
On Deterministic Polynomial-Time Equivalence of

Computing the CRT-RSA Secret Keys and Factoring?

Subhamoy Maitra and Santanu Sarkar

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India.
{subho, santanu r}@isical.ac.in

Abstract. Let N = pq be the product of two large primes. Consider CRT-RSA with the public
encryption exponent e and private decryption exponents dp, dq. It is well known that given any one
of dp or dq (or both) one can factorize N in probabilistic poly(log N) time with success probability
almost equal to 1. Though this serves all the practical purposes, from theoretical point of view, this is
not a deterministic polynomial time algorithm. In this paper, we present a lattice based deterministic
poly(log N) time algorithm that uses both dp, dq (in addition to the public information e, N) to factorize
N for certain ranges of dp, dq. We like to stress that proving the equivalence for all the values of dp, dq

may be a nontrivial task.

Keywords: CRT-RSA, Cryptanalysis, Factorization, LLL Algorithm, RSA.

1 Introduction

RSA [17] is one of the most popular cryptosystems in the history of cryptology. Let us first
briefly describe the idea of RSA as follows:

– primes p, q, with q < p < 2q;
– N = pq, φ(N) = (p− 1)(q − 1);
– e, d are such that ed = 1 + kφ(N), k ≥ 1;
– N, e are publicly available and plaintext M is encrypted as C ≡ M e mod N ;
– the secret key d is required to decrypt the ciphertext as M ≡ Cd mod N .

The study of RSA is one of the most attractive areas in cryptology research as evident from
many excellent works (one may refer to [1, 10, 15] and the references therein for detailed
information). The paper [17] itself presents a probabilistic polynomial time algorithm that
on input N, e, d provides the factorization of N ; this is based on the technique provided
by [16]. One may also have a look at [18, Page 197]. Recently in [14, 7] it has been proved
that given N, e, d, one can factor N in deterministic poly(log N) time provided ed ≤ N2.

Speeding up RSA encryption and decryption is of serious interest and for large N as both
e, d cannot be small at the same time. For fast encryption, it is possible to use smaller e, e.g.,

? This paper is a corrected and revised version of the paper “Deterministic Polynomial-Time Equivalence of Comput-
ing the CRT-RSA Secret Keys and Factoring” presented in “WCC 2009, International Workshop on Coding and
Cryptography”, May 10-15, 2009, Ullensvang, Norway. There was a flaw in the earlier version where we claimed
the deterministic polynomial time equivalence for the complete range of dp, dq. The corrected proof in this version
achieves the result for a certain range of dp, dq, but not for the complete range.

the value as small as 216 + 1 is widely believed to be a good candidate. For fast decryption,
the value of d needs to be small. However, Wiener [19] showed that for d < 1

3
N

1
4 , N can be

factorized easily. Later, Boneh-Durfee [2] increased this bound up to d < N0.292. Thus use
of smaller d is in general not recommended. In this direction, an alternative approach has
been proposed by Wiener [19] exploiting the Chinese Remainder Theorem (CRT) for faster
decryption. The idea is as follows:

– the public exponent e and the private CRT exponents dp and dq are used satisfying
edp ≡ 1 mod (p− 1) and edq ≡ 1 mod (q − 1);

– the encryption is same as standard RSA;
– to decrypt a ciphertext C one needs to compute M1 ≡ Cdp mod p and M2 ≡ Cdq mod q;
– using CRT, one can get the plaintext M ∈ ZN such that M ≡ M1 mod p and M ≡

M2 mod q.

This variant of RSA is popularly known as CRT-RSA. One may refer to [12] and the refer-
ences therein for state of the art analysis on CRT-RSA.

Let us now outline the organization of this paper. Some preliminaries required in this
area are discussed in Sections 1.1 and 1.2. A lattice based technique is used in Section 2
to show that one can factorize N in deterministic polynomial time from the knowledge of
N, e, dp, dq for certain ranges of dp, dq. Section 3 concludes the paper.

1.1 Discussion on the known Probabilistic Polynomial time algorithm

Given N, e and any one of dp, dq (or both), there exists a well known solution to factorize N in
probabilistic poly(log N) time with probability almost 1. An important work in this direction
shows that with the availability of decryption oracle under a fault model, one can factorize
N in poly(log N) time [3, Section 2.2] and the idea has been improved by A. Lenstra [3,
Section 2.2, Reference 16].

