On Deterministic Polynomial-Time Equivalence of Computing the CRT-RSA Secret Keys and Factoring^{*}

Subhamoy Maitra and Santanu Sarkar

Applied Statistics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India. {subho, santanu_r}@isical.ac.in

Abstract. Let N = pq be the product of two large primes. Consider CRT-RSA with the public encryption exponent e and private decryption exponents d_p, d_q . It is well known that given any one of d_p or d_q (or both) one can factorize N in probabilistic poly(log N) time with success probability almost equal to 1. Though this serves all the practical purposes, from theoretical point of view, this is not a deterministic polynomial time algorithm. In this paper, we present a lattice based deterministic poly(log N) time algorithm that uses both d_p, d_q (in addition to the public information e, N) to factorize N for certain ranges of d_p, d_q . We like to stress that proving the equivalence for all the values of d_p, d_q may be a nontrivial task.

Keywords: CRT-RSA, Cryptanalysis, Factorization, LLL Algorithm, RSA.

1 Introduction

RSA [17] is one of the most popular cryptosystems in the history of cryptology. Let us first briefly describe the idea of RSA as follows:

- primes p, q, with q ;
- $N = pq, \ \phi(N) = (p-1)(q-1);$
- -e, d are such that $ed = 1 + k\phi(N), k \ge 1;$
- -N, e are publicly available and plaintext M is encrypted as $C \equiv M^e \mod N$;
- the secret key d is required to decrypt the ciphertext as $M \equiv C^d \mod N$.

The study of RSA is one of the most attractive areas in cryptology research as evident from many excellent works (one may refer to [1, 10, 15] and the references therein for detailed information). The paper [17] itself presents a probabilistic polynomial time algorithm that on input N, e, d provides the factorization of N; this is based on the technique provided by [16]. One may also have a look at [18, Page 197]. Recently in [14, 7] it has been proved that given N, e, d, one can factor N in deterministic poly(log N) time provided $ed \leq N^2$.

Speeding up RSA encryption and decryption is of serious interest and for large N as both e, d cannot be small at the same time. For fast encryption, it is possible to use smaller e, e.g.,

^{*} This paper is a corrected and revised version of the paper "Deterministic Polynomial-Time Equivalence of Computing the CRT-RSA Secret Keys and Factoring" presented in "WCC 2009, International Workshop on Coding and Cryptography", May 10-15, 2009, Ullensvang, Norway. There was a flaw in the earlier version where we claimed the deterministic polynomial time equivalence for the complete range of d_p, d_q . The corrected proof in this version achieves the result for a certain range of d_p, d_q , but not for the complete range.

the value as small as $2^{16} + 1$ is widely believed to be a good candidate. For fast decryption, the value of d needs to be small. However, Wiener [19] showed that for $d < \frac{1}{3}N^{\frac{1}{4}}$, N can be factorized easily. Later, Boneh-Durfee [2] increased this bound up to $d < N^{0.292}$. Thus use of smaller d is in general not recommended. In this direction, an alternative approach has been proposed by Wiener [19] exploiting the Chinese Remainder Theorem (CRT) for faster decryption. The idea is as follows:

- the public exponent e and the private CRT exponents d_p and d_q are used satisfying $ed_p \equiv 1 \mod (p-1)$ and $ed_q \equiv 1 \mod (q-1)$;
- the encryption is same as standard RSA;
- to decrypt a ciphertext C one needs to compute $M_1 \equiv C^{d_p} \mod p$ and $M_2 \equiv C^{d_q} \mod q$;
- using CRT, one can get the plaintext $M \in \mathbb{Z}_N$ such that $M \equiv M_1 \mod p$ and $M \equiv M_2 \mod q$.

This variant of RSA is popularly known as CRT-RSA. One may refer to [12] and the references therein for state of the art analysis on CRT-RSA.

