LNCS 2146, pp. 51–66, 2001.

10. E. Jochemsz. Cryptanalysis of RSA Variants Using Small Roots of Polynomials.
Ph. D. thesis, Technische Universiteit Eindhoven, 2007.

11. E. Jochemsz and A. May. A Strategy for Finding Roots of Multivariate Polyno-
mials with new Applications in Attacking RSA Variants. Asiacrypt 2006, LNCS
4284, pp. 267–282, 2006.

12. E. Jochemsz and A. May. A Polynomial Time Attack on RSA with Private
CRT-Exponents Smaller Than N0.073. Crypto 2007, LNCS 4622, pp. 395–411,
2007.



13. A. K. Lenstra, H. W. Lenstra and L. Lovász. Factoring Polynomials with Ratio-
nal Coefficients. Mathematische Annalen, 261:513–534, 1982.

14. A. May. Computing the RSA secret key is deterministic polynomial time equiv-
alent to factoring. Crypto 2004, LNCS 3152, pp. 213–219, 2004.

15. A. May. Using LLL-Reduction for Solving RSA and Factorization Problems: A
Survey. LLL+25 Conference in honour of the 25th birthday of the LLL algorithm,
2007. Available at http://www.informatik.tu-darmstadt.de/KP/alex.html [last
accessed 23 December, 2008].

16. G. L. Miller. Riemann’s hypothesis and test of primality. 7th Annual ACM Sym-
posium on the Theory of Computing, pp. 234–239, 1975.

17. R. L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems. Communications of ACM, 21(2):158–164,
Feb. 1978.

18. D. R. Stinson. Cryptography - Theory and Practice. 2nd Edition, Chapman &
Hall/CRC, 2002.

19. M. Wiener. Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions
on Information Theory, 36(3):553–558, 1990.