Without loss of generality, consider that dp is available. One can pick any random integer
W in [2, N − 1]. If gcd(W, N) 6= 1, then we already have one of the factors. Else, we consider
gcd(W edp−1−1, N). First note that p divides W edp−1−1. This is because, edp ≡ 1 mod (p−1),
i.e., edp − 1 = k(p − 1) for some positive integer k and hence W edp−1 − 1 = W k(p−1) − 1 is
divisible by p. Thus if q does not divide W edp−1−1 then gcd(W edp−1−1, N) = p (this happens
with probability almost equal to 1). If q too divides W edp−1−1, then gcd(W edp−1−1, N) = N
and the factorization is not possible (this happens with a very low probability).

Thus, when both dp, dq are available, one can calculate both gcd(W edp−1 − 1, N) and
gcd(W edq−1−1, N). If both of them are N (which happens with a very low probability) then
the factorization is not possible by this method.

Given e, dp, dq and N , let us define,

Te,dp,dq ,N = {W ∈ [2, N − 1]| gcd(W, N) = 1,

gcd(W edp−1 − 1, N) = N and gcd(W edq−1 − 1, N) = N},
Te,dp,N = {W ∈ [2, N − 1]| gcd(W, N) = 1, gcd(W edp−1 − 1, N) = N} and

Te,dq ,N = {W ∈ [2, N − 1]| gcd(W, N) = 1, gcd(W edq−1 − 1, N) = N}.

It is easy to note that Te,dp,dq ,N = Te,dp,N ∩ Te,dq ,N .
Let us now provide some examples in Table 1. Looking at Table 1, it is clear that while

|Te,dp,dq ,N | is quite large for one prime-pair, it is very small for the other.

p q e dp dq |Te,dp,N | |Te,dq,N | |Te,dp,dq,N |
1021 1601 77 53 1413 81599 543999 27199
1021 1601 179 359 1019 20399 95999 1199
1021 1601 1999 199 1199 203999 31999 3999
1021 1601 10019 479 779 101999 95999 5999

1229 1987 77 925 1367 2455 3971 3
1229 1987 5791 95 1213 2455 3971 3
1229 1987 7793 601 605 2455 7943 7
1229 1987 121121 501 1271 2455 3971 3

Table 1. Cardinality of Te,dp,dq,N : some toy examples.

We like to present the following technical result in this direction.

Proposition 1. Consider CRT-RSA with N = pq, encryption exponent e and decryption
exponents dp and dq. Let g1 = gcd(p−1, q−1), gp = gcd(edp−1, q−1), gq = gcd(edq−1, p−1)
and ge = gcd(edp − 1, edq − 1). Then |Te,dp,N | = gp(p − 1) − 1, |Te,dq ,N | = gq(q − 1) − 1 and
|Te,dp,dq ,N | = gpgq − 1. Further, g2

1 − 1 ≤ |Te,dp,dq ,N | ≤ g2
e − 1.

Proof. We have gp = gcd(edp − 1, q − 1). Then there exists a subgroup Sq of order gp in Z∗
q

such that for any w ∈ Sq, we have q|wgp − 1. Now consider any w1 ∈ Z∗
p and w2 from Sq.

By CRT, there exists a unique W ∈ Z∗
N such that W ≡ w1 mod p and W ≡ w2 mod q and

vice versa. Thus the number of such W ’s is gp(p− 1). It is evident that for all these W ’s, we
have gcd(W, N) = 1 and N |W edp−1 − 1. We can also observe that any W ∈ Te,dp,N can be
obtained in this way. Discarding the case W = 1, we get |Te,dp,N | = gp(p− 1)− 1.

Similarly, we have gq = gcd(edq − 1, p − 1). Then there exists a subgroup Sp of order gq

in Z∗
p such that for any w ∈ Sp, we have p|wgq − 1. In the same manner, we get |Te,dq ,N | =

gq(q − 1)− 1.
Now consider any w1 ∈ Sp and w2 ∈ Sq. By CRT, there exists a unique W ∈ Z∗

N such that
W ≡ w1 mod p and W ≡ w2 mod q and vice versa. Thus the number of such W ’s is gpgq. It
is evident that for all these W ’s, we have gcd(W, N) = 1, N |W edp−1 − 1 and N |W edq−1 − 1.
One may observe that any W ∈ Te,dp,dq ,N can be obtained in this manner. Discarding the
case W = 1, we get |Te,dp,dq ,N | = gpgq − 1.