Let us now outline the organization of this paper. Some preliminaries required in this area are discussed in Sections 1.1 and 1.2. A lattice based technique is used in Section 2 to show that one can factorize N in deterministic polynomial time from the knowledge of N, e, d_p, d_q for certain ranges of d_p, d_q . Section 3 concludes the paper.

1.1 Discussion on the known Probabilistic Polynomial time algorithm

Given N, e and any one of d_p, d_q (or both), there exists a well known solution to factorize N in probabilistic poly(log N) time with probability almost 1. An important work in this direction shows that with the availability of decryption oracle under a fault model, one can factorize N in poly(log N) time [3, Section 2.2] and the idea has been improved by A. Lenstra [3, Section 2.2, Reference 16].

Without loss of generality, consider that d_p is available. One can pick any random integer W in [2, N-1]. If $gcd(W, N) \neq 1$, then we already have one of the factors. Else, we consider $gcd(W^{ed_p-1}-1, N)$. First note that p divides $W^{ed_p-1}-1$. This is because, $ed_p \equiv 1 \mod (p-1)$, i.e., $ed_p - 1 = k(p-1)$ for some positive integer k and hence $W^{ed_p-1} - 1 = W^{k(p-1)} - 1$ is divisible by p. Thus if q does not divide $W^{ed_p-1}-1$ then $gcd(W^{ed_p-1}-1, N) = p$ (this happens with probability almost equal to 1). If q too divides $W^{ed_p-1}-1$, then $gcd(W^{ed_p-1}-1, N) = N$ and the factorization is not possible (this happens with a very low probability).

Thus, when both d_p, d_q are available, one can calculate both $gcd(W^{ed_p-1}-1, N)$ and $gcd(W^{ed_q-1}-1, N)$. If both of them are N (which happens with a very low probability) then the factorization is not possible by this method.

Given e, d_p, d_q and N, let us define,

$$\begin{split} T_{e,d_p,d_q,N} &= \{ W \in [2, N-1] | \ \mathrm{gcd}(W,N) = 1, \\ &\qquad \mathrm{gcd}(W^{ed_p-1}-1,N) = N \ \mathrm{and} \ \mathrm{gcd}(W^{ed_q-1}-1,N) = N \}, \\ T_{e,d_p,N} &= \{ W \in [2, N-1] | \ \mathrm{gcd}(W,N) = 1, \mathrm{gcd}(W^{ed_p-1}-1,N) = N \} \ \mathrm{and} \\ T_{e,d_q,N} &= \{ W \in [2, N-1] | \ \mathrm{gcd}(W,N) = 1, \mathrm{gcd}(W^{ed_q-1}-1,N) = N \}. \end{split}$$

It is easy to note that $T_{e,d_p,d_q,N} = T_{e,d_p,N} \cap T_{e,d_q,N}$.

Let us now provide some examples in Table 1. Looking at Table 1, it is clear that while $|T_{e,d_n,d_q,N}|$ is quite large for one prime-pair, it is very small for the other.

p	q	e	d_p	d_q	$ T_{e,d_p,N} $	$ T_{e,d_q,N} $	$ T_{e,d_p,d_q,N} $
1021	1601	77	53	1413	81599	543999	27199
1021	1601	179	359	1019	20399	95999	1199
1021	1601	1999	199	1199	203999	31999	3999
1021	1601	10019	479	779	101999	95999	5999
1229	1987	77	925	1367	2455	3971	3
1229	1987	5791	95	1213	2455	3971	3
1229	1987	7793	601	605	2455	7943	7
1229	1987	121121	501	1271	2455	3971	3

Table 1. Cardinality of $T_{e,d_p,d_q,N}$: some toy examples.

We like to present the following technical result in this direction.

Proposition 1. Consider CRT-RSA with N = pq, encryption exponent e and decryption exponents d_p and d_q . Let $g_1 = gcd(p-1, q-1)$, $g_p = gcd(ed_p-1, q-1)$, $g_q = gcd(ed_q-1, p-1)$ and $g_e = gcd(ed_p - 1, ed_q - 1)$. Then $|T_{e,d_p,N}| = g_p(p-1) - 1$, $|T_{e,d_q,N}| = g_q(q-1) - 1$ and $|T_{e,d_p,d_q,N}| = g_pg_q - 1$. Further, $g_1^2 - 1 \le |T_{e,d_p,d_q,N}| \le g_e^2 - 1$.

