CCZ-equivalence and Boolean functions

Lilya Budaghyan* and Claude Carlet ${ }^{\dagger}$

Abstract

We study further CCZ-equivalence of (n, m)-functions. We prove that for Boolean functions (that is, for $m=1$), CCZ-equivalence coincides with EA-equivalence. On the contrary, we show that for (n, m)- functions, CCZ-equivalence is strictly more general than EAequivalence when $n \geq 5$ and m is greater or equal to the smallest positive divisor of n different from 1. Our result on Boolean functions allows us to study the natural generalization of CCZ-equivalence corresponding to the CCZ-equivalence of the indicators of the graphs of the functions. We show that it coincides with CCZ-equivalence.

Keywords: Affine equivalence, Almost perfect nonlinear, Bent function, Boolean function, CCZ-equivalence, Nonlinearity.

1 Introduction

The notion of CCZ-equivalence of vectorial functions, introduced in [4] (the name came later in [2]), seems to be the proper notion of equivalence for vectorial functions used as S-boxes in cryptosystems and has led to new APN and AB functions. Two vectorial functions F and F^{\prime} from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{m} (that is, two (n, m)-functions) are called CCZ-equivalent if their graphs $G_{F}=$ $\left\{(x, F(x)) ; x \in \mathbb{F}_{2}^{n}\right\}$ and $G_{F^{\prime}}=\left\{\left(x, F^{\prime}(x)\right) ; x \in \mathbb{F}_{2}^{n}\right\}$ are affine equivalent, that is, if there exists an affine permutation \mathcal{L} of $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ such that $\mathcal{L}\left(G_{F}\right)=$ $G_{F^{\prime}}$. If F is an almost perfect nonlinear (APN) function from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{n}, that is, if any derivative $D_{a} F(x)=F(x)+F(x+a), a \neq 0$, of F is 2-to-1 (which implies that F contributes to an optimal resistance to the differential

[^0]attack of the cipher in which it is used as an S-box), then F^{\prime} is APN too. If F is almost bent (AB), that is, if its nonlinearity equals $2^{n-1}-2^{\frac{n-1}{2}}$ (which implies that F contributes to an optimal resistance of the cipher to the linear attack), then F^{\prime} is also AB . In fact, these two central notions for the design of S-boxes in block ciphers, APNness and ABness, can be expressed in a natural way by means of the graph of the S -box and this is why CCZ-equivalence is the proper notion of equivalence in this framework.

Recall that F and F^{\prime} are called EA-equivalent if there exist affine automorphisms $L: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ and $L^{\prime}: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$ and an affine function $L^{\prime \prime}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ such that $F^{\prime}=L^{\prime} \circ F \circ L+L^{\prime \prime}$ (if $L^{\prime \prime}=0$ and L, L^{\prime} are linear, the functions are called linearly equivalent). EA-equivalence is a particular case of CCZ-equivalence [4].

In the present paper we investigate the question of knowing whether CCZ-equivalence of (n, m)-functions is strictly more general than their EAequivalence. We already know that the answer to this question is yes when $n=m$ since every permutation is CCZ-equivalent to its inverse and, moreover, as shown in [2], CCZ-equivalence is still more general than the EAequivalence of the functions or their inverses (when they exist). A result in the other sense has been proven in [1]: CCZ-equivalence coincides with EA-equivalence when applied to bent (n, m)-functions, that is, to functions whose derivatives $D_{a} F(x)=F(x)+F(x+a), a \neq 0$, are balanced (i.e. uniformly distributed over \mathbb{F}_{2}^{m}; bent functions exist only for n even and $m \leq n / 2$, see [6]). The question is open for general (n, m)-functions when $n \neq m$. In Subsection 2.1 we prove that the answer is also negative for (n, m)-functions when $m=1$, that is, for Boolean functions. This poses then the question of knowing whether the case $m=1$ is a particular case or if the same situation occurs for larger values of m. We give a partial answer to this question in Subsection 2.2 by showing that CCZ-equivalence of (n, m)-functions is strictly more general than their EA-equivalence when $n \geq 5$ and m is greater or equal to the smallest positive divisor of n different from 1 .

The question of knowing whether a notion still more general than CCZequivalence for vectorial functions has been raised by several authors. A notion having potentially such property, that we call ECCZ-equivalence, is introduced and studied in Section 3.