Consider edp − 1 = k(p− 1) and edq − 1 = l(q − 1). Then we get |Te,dp,dq ,N | ≥ g2
1 − 1, as

g1 divides both gp and gq. Since ge = gcd(edp − 1, edq − 1) = gcd(k(p− 1), l(q − 1)), each of
gp, gq divides ge. Thus the bounds on |Te,dp,dq ,N | follow. ut

Given e,N, dp, dq, one can get ge easily, and thus the upper bound of |Te,dp,dq ,N | is immediately
known. If ge is bounded by poly(log N), then it is enough to try g2

e many distinct W ’s to
factorize N in poly(log N) time. However, from Proposition 1, it is clear that |Te,dp,dq ,N |

may not be bounded by poly(log N) as gp, gq may not be bounded by poly(log N) in all the
cases. Thus we have the following question, where an affirmative answer will transform the
probabilistic algorithm to a deterministic one.

– Is it possible to identify a W ∈ [2, N − 1] \ Te,dp,dq ,N in poly(log N) time?

To our knowledge, an affirmative answer to the above question is not known. Thus, from
theoretical point of view, getting a deterministic polynomial time algorithm for factorizing
N with the knowledge of N, e, dp, dq is important. We solve it using lattice based technique.

1.2 Preliminaries on Lattices

Let us present some basics on lattice reduction techniques. Consider the linearly independent
vectors u1, . . . , uω ∈ Zn, where ω ≤ n. A lattice, spanned by {u1, . . . , uω}, is the set of all
linear combinations of u1, . . . , uω, i.e., ω is the dimension of the lattice. A lattice is called full
rank when ω = n. Let L be a lattice spanned by the linearly independent vectors u1, . . . , uω,
where u1, . . . , uω ∈ Zn. By u∗1, . . . , u

∗
ω, we denote the vectors obtained by applying the Gram-

Schmidt process to the vectors u1, . . . , uω.
The determinant of L is defined as det(L) =

∏w
i=1 ||u∗i ||, where ||.|| denotes the Euclidean

norm on vectors. Given a polynomial g(x, y) =
∑

ai,jx
iyj, we define the Euclidean norm as

‖ g(x, y) ‖=
√∑

i,j a2
i,j and infinity norm as ‖ g(x, y) ‖∞= maxi,j |ai,j|.

It is known that given a basis u1, . . . , uω of a lattice L, the LLL algorithm [13] can find
a new basis b1, . . . , bω of L with the following properties.

– ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for 1 ≤ i < ω.

– For all i, if bi = b∗i +
∑i−1

j=1 µi,jb
∗
j then |µi,j| ≤ 1

2
for all j.

– ‖ bi ‖≤ 2
ω(ω−1)+(i−1)(i−2)

4(ω−i+1) det(L)
1

ω−i+1 for i = 1, . . . , ω.

In [4], deterministic polynomial time algorithms have been presented to find small integer
roots of (i) polynomials in a single variable mod N , and of (ii) polynomials in two variables
over the integers. The idea of [4] extends to more than two variables also, but in that event,
the method becomes heuristic.

In [5], a simpler algorithm than [4] has been presented in this direction, but it was
asymptotically less efficient. Later, in [6], a simpler idea than [4] has been presented with
the same asymptotic bound as in [4]. Both the works [5, 6] depend on the result of [8].

The result of [14], in finding the deterministic polynomial time algorithm to factorize N
from the knowledge of e, d, uses the techniques presented in [4, 5]. Further, the work of [7]
exploits the technique presented in [9].

2 Deterministic Polynomial Time Algorithm

In this section we consider that both dp, dq are known apart from the public information
N, e. We start with the following lemma. In the following results, we consider p ≈ Nγ1 as
the bit size of p can be correctly estimated in log N many attempts.

Lemma 1. Let e = Nα, dp ≤ N δ1 , dq ≤ N δ2. Suppose p > q and p ≈ Nγ1. If both dp, dq are
known then one can factor N in deterministic poly(log N) time if 2α + δ1 + δ2 ≤ 2− γ1.

Proof. We have edp − 1 = k(p − 1), edq − 1 = l(q − 1) for some positive integers k, l. So,

kl = (edp−1)(edq−1)

(p−1)(q−1)
. Let, A = (edp−1)(edq−1)

N
. Now, |kl − A| = (edp − 1)(edq − 1)N−(p−1(q−1)

N(p−1)(q−1)
≈

edpedq(p+q)

N2 ≤ N2α+δ1+δ2+γ1−2 (neglecting the small constant). So, as long as, 2α + δ1 + δ2 ≤
2 − γ1, we have kl = dAe. After finding kl, one gets (p − 1)(q − 1) and hence p + q can be
obtained immediately, which factorizes N . ut

In the next result, we use the idea of [4].