Proof. We have $g_p = \gcd(ed_p - 1, q - 1)$. Then there exists a subgroup S_q of order g_p in \mathbb{Z}_q^* such that for any $w \in S_q$, we have $q|w^{g_p} - 1$. Now consider any $w_1 \in \mathbb{Z}_p^*$ and w_2 from S_q . By CRT, there exists a unique $W \in \mathbb{Z}_N^*$ such that $W \equiv w_1 \mod p$ and $W \equiv w_2 \mod q$ and vice versa. Thus the number of such W's is $g_p(p-1)$. It is evident that for all these W's, we have $\gcd(W, N) = 1$ and $N|W^{ed_p-1} - 1$. We can also observe that any $W \in T_{e,d_p,N}$ can be obtained in this way. Discarding the case W = 1, we get $|T_{e,d_p,N}| = g_p(p-1) - 1$.

Similarly, we have $g_q = \gcd(ed_q - 1, p - 1)$. Then there exists a subgroup S_p of order g_q in \mathbb{Z}_p^* such that for any $w \in S_p$, we have $p|w^{g_q} - 1$. In the same manner, we get $|T_{e,d_q,N}| = g_q(q-1) - 1$.

Now consider any $w_1 \in S_p$ and $w_2 \in S_q$. By CRT, there exists a unique $W \in \mathbb{Z}_N^*$ such that $W \equiv w_1 \mod p$ and $W \equiv w_2 \mod q$ and vice versa. Thus the number of such W's is $g_p g_q$. It is evident that for all these W's, we have gcd(W, N) = 1, $N|W^{ed_p-1} - 1$ and $N|W^{ed_q-1} - 1$. One may observe that any $W \in T_{e,d_p,d_q,N}$ can be obtained in this manner. Discarding the case W = 1, we get $|T_{e,d_p,d_q,N}| = g_p g_q - 1$.

Consider $ed_p - 1 = k(p-1)$ and $ed_q - 1 = l(q-1)$. Then we get $|T_{e,d_p,d_q,N}| \ge g_1^2 - 1$, as g_1 divides both g_p and g_q . Since $g_e = \gcd(ed_p - 1, ed_q - 1) = \gcd(k(p-1), l(q-1))$, each of g_p, g_q divides g_e . Thus the bounds on $|T_{e,d_p,d_q,N}|$ follow.

Given e, N, d_p, d_q , one can get g_e easily, and thus the upper bound of $|T_{e,d_p,d_q,N}|$ is immediately known. If g_e is bounded by poly(log N), then it is enough to try g_e^2 many distinct W's to factorize N in poly(log N) time. However, from Proposition 1, it is clear that $|T_{e,d_p,d_q,N}|$ may not be bounded by $poly(\log N)$ as g_p, g_q may not be bounded by $poly(\log N)$ in all the cases. Thus we have the following question, where an affirmative answer will transform the probabilistic algorithm to a deterministic one.

- Is it possible to identify a $W \in [2, N-1] \setminus T_{e,d_n,d_n,N}$ in poly $(\log N)$ time?

To our knowledge, an affirmative answer to the above question is not known. Thus, from theoretical point of view, getting a deterministic polynomial time algorithm for factorizing N with the knowledge of N, e, d_p, d_q is important. We solve it using lattice based technique.

1.2**Preliminaries on Lattices**

Let us present some basics on lattice reduction techniques. Consider the linearly independent vectors $u_1, \ldots, u_\omega \in \mathbb{Z}^n$, where $\omega \leq n$. A lattice, spanned by $\{u_1, \ldots, u_\omega\}$, is the set of all linear combinations of u_1, \ldots, u_{ω} , i.e., ω is the dimension of the lattice. A lattice is called full rank when $\omega = n$. Let L be a lattice spanned by the linearly independent vectors u_1, \ldots, u_{ω} . where $u_1, \ldots, u_{\omega} \in \mathbb{Z}^n$. By $u_1^*, \ldots, u_{\omega}^*$, we denote the vectors obtained by applying the Gram-Schmidt process to the vectors u_1, \ldots, u_{ω} .