2 CCZ-equivalence of (n, m)-functions

If we identify \mathbb{F}_{2}^{n} with the finite field $\mathbb{F}_{2^{n}}$ then a function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is uniquely represented as a univariate polynomial over $\mathbb{F}_{2^{n}}$ of degree smaller
than 2^{n}

$$
F(x)=\sum_{i=0}^{2^{n}-1} c_{i} x^{i}, \quad c_{i} \in \mathbb{F}_{2^{n}}
$$

If m is a divisor of n then a function F from $\mathbb{F}_{2^{n}}$ to $\mathbb{F}_{2^{m}}$ can be viewed as a function from $\mathbb{F}_{2^{n}}$ to itself and, therefore, it admits a univariate polynomial representation. More precisely, if $\operatorname{tr}_{n}(x)$ denotes the trace function from $\mathbb{F}_{2^{n}}$ into \mathbb{F}_{2}, and $\operatorname{tr}_{n / m}(x)$ denotes the trace function from $\mathbb{F}_{2^{n}}$ into $\mathbb{F}_{2^{m}}$, that is,

$$
\begin{aligned}
\operatorname{tr}_{n}(x) & =x+x^{2}+x^{4}+\ldots+x^{2^{n-1}} \\
\operatorname{tr}_{n / m}(x) & =x+x^{2^{m}}+x^{2^{2 m}}+\ldots+x^{2^{(n / m-1) m}}
\end{aligned}
$$

then F can be represented in the form $\operatorname{tr}_{n / m}\left(\sum_{i=0}^{2^{n}-1} c_{i} x^{i}\right)$ (and in the form $\operatorname{tr}_{n}\left(\sum_{i=0}^{2^{n}-1} c_{i} x^{i}\right)$ for $\left.m=1\right)$. Indeed, there exists a function G from $\mathbb{F}_{2^{n}}$ to $\mathbb{F}_{2^{n}}$ (for example $G(x)=a F(x)$, where $a \in \mathbb{F}_{2^{n}}$ and $\operatorname{tr}_{n / m}(a)=1$) such that F equals $\operatorname{tr}_{n / m}(G(x))$.

For any integer $k, 0 \leq k \leq 2^{n}-1$, the number $w_{2}(k)$ of nonzero coefficients $k_{s}, 0 \leq k_{s} \leq 1$, in the binary expansion $\sum_{s=0}^{n-1} 2^{s} k_{s}$ of k is called the 2 -weight of k. The algebraic degree of a function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is equal to the maximum 2-weight of the exponents i of the polynomial $F(x)$ such that $c_{i} \neq 0$, that is,

$$
d^{\circ}(F)=\max _{\substack{0 \leq i \leq 2^{n}-1 \\ c_{i} \neq 0}} w_{2}(i)
$$

The algebraic degree of a function (if it is not linear) is invariant under EAequivalence but it is not preserved by CCZ-equivalence. This has been proved in [2]. Let us recall why the structure of CCZ-equivalence implies this: for an (n, m)-function F and an affine permutation $\mathcal{L}(x, y)=\left(L_{1}(x, y), L_{2}(x, y)\right)$ of $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ the set $\mathcal{L}\left(G_{F}\right)$ equals $\left\{\left(F_{1}(x), F_{2}(x)\right): x \in \mathbb{F}_{2}^{n}\right\}$ where $F_{1}(x)=$ $L_{1}(x, F(x)), F_{2}(x)=L_{2}(x, F(x))$. It is the graph of a function if and only if the function F_{1} is a permutation. The function CCZ-equivalent to F whose graph equals $\mathcal{L}\left(G_{F}\right)$ is then $F^{\prime}=F_{2} \circ F_{1}^{-1}$. The composition by the inverse of F_{1} modifies in general the algebraic degree (examples are given in [2]).

2.1 CCZ-equivalence of Boolean functions

We first consider the question whether CCZ-equivalence is strictly more general than EA-equivalence for Boolean functions. Let a Boolean function f^{\prime} be CCZ-equivalent to a Boolean function f and EA-inequivalent to it. Then there exist linear functions $L: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$, and $l: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$, and elements $a \in \mathbb{F}_{2}^{n} \backslash\{0\}, \eta \in \mathbb{F}_{2}$, such that

$$
\begin{equation*}
\mathcal{L}(x, y)=(L(x)+a y, l(x)+\eta y) \tag{1}
\end{equation*}
$$

is a linear permutation of $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}$, and for

$$
\begin{align*}
& F_{1}(x)=L(x)+a f(x) \tag{2}\\
& F_{2}(x)=l(x)+\eta f(x), \tag{3}
\end{align*}
$$