Theorem 1. Let e = Nα, dp ≤ N δ1 , dq ≤ N δ2. Suppose p is estimated as Nγ1. Further
consider that an approximation p0 of p is known such that |p− p0| < Nβ.

Let k0 = b edp

p0
c, q0 = bN

p0
c, l0 = b edq

q0
c and g = gcd(N − 1, edq − 1 + l0 − l0N, edp − 1 + k0 −

k0N) = Nη.
If both dp, dq are known then one can factor N in deterministic poly(log N) time if α2 +

αδ1+2αβ+δ1β−2αγ1−γ2
1 +αδ2+δ1δ2+βδ2−2γ1δ2−2βη+2γη−η2−α−δ1+β+2η−1 < 0

provided 1 + 3γ1 − 2β − δ1 − α− η ≥ 0.

Proof. We have edp = 1 + k(p − 1) and edq = 1 + l(q − 1). So k = edp−1

p−1
. We also have

k0 = edp

p0
. Then

|k − k0| = |edp − 1

p− 1
− edp

p0

| ≈ |edp

p
− edp

p0

| =
edp|p− p0|

pp0

≤ Nα+δ1+β−2γ1 .

Considering q0 = N
p0

, it can be shown that |q−q0| < N1+β−2γ1 , neglecting the small constant.

Assume, q = Nγ2 , where γ2 = 1 − γ1. So if we take l0 = edq

q0
, then |l − l0| = | edq−1

q−1
− edq

q0
| ≈

| edq

q
− edq

q0
| = edq |q−q0|

qq0
≤ Nα+δ2+1+β−2γ1−2γ2 = Nα+δ2+β−1.

Let k1 = k − k0 and l1 = l − l0. We have edp + k − 1 = kp. So edp + k0 + k1 − 1 =
(k0 + k1)p. Similarly, edq + l0 + l1 − 1 = (l0 + l1)q. Now multiplying these equations, we get
(edp − 1 + k0)(edq − 1 + l0) + k1(edq − 1 + l0) + l1(edp − 1 + k0) + k1l1 = (k0 + k1)p(l0 + l1)q.

Now if we substitute k1, l1 by x, y respectively, then (edp − 1+ k0)(edq − 1+ l0)+x(edq −
1+ l0)+ y(edp− 1+k0)+xy = (k0 +x)p(l0 + y)q. Hence we have to find the solution k1, l1 of

(edp − 1 + k0)(edq − 1 + l0) + x(edq − 1 + l0) + y(edp − 1 + k0) + xy = (k0 + x)p(l0 + y)q,

i.e., we have to find the roots of f ′(x, y) = 0, where f ′(x, y) = (1−N)xy + x(edq − 1 + l0 −
l0N) + y(edp − 1 + k0 − k0N) + (edp − 1 + k0)(edq − 1 + l0)− k0l0N .

We have g = gcd(1−N, edq − 1 + l0 − l0N, edp − 1 + k0 − k0N) = Nη.

Let f(x, y) = f ′(x,y)
g

, X = Nα+δ1+β−2γ1 and Y = Nα+δ2+β−1. Clearly X, Y are the upper

bounds of (k1, l1), the root of f . Thus, W = ||f(xX, yY)||∞ ≥ X(edq−1+l0−l0N)

g
≈ XlN

g
=

N2α+δ1+δ2+β−γ1−η. Then from [4] we need XY < W
2
3 , which implies

2α + δ1 + δ2 + 2η < 3 + 4(γ1 − β). (1)

If one of the variables x, y is significantly smaller than the other, we give some extra shifts
on x or y. Without loss of generality, let us assume that k1 is significantly smaller than l1.
Following the “Extended Strategy” of [11, Page 274], we exploit extra t many shifts of x
where t is a non-negative integer. Our aim is to find a polynomial f0 that share the root
(k1, l1) over the integers. We define two sets of monomials as follows.

S =
⋃

0≤k≤t

{xi+kyj : xiyj is a monomial of fm},

M = {monomials of xiyjf : xiyj ∈ S}.