The determinant of L is defined as $det(L) = \prod_{i=1}^{w} ||u_i^*||$, where ||.|| denotes the Euclidean norm on vectors. Given a polynomial $g(x,y) = \sum a_{i,j} x^i y^j$, we define the Euclidean norm as $\|g(x,y)\| = \sqrt{\sum_{i,j} a_{i,j}^2}$ and infinity norm as $\|g(x,y)\|_{\infty} = \max_{i,j} |a_{i,j}|$.

It is known that given a basis u_1, \ldots, u_{ω} of a lattice L, the LLL algorithm [13] can find a new basis b_1, \ldots, b_{ω} of L with the following properties.

- $\| b_i^* \|^2 \le 2 \| b_{i+1}^* \|^2, \text{ for } 1 \le i < \omega.$ For all *i*, if $b_i = b_i^* + \sum_{j=1}^{i-1} \mu_{i,j} b_j^*$ then $|\mu_{i,j}| \le \frac{1}{2}$ for all *j*. $\| b_i \| \le 2^{\frac{\omega(\omega-1)+(i-1)(i-2)}{4(\omega-i+1)}} \det(L)^{\frac{1}{\omega-i+1}}$ for $i = 1, \dots, \omega$.

In [4], deterministic polynomial time algorithms have been presented to find small integer roots of (i) polynomials in a single variable mod N, and of (ii) polynomials in two variables over the integers. The idea of [4] extends to more than two variables also, but in that event, the method becomes heuristic.

In [5], a simpler algorithm than [4] has been presented in this direction, but it was asymptotically less efficient. Later, in [6], a simpler idea than [4] has been presented with the same asymptotic bound as in [4]. Both the works [5, 6] depend on the result of [8].

The result of [14], in finding the deterministic polynomial time algorithm to factorize Nfrom the knowledge of e, d, uses the techniques presented in [4, 5]. Further, the work of [7] exploits the technique presented in [9].

$\mathbf{2}$ Deterministic Polynomial Time Algorithm

In this section we consider that both d_p, d_q are known apart from the public information N, e. We start with the following lemma. In the following results, we consider $p \approx N^{\gamma_1}$ as the bit size of p can be correctly estimated in $\log N$ many attempts.

Lemma 1. Let $e = N^{\alpha}, d_p \leq N^{\delta_1}, d_q \leq N^{\delta_2}$. Suppose p > q and $p \approx N^{\gamma_1}$. If both d_p, d_q are known then one can factor N in deterministic $poly(\log N)$ time if $2\alpha + \delta_1 + \delta_2 \leq 2 - \gamma_1$.

Proof. We have $ed_p - 1 = k(p-1), ed_q - 1 = l(q-1)$ for some positive integers k, l. So, $kl = \frac{(ed_p-1)(ed_q-1)}{(p-1)(q-1)}$. Let, $A = \frac{(ed_p-1)(ed_q-1)}{N}$. Now, $|kl - A| = (ed_p - 1)(ed_q - 1)\frac{N-(p-1)(q-1)}{N(p-1)(q-1)} \approx \frac{kl}{N}$. $\frac{ed_p ed_q(p+q)}{N^2} \leq N^{2\alpha+\delta_1+\delta_2+\gamma_1-2}$ (neglecting the small constant). So, as long as, $2\alpha + \delta_1 + \delta_2 \leq N^{2\alpha+\delta_1+\delta_2+\gamma_1-2}$ $2 - \gamma_1$, we have $kl = \lceil A \rceil$. After finding kl, one gets (p-1)(q-1) and hence p+q can be obtained immediately, which factorizes N.