F_{1} is a permutation of \mathbb{F}_{2}^{n} and

$$
\begin{equation*}
f^{\prime}(x)=F_{2} \circ F_{1}^{-1}(x) . \tag{4}
\end{equation*}
$$

Hence we need characterizing the permutations of the form (2). Note that for any permutation (2) the function L must be either a permutation or 2-to-1. Thus, we have only two possibilities for the function F_{1}, that is, either

$$
F_{1}(x)=L\left(x+L^{-1}(a) f(x)\right)
$$

when L is a permutation, or

$$
\begin{equation*}
F_{1}(x)=L^{\prime}\left((x / b)^{2}+x / b+L^{\prime-1}(a) f(x)\right) \tag{5}
\end{equation*}
$$

when L is 2 -to- 1 and its kernel equals $\{0, b\}$ where $b \in \mathbb{F}_{2^{n}}^{*}$, and L^{\prime} is a linear permutation of $\mathbb{F}_{2^{n}}$ such that $L^{\prime}\left((x / b)^{2}+x / b\right)=L(x)$. Note that if we take $L^{-1} \circ F_{1}$ (when L is a permutation) or $L^{\prime-1} \circ F_{1}$ (when L is 2-to-1) in (4) instead of F_{1} then we get $f^{\prime} \circ L$ and $f^{\prime} \circ L^{\prime}$, respectively, which are EA-equivalent to f^{\prime}. Therefore, without loss of generality we can neglect L and L^{\prime}. Then (5) gives

$$
\begin{align*}
F_{1}(x) & =(x / b)^{2}+x / b+a f(x) \tag{6}\\
F_{1}(b x) & =x^{2}+x+a f(b x)=x^{2}+x+a g(x) \tag{7}
\end{align*}
$$

where $g(x)=f(b x)$. Hence it is sufficient to consider permutations (2) of the following two types

$$
\begin{array}{r}
x+a f(x) \\
x^{2}+x+a f(x) . \tag{9}
\end{array}
$$

A lemma will simplify the study of permutations (2):
Lemma 1 Let n be any positive integer, a any nonzero element of $\mathbb{F}_{2^{n}}$ and f a Boolean function on $\mathbb{F}_{2^{n}}$.

- The function $F(x)=x+a f(x)$ is a permutation over $\mathbb{F}_{2^{n}}$ if and only if F is an involution.
- The function $F^{\prime}(x)=x+x^{2}+a f(x)$ is a permutation over $\mathbb{F}_{2^{n}}$ if and only if $\operatorname{tr}_{n}(a)=1$ and $f(x+1)=f(x)+1$ for every $x \in \mathbb{F}_{2^{n}}$. Under this condition,
let H be any linear hyperplane of $\mathbb{F}_{2^{n}}$ not containing 1 ; for every $y \in \mathbb{F}_{2^{n}}$, there exists a unique element $\phi(y) \in \mathbb{F}_{2^{n}}$ such that $\phi(y) \in H$ and

$$
\begin{aligned}
\phi(y)+(\phi(y))^{2}=y & \text { if } \quad \operatorname{tr}_{n}(y)=0 \\
\phi(y)=\phi(y+a)+1 & \text { if }
\end{aligned} \operatorname{tr}_{n}(y)=1 .
$$

Then ϕ is a linear automorphism of $\mathbb{F}_{2^{n}}$ and we have

$$
F^{\prime-1}(y)=\phi(y)+\operatorname{tr}_{n}(y)+f(\phi(y))
$$

for every $y \in \mathbb{F}_{2^{n}}$.
Proof. Let us assume that F is a permutation. We have

$$
F \circ F(x)=x+a f(x)+a f(x+a f(x)) .
$$

If $f(x)=0$ then obviously $F \circ F(x)=x$. If $f(x)=1$ then $F \circ F(x)=x+a+$ $a f(x+a)$. Moreover, we have $f(x+a)=1$ since otherwise $F(x+a)=F(x)$ which contradicts F being a permutation. Hence, when $f(x)=1$, we have also $F \circ F(x)=x$. Hence, $F^{-1}=F$.