From [11], we know that these polynomials can be found by lattice reduction if Xs1Y s2 <
W s for sj =

∑
xi1yi2∈M\S ij where s = |S|, j = 1, 2. One can check that s1 = 3

2
m2 + 7

2
m +

t2

2
+ 5

2
t + 2mt + 2, s2 = 3

2
m2 + 7

2
m + t + mt + 2, and s = (m + 1)2 + mt + t.

Let t = τm. Neglecting the lower order terms we get that Xs1Y s2 < W s is satisfied when
(3

2
+ τ2

2
+ 2τ)(α + δ1 +β− 2γ1) + (3

2
+ τ)(α + δ2 +β− 1) < (1 + τ)(2α + δ1 + δ2 +β− γ1 − η),

i.e., when
(α

2
+ δ1

2
+ β

2
− γ1)τ

2 + (α + δ1 + 2β − 3γ1 − 1 + η)τ + (α + δ1+δ2
2

+ 2β − 2γ1 − 3
2

+ η) < 0.
In this case the value of τ for which the left hand side of the above inequality is minimum

is τ = 1+3γ1−2β−δ1−α−η
α+δ1+β−2γ1

. As τ ≥ 0, we need 1+3γ1−2β−δ1−α−η ≥ 0. Putting this optimal

value of τ we get the required condition as α2 + αδ1 + 2αβ + δ1β − 2αγ1 − γ2
1 + αδ2 + δ1δ2 +

βδ2 − 2γ1δ2 − 2βη + 2γη − η2 − α− δ1 + β + 2η − 1 < 0.
The strategy presented in [11] works in polynomial time in log N . As we follow the same

strategy, N can be factored from the knowledge of N, e, dp, dq in deterministic polynomial
time in log N . ut

As the condition given in Theorem 1 is quite involved, we present a few numerical values
in Table 2.

α δ1 δ2 β γ1 η

1.01 0.5 0.5 0.44 0.5 0.1

1.02 0.45 0.5 0.47 0.5 0.06

1.01 0.50 0.51 0.48 0.5 0.02

0.97 0.51 0.51 0.5 0.5 0.02

1.00 0.47 0.47 0.5 0.5 0.03

1.01 0.40 0.5 0.5 0.5 0.04

1.01 0.35 0.5 0.5 0.5 0.06

Table 2. Numerical values of α, δ1, δ2, β, γ1, η following Theorem 1 for which N can be factored in poly(log N) time.

Corollary 1. Let e = Nα, dp < N δ1 , dq < N δ2. Let g = gcd(N − 1, edp − 1, edq − 1) = Nη.
If N, e, dp, dq are known then N can be factored in deterministic polynomial time in log N
when 2α + δ1 + δ2 + 2η < 3.

Proof. Since in this case we do not consider any approximation of p, q, we take β = γ.
Putting this value of β in Inequality 1, we get the desired result. ut

For practical purposes, p, q are same bit size and if we consider that no information
about the bits of p is known, then we have γ1 = γ2 = β = 1

2
. In this case, we require

α2 + αδ1 + αδ2 + δ1δ2 − η2 − α− 1
2
δ1 − 1

2
δ2 + 2η − 3

4
< 0 as well as 3

2
− δ1 − α− η ≥ 0.

As discussed in Section 1.1, if |Te,dp,dq ,N | is small, then one can easily prove the deterministic
polynomial time equivalence. However, this idea cannot be applied when |Te,dp,dq ,N | is large. In
such an event, our lattice based technique provides a solution for certain ranges of dp, dq. In
all our experiments we start with large g1, e.g., of the order of 100 bits. In such cases,
|Te,dp,dq ,N | is large as g2

1 − 1 ≤ |Te,dp,dq ,N | following Proposition 1. One may note that the g1

in Proposition 1 divides the g in Theorem 1.
Let us now present some experimental results in Table 3. Our experiments are based on

the strategy of [5] as it is easier to implement. We have written the programs in SAGE 3.1.1
over Linux Ubuntu 8.04 on a computer with Dual CORE Intel(R) Pentium(R) D 1.83 GHz
CPU, 2 GB RAM and 2 MB Cache. We take large primes p, q such that N is of 1000 bits.
We like to point out that the experimental results cannot reach the theoretical bounds due
to the small lattice dimensions.