In the next result, we use the idea of [4].

Theorem 1. Let $e = N^{\alpha}, d_p \leq N^{\delta_1}, d_q \leq N^{\delta_2}$. Suppose p is estimated as N^{γ_1} . Further

consider that an approximation p_0 of p is known such that $|p - p_0| < N^{\beta}$. Let $k_0 = \lfloor \frac{ed_p}{p_0} \rfloor, q_0 = \lfloor \frac{N}{p_0} \rfloor, l_0 = \lfloor \frac{ed_q}{q_0} \rfloor$ and $g = gcd(N-1, ed_q - 1 + l_0 - l_0N, ed_p - 1 + k_0 - l_0N)$. $k_0 N$ = N^{η} .

If both d_p, d_q are known then one can factor N in deterministic $poly(\log N)$ time if $\alpha^2 + \alpha^2$ $\alpha\delta_1 + 2\alpha\beta + \delta_1\beta - 2\alpha\gamma_1 - \gamma_1^2 + \alpha\delta_2 + \delta_1\delta_2 + \beta\delta_2 - 2\gamma_1\delta_2 - 2\beta\eta + 2\gamma\eta - \eta^2 - \alpha - \delta_1 + \beta + 2\eta - 1 < 0$ provided $1 + 3\gamma_1 - 2\beta - \delta_1 - \alpha - \eta \ge 0$.

Proof. We have $ed_p = 1 + k(p-1)$ and $ed_q = 1 + l(q-1)$. So $k = \frac{ed_p-1}{p-1}$. We also have $k_0 = \frac{ed_p}{p_0}$. Then

$$|k - k_0| = |\frac{ed_p - 1}{p - 1} - \frac{ed_p}{p_0}| \approx |\frac{ed_p}{p} - \frac{ed_p}{p_0}| = \frac{ed_p|p - p_0|}{pp_0} \le N^{\alpha + \delta_1 + \beta - 2\gamma_1}$$

Considering $q_0 = \frac{N}{p_0}$, it can be shown that $|q - q_0| < N^{1+\beta-2\gamma_1}$, neglecting the small constant. Assume, $q = N^{\gamma_2}$, where $\gamma_2 = 1 - \gamma_1$. So if we take $l_0 = \frac{ed_q}{q_0}$, then $|l - l_0| = |\frac{ed_q - 1}{q_0} - \frac{ed_q}{q_0}| \approx |\frac{ed_q}{q_0} - \frac{ed_q}{q_0}| = \frac{ed_q|q - q_0|}{qq_0} \leq N^{\alpha + \delta_2 + 1 + \beta - 2\gamma_1 - 2\gamma_2} = N^{\alpha + \delta_2 + \beta - 1}$. Let $k_1 = k - k_0$ and $l_1 = l - l_0$. We have $ed_p + k - 1 = kp$. So $ed_p + k_0 + k_1 - 1 = kp_0$.

 $(k_0 + k_1)p$. Similarly, $ed_q + l_0 + l_1 - 1 = (l_0 + l_1)q$. Now multiplying these equations, we get $(ed_p - 1 + k_0)(ed_q - 1 + l_0) + k_1(ed_q - 1 + l_0) + l_1(ed_p - 1 + k_0) + k_1l_1 = (k_0 + k_1)p(l_0 + l_1)q.$

Now if we substitute k_1, l_1 by x, y respectively, then $(ed_p - 1 + k_0)(ed_q - 1 + l_0) + x(ed_q - 1$ $(1+l_0) + y(ed_p - 1 + k_0) + xy = (k_0 + x)p(l_0 + y)q$. Hence we have to find the solution k_1, l_1 of

$$(ed_p - 1 + k_0)(ed_q - 1 + l_0) + x(ed_q - 1 + l_0) + y(ed_p - 1 + k_0) + xy = (k_0 + x)p(l_0 + y)q,$$

i.e., we have to find the roots of f'(x,y) = 0, where $f'(x,y) = (1-N)xy + x(ed_q - 1 + l_0 - 1)y + x(ed_q - 1)y + x(ed_q$ $l_0N) + y(ed_p - 1 + k_0 - k_0N) + (ed_p - 1 + k_0)(ed_q - 1 + l_0) - k_0l_0N.$