If F^{\prime} is a permutation over $\mathbb{F}_{2^{n}}$, then $\operatorname{tr}_{n}(a)=1$ since otherwise we have $\operatorname{tr}_{n}\left(F^{\prime}(x)\right)=0$ for every $x \in \mathbb{F}_{2^{n}}$ (and F^{\prime} is not surjective), and $f(x+$ 1) $=f(x)+1$ for every x since if $f(x+1)=f(x)$ for some $x \in \mathbb{F}_{2^{n}}$, then $F^{\prime}(x+1)=F^{\prime}(x)$ and F^{\prime} is not injective. Conversely, if $\operatorname{tr}_{n}(a)=1$ and $f(x+1)=f(x)+1$ for every $x \in \mathbb{F}_{2^{n}}$ then, for every $x, y \in \mathbb{F}_{2^{n}}$, we have $F^{\prime}(x)=y$ if and only if:

- either $\operatorname{tr}_{n}(y)=f(x)=0$ and x is the unique element of $\mathbb{F}_{2^{n}} \backslash \operatorname{supp}(f)$ such that $x+x^{2}=y$;
- or $\operatorname{tr}_{n}(y)=f(x)=1$ and x is the unique element of $\operatorname{supp}(f)$ such that $x+x^{2}=y+a$.
Hence, F^{\prime} is a permutation over $\mathbb{F}_{2^{n}}$.
Moreover, since $\operatorname{tr}_{n}(a)=1$ and $f(x+1)=f(x)+1$ for every $x \in \mathbb{F}_{2^{n}}$, we have $F^{\prime-1}(y+a)=F^{\prime-1}(y)+1$ for every $y \in \mathbb{F}_{2^{n}}$. The existence and uniqueness of $\phi(y)$ is straightforward. The restriction of ϕ to the hyperplane of equation $\operatorname{tr}_{n}(y)=0$ is an isomorphism between this hyperplane and H. The restriction of ϕ to the hyperplane of equation $\operatorname{tr}_{n}(y)=1$ is an isomorphism between this hyperplane and $\mathbb{F}_{2^{n}} \backslash H$. Hence ϕ is a linear automorphism of $\mathbb{F}_{2^{n}}$. Moreover, for every $x, y \in \mathbb{F}_{2^{n}}$, we have $F^{\prime}(x)=y$ if and only if:
- either $\operatorname{tr}_{n}(y)=f(x)=0$ and $x=\phi(y)+f(\phi(y))$ (indeed, if $\phi(y) \notin \operatorname{supp}(f)$ then $\phi(y)$ is the unique element x of $\mathbb{F}_{2^{n}} \backslash \operatorname{supp}(f)$ such that $x+x^{2}=y$ and if $\phi(y) \in \operatorname{supp}(f)$ then $\phi(y)+1$ is the unique element x of $\mathbb{F}_{2^{n}} \backslash \operatorname{supp}(f)$ such
that $x+x^{2}=y$ since $\left.f(x+1)=f(x)+1\right)$;
- or $\operatorname{tr}_{n}(y)=f(x)=1$ and

$$
x=F^{\prime-1}(y+a)+1=\phi(y+a)+f(\phi(y+a))+1=\phi(y)+1+f(\phi(y)) .
$$

This completes the proof.
We deduce the main result of this subsection:
Theorem 1 Two Boolean functions of $\mathbb{F}_{2^{n}}$ are CCZ-equivalent if and only if they are EA-equivalent.

Proof. Assume that two Boolean functions f and f^{\prime} on $\mathbb{F}_{2^{n}}$ are CCZequivalent and EA-inequivalent. Then there is a linear permutation \mathcal{L} of $\mathbb{F}_{2^{n}}^{2}$ such that (1)-(4) take place. We first assume that $\eta=1$.

In case L is a permutation, we have $F_{1}(x)=L\left(x+L^{-1}(a) f(x)\right)$ and therefore by Lemma 1

$$
F_{1}^{-1}(x)=L^{-1}(x)+L^{-1}(a) f\left(L^{-1}(x)\right) .
$$

Then we have

$$
\begin{aligned}
f^{\prime}(L(x)) & =l\left(F_{1}^{-1}(L(x))\right)+f\left(F_{1}^{-1}(L(x))\right) \\
& =l\left(x+L^{-1}(a) f(x)\right)+f\left(x+L^{-1}(a) f(x)\right) .
\end{aligned}
$$