N p q e dp dq g1 LD (m, t) #MSBp L3-time

1000 bit 500 bit 500 bit 1000 bit 250 bit 250 bit 100 bit 25 (3, 0) 20 93.40 sec

1000 bit 500 bit 500 bit 1000 bit 203 bit 313 bit 100 bit 30 (3,1) 20 187.49 sec

1000 bit 500 bit 500 bit 1000 bit 150 bit 150 bit 120 bit 16 (2, 0) 0 14.84 sec

1000 bit 500 bit 500 bit 1000 bit 150 bit 270 bit 120 bit 30 (3, 1) 20 180.70 sec

1000 bit 500 bit 500 bit 1000 bit 330 bit 330 bit 80 bit 25 (3, 0) 60 108.36 sec

1000 bit 500 bit 500 bit 1000 bit 300 bit 300 bit 150 bit 25 (3, 0) 70 109.18 sec

Table 3. Experimental results corresponding to Theorem 1. LD is the lattice dimension and m, t are the parameters
as explained in the proof of Theorem 1. The number of MSBs of p to be known is denoted by #MSBp.

3 Conclusion

Towards theoretical interest, we have presented a deterministic poly(log N) time algorithm
that can factorize N given e, dp and dq for certain ranges of dp, dq. This algorithm is based
on lattice reduction techniques.

Acknowledgments: The authors like to thank Dr. A. Venkateswarlu for pointing out Propo-
sition 1 and Mr. Sourav Sen Gupta for presenting detailed comments on this version.

References

1. D. Boneh. Twenty Years of Attacks on the RSA Cryptosystem. Notices of the AMS, 46(2):203–213, February,
1999.

2. D. Boneh and G. Durfee. Cryptanalysis of RSA with Private Key d Less Than N0.292. IEEE Trans. on Infor-
mation Theory, 46(4):1339–1349, 2000.

3. D. Boneh, R. A. DeMillo and R. J. Lipton. On the importance of eliminating errors in cryptographic compu-
tations. Journal of Cryptology, 14(2):101–119, 2001.

4. D. Coppersmith. Small Solutions to Polynomial Equations and Low Exponent Vulnerabilities. Journal of Cryp-
tology, 10(4):223–260, 1997.

5. J. -S. Coron. Finding Small Roots of Bivariate Integer Equations Revisited. Eurocrypt 2004, LNCS 3027, pp.
492–505, 2004.

6. J. -S. Coron. Finding Small Roots of Bivariate Integer Equations: a Direct Approach. Crypto 2007, LNCS
4622, pp. 379–394, 2007.

7. J. -S. Coron and A. May. Deterministic polynomial-time equivalence of computing the RSA secret key and
factoring. Journal of Cryptology, 20(1):39–50, 2007.

8. N. Howgrave-Graham. Finding Small Roots of Univariate Modular Equations Revisited. Proceedings of Cryp-
tography and Coding, LNCS 1355, pp. 131–142, 1997.

9. N. Howgrave-Graham. Approximate integer common divisors. Proceedings of CaLC’01, LNCS 2146, pp. 51–66,
2001.

10. E. Jochemsz. Cryptanalysis of RSA Variants Using Small Roots of Polynomials. Ph. D. thesis, Technische
Universiteit Eindhoven, 2007.

11. E. Jochemsz and A. May. A Strategy for Finding Roots of Multivariate Polynomials with new Applications in
Attacking RSA Variants. Asiacrypt 2006, LNCS 4284, pp. 267–282, 2006.

12. E. Jochemsz and A. May. A Polynomial Time Attack on RSA with Private CRT-Exponents Smaller Than
N0.073. Crypto 2007, LNCS 4622, pp. 395–411, 2007.

13. A. K. Lenstra, H. W. Lenstra and L. Lovász. Factoring Polynomials with Rational Coefficients. Mathematische
Annalen, 261:513–534, 1982.

14. A. May. Computing the RSA secret key is deterministic polynomial time equivalent to factoring. Crypto 2004,
LNCS 3152, pp. 213–219, 2004.

15. A. May. Using LLL-Reduction for Solving RSA and Factorization Problems: A Survey. LLL+25 Confer-
ence in honour of the 25th birthday of the LLL algorithm, 2007. Available at http://www.informatik.tu-
darmstadt.de/KP/alex.html [last accessed 23 December, 2008].

16. G. L. Miller. Riemann’s hypothesis and test of primality. 7th Annual ACM Symposium on the Theory of
Computing, pp. 234–239, 1975.

17. R. L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryp-
tosystems. Communications of ACM, 21(2):158–164, Feb. 1978.

18. D. R. Stinson. Cryptography - Theory and Practice. 2nd Edition, Chapman & Hall/CRC, 2002.
19. M. Wiener. Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on Information Theory,

36(3):553–558, 1990.