We have $g = gcd(1 - N, ed_q - 1 + l_0 - l_0N, ed_p - 1 + k_0 - k_0N) = N^{\eta}$. Let $f(x, y) = \frac{f'(x, y)}{g}$, $X = N^{\alpha + \delta_1 + \beta - 2\gamma_1}$ and $Y = N^{\alpha + \delta_2 + \beta - 1}$. Clearly X, Y are the upper bounds of (k_1, l_1) , the root of f. Thus, $W = ||f(xX, yY)||_{\infty} \geq \frac{X(ed_q - 1 + l_0 - l_0N)}{g} \approx \frac{XlN}{g} =$ $N^{2\alpha+\delta_1+\delta_2+\beta-\gamma_1-\eta}$. Then from [4] we need $XY < W^{\frac{2}{3}}$, which implies

$$2\alpha + \delta_1 + \delta_2 + 2\eta < 3 + 4(\gamma_1 - \beta).$$
(1)

If one of the variables x, y is significantly smaller than the other, we give some extra shifts on x or y. Without loss of generality, let us assume that k_1 is significantly smaller than l_1 . Following the "Extended Strategy" of [11, Page 274], we exploit extra t many shifts of xwhere t is a non-negative integer. Our aim is to find a polynomial f_0 that share the root (k_1, l_1) over the integers. We define two sets of monomials as follows.

$$S = \bigcup_{0 \le k \le t} \{ x^{i+k} y^j : x^i y^j \text{ is a monomial of } f^m \},$$
$$M = \{ \text{monomials of } x^i y^j f : x^i y^j \in S \}.$$

From [11], we know that these polynomials can be found by lattice reduction if $X^{s_1}Y^{s_2} < W^s$ for $s_j = \sum_{x^{i_1}y^{i_2} \in M \setminus S} i_j$ where s = |S|, j = 1, 2. One can check that $s_1 = \frac{3}{2}m^2 + \frac{7}{2}m + \frac{t^2}{2} + \frac{5}{2}t + 2mt + 2, s_2 = \frac{3}{2}m^2 + \frac{7}{2}m + t + mt + 2$, and $s = (m+1)^2 + mt + t$. Let $t = \tau m$. Neglecting the lower order terms we get that $X^{s_1}Y^{s_2} < W^s$ is satisfied when

Let $t = \tau m$. Neglecting the lower order terms we get that $X^{s_1}Y^{s_2} < W^s$ is satisfied when $(\frac{3}{2} + \frac{\tau^2}{2} + 2\tau)(\alpha + \delta_1 + \beta - 2\gamma_1) + (\frac{3}{2} + \tau)(\alpha + \delta_2 + \beta - 1) < (1 + \tau)(2\alpha + \delta_1 + \delta_2 + \beta - \gamma_1 - \eta)$, i.e., when

 $\begin{aligned} & (\frac{\alpha}{2} + \frac{\delta_1}{2} + \frac{\beta}{2} - \gamma_1)\tau^2 + (\alpha + \delta_1 + 2\beta - 3\gamma_1 - 1 + \eta)\tau + (\alpha + \frac{\delta_1 + \delta_2}{2} + 2\beta - 2\gamma_1 - \frac{3}{2} + \eta) < 0. \\ & \text{In this case the value of } \tau \text{ for which the left hand side of the above inequality is minimum is } \tau = \frac{1 + 3\gamma_1 - 2\beta - \delta_1 - \alpha - \eta}{\alpha + \delta_1 + \beta - 2\gamma_1}. \\ & \text{As } \tau \geq 0, \text{ we need } 1 + 3\gamma_1 - 2\beta - \delta_1 - \alpha - \eta \geq 0. \\ & \text{Putting this optimal value of } \tau \text{ we get the required condition as } \alpha^2 + \alpha\delta_1 + 2\alpha\beta + \delta_1\beta - 2\alpha\gamma_1 - \gamma_1^2 + \alpha\delta_2 + \delta_1\delta_2 + \beta\delta_2 - 2\gamma_1\delta_2 - 2\beta\eta + 2\gamma\eta - \eta^2 - \alpha - \delta_1 + \beta + 2\eta - 1 < 0. \end{aligned}$

The strategy presented in [11] works in polynomial time in log N. As we follow the same strategy, N can be factored from the knowledge of N, e, d_p, d_q in deterministic polynomial time in log N.

As the condition given in Theorem 1 is quite involved, we present a few numerical values in Table 2.

α	δ_1	δ_2		γ_1	η
1.01	0.5	0.5	0.44	0.5	0.1
	0.45				
					0.02
					0.02
1.00	0.47	0.47	0.5	0.5	0.03
	0.40		0.5		
1.01	0.35	0.5	0.5	0.5	0.06

Table 2. Numerical values of α , δ_1 , δ_2 , β , γ_1 , η following Theorem 1 for which N can be factored in poly(log N) time.

Corollary 1. Let $e = N^{\alpha}$, $d_p < N^{\delta_1}$, $d_q < N^{\delta_2}$. Let $g = gcd(N-1, ed_p - 1, ed_q - 1) = N^{\eta}$. If N, e, d_p, d_q are known then N can be factored in deterministic polynomial time in $\log N$ when $2\alpha + \delta_1 + \delta_2 + 2\eta < 3$. *Proof.* Since in this case we do not consider any approximation of p, q, we take $\beta = \gamma$. Putting this value of β in Inequality 1, we get the desired result. \Box

For practical purposes, p, q are same bit size and if we consider that no information about the bits of p is known, then we have $\gamma_1 = \gamma_2 = \beta = \frac{1}{2}$. In this case, we require $\alpha^2 + \alpha \delta_1 + \alpha \delta_2 + \delta_1 \delta_2 - \eta^2 - \alpha - \frac{1}{2} \delta_1 - \frac{1}{2} \delta_2 + 2\eta - \frac{3}{4} < 0$ as well as $\frac{3}{2} - \delta_1 - \alpha - \eta \ge 0$. As discussed in Section 1.1, if $|T_{e,d_p,d_q,N}|$ is small, then one can easily prove the deterministic

As discussed in Section 1.1, if $|T_{e,d_p,d_q,N}|$ is small, then one can easily prove the deterministic polynomial time equivalence. However, this idea cannot be applied when $|T_{e,d_p,d_q,N}|$ is large. In such an event, our lattice based technique provides a solution for certain ranges of d_p, d_q . In all our experiments we start with large g_1 , e.g., of the order of 100 bits. In such cases, $|T_{e,d_p,d_q,N}|$ is large as $g_1^2 - 1 \leq |T_{e,d_p,d_q,N}|$ following Proposition 1. One may note that the g_1 in Proposition 1 divides the g in Theorem 1.

Let us now present some experimental results in Table 3. Our experiments are based on the strategy of [5] as it is easier to implement. We have written the programs in SAGE 3.1.1 over Linux Ubuntu 8.04 on a computer with Dual CORE Intel(R) Pentium(R) D 1.83 GHz CPU, 2 GB RAM and 2 MB Cache. We take large primes p, q such that N is of 1000 bits. We like to point out that the experimental results cannot reach the theoretical bounds due to the small lattice dimensions.

N	p	q	e	d_p	d_q	g_1	LD	(m,t)	$\#MSB_p$	L^3 -time
1000 bit										93.40 sec
1000 bit										$187.49~{\rm sec}$
1000 bit					1			· · ·	0	14.84 sec
1000 bit	500 bit	500 bit	1000 bit	150 bit	270 bit	120 bit	30	(3, 1)	20	$180.70~{\rm sec}$
1000 bit										$108.36~{\rm sec}$
1000 bit	500 bit	500 bit	1000 bit	300 bit	300 bit	150 bit	25	(3, 0)	70	$109.18~{\rm sec}$

Table 3. Experimental results corresponding to Theorem 1. LD is the lattice dimension and m, t are the parameters as explained in the proof of Theorem 1. The number of MSBs of p to be known is denoted by $\#MSB_p$.

3 Conclusion

Towards theoretical interest, we have presented a deterministic poly(log N) time algorithm that can factorize N given e, d_p and d_q for certain ranges of d_p, d_q . This algorithm is based on lattice reduction techniques.

Acknowledgments: The authors like to thank Dr. A. Venkateswarlu for pointing out Proposition 1 and Mr. Sourav Sen Gupta for presenting detailed comments on this version.

References

 D. Boneh. Twenty Years of Attacks on the RSA Cryptosystem. Notices of the AMS, 46(2):203–213, February, 1999.

- D. Boneh and G. Durfee. Cryptanalysis of RSA with Private Key d Less Than N^{0.292}. IEEE Trans. on Information Theory, 46(4):1339–1349, 2000.
- 3. D. Boneh, R. A. DeMillo and R. J. Lipton. On the importance of eliminating errors in cryptographic computations. Journal of Cryptology, 14(2):101–119, 2001.
- D. Coppersmith. Small Solutions to Polynomial Equations and Low Exponent Vulnerabilities. Journal of Cryptology, 10(4):223–260, 1997.
- J. -S. Coron. Finding Small Roots of Bivariate Integer Equations Revisited. Eurocrypt 2004, LNCS 3027, pp. 492–505, 2004.
- J. -S. Coron. Finding Small Roots of Bivariate Integer Equations: a Direct Approach. Crypto 2007, LNCS 4622, pp. 379–394, 2007.
- J. -S. Coron and A. May. Deterministic polynomial-time equivalence of computing the RSA secret key and factoring. Journal of Cryptology, 20(1):39–50, 2007.
- N. Howgrave-Graham. Finding Small Roots of Univariate Modular Equations Revisited. Proceedings of Cryptography and Coding, LNCS 1355, pp. 131–142, 1997.
- N. Howgrave-Graham. Approximate integer common divisors. Proceedings of CaLC'01, LNCS 2146, pp. 51–66, 2001.
- E. Jochemsz. Cryptanalysis of RSA Variants Using Small Roots of Polynomials. Ph. D. thesis, Technische Universiteit Eindhoven, 2007.
- 11. E. Jochemsz and A. May. A Strategy for Finding Roots of Multivariate Polynomials with new Applications in Attacking RSA Variants. Asiacrypt 2006, LNCS 4284, pp. 267–282, 2006.
- E. Jochemsz and A. May. A Polynomial Time Attack on RSA with Private CRT-Exponents Smaller Than N^{0.073}. Crypto 2007, LNCS 4622, pp. 395–411, 2007.
- A. K. Lenstra, H. W. Lenstra and L. Lovász. Factoring Polynomials with Rational Coefficients. Mathematische Annalen, 261:513–534, 1982.
- A. May. Computing the RSA secret key is deterministic polynomial time equivalent to factoring. Crypto 2004, LNCS 3152, pp. 213–219, 2004.
- A. May. Using LLL-Reduction for Solving RSA and Factorization Problems: A Survey. LLL+25 Conference in honour of the 25th birthday of the LLL algorithm, 2007. Available at http://www.informatik.tudarmstadt.de/KP/alex.html [last accessed 23 December, 2008].
- G. L. Miller. Riemann's hypothesis and test of primality. 7th Annual ACM Symposium on the Theory of Computing, pp. 234–239, 1975.
- R. L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of ACM, 21(2):158–164, Feb. 1978.
- 18. D. R. Stinson. Cryptography Theory and Practice. 2nd Edition, Chapman & Hall/CRC, 2002.
- M. Wiener. Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on Information Theory, 36(3):553–558, 1990.