If $f(x)=0$ then $f^{\prime}(L(x))=l(x)$. If $f(x)=1$ then we have $f\left(x+L^{-1}(a)\right)=1$. Indeed, since a is assumed to be nonzero, and F_{1} being a permutation, we have $L\left(x+L^{-1}(a)+L^{-1}(a) f\left(x+L^{-1}(a)\right)\right)=F_{1}\left(x+L^{-1}(a)\right) \neq F_{1}(x)=$ $L\left(x+L^{-1}(a)\right)$. Hence, $f^{\prime}(L(x))=l(x)+l\left(L^{-1}(a)\right)+1$ when $f(x)=1$. Therefore,

$$
f^{\prime}(L(x))=l(x)+\left(1+l\left(L^{-1}(a)\right)\right) f(x) .
$$

Note that $l\left(L^{-1}(a)\right)=0$. Indeed, if $l\left(L^{-1}(a)\right)=1$ then the system of equations

$$
\begin{aligned}
L(x)+a y & =0 \\
l(x)+y & =0
\end{aligned}
$$

has two solutions $(0,0)$ and $\left(L^{-1}(a), 1\right)$ which contradicts \mathcal{L} being a permutation. Hence, $f^{\prime}(x)=l\left(L^{-1}(x)\right)+f\left(L^{-1}(x)\right)$ and f is EA-equivalent to f^{\prime}, a contradiction.

Let L be now 2-to-1. Then, as observed above, we can assume without loss of generality that (6) and (7) take place. Then, since \mathcal{L} is bijective,
we have $l(b)=1$ (otherwise, the vector $(b, 0)$ would belong to the kernel of $\mathcal{L})$. By Lemma 1 , we have $g(x+1)=g(x)+1$ for any $x \in \mathbb{F}_{2^{n}}$, that is, $f(b x+b)=f(b x)+1$ for any $x \in \mathbb{F}_{2^{n}}$, that is, $f(x+b)=f(x)+1$ for any $x \in \mathbb{F}_{2^{n}}$. By Lemma 1, the inverse of the function $x^{2}+x+a g(x)$ equals $\phi(x)+\operatorname{tr}_{n}(x)+g(\phi(x))$ for a certain linear permutation ϕ of $\mathbb{F}_{2^{n}}$. Then

$$
F_{1}^{-1}(x)=b\left(\phi(x)+\operatorname{tr}_{n}(x)+f(b \phi(x))\right)
$$

and therefore

$$
\begin{aligned}
f^{\prime}(x) & =l\left(b\left(\phi(x)+\operatorname{tr}_{n}(x)+f(b \phi(x))\right)\right)+f\left(b\left(\phi(x)+\operatorname{tr}_{n}(x)+f(b \phi(x))\right)\right) \\
& =l(b \phi(x))+\operatorname{tr}_{n}(x)+f(b \phi(x))+f(b \phi(x))+\operatorname{tr}_{n}(x)+f(b \phi(x)) \\
& =l(b \phi(x))+f(b \phi(x)) .
\end{aligned}
$$

This means that f and f^{\prime} are EA-equivalent, a contradiction.
According to the observations above and to Lemma 1, if $\eta=0$ then we can reduce ourselves to the cases $f^{\prime}(x)=l(x+a f(x))$ and $f^{\prime}(x)=$ $l\left(b\left(\phi(x)+\operatorname{tr}_{n}(x)+f(b \phi(x))\right)\right)$. For the first case we necessarily have $l(a)=1$ and for the second case $l(b)=1$ since otherwise the kernel of \mathcal{L} would not be trivial (it would contain $(a, 1)$ and $(b, 0)$ respectively). Thus, $f^{\prime}(x)=l(x)+f(x)$ or $f^{\prime}(x)=l(b \phi(x))+\operatorname{tr}_{n}(x)+f(b \phi(x))$, and therefore f and f^{\prime} are EA-equivalent, a contradiction.

A Boolen function f of $\mathbb{F}_{2^{n}}$ can be considered as a function form $\mathbb{F}_{2^{n}}$ to itself. Hence it is a natural question whether an (n, n)-function f^{\prime}, which is CCZ-equivalent to f, is necessarily EA-equivalent to a Boolean function, or even EA-equivalent to f. The theorem below shows that the answer is positive.

Theorem 2 Let f be a Boolen function of $\mathbb{F}_{2^{n}}$ and f^{\prime} a function from $\mathbb{F}_{2^{n}}$ to itself. Then f and f^{\prime} are CCZ-equivalent as (n, n)-functions if and only if they are EA-equivalent as (n, n)-functions.

Proof. If f and f^{\prime} are CCZ-equivalent as (n, n)-functions then their is a linear permutation $\mathcal{L}(x, y)=\left(L_{1}(x, y), L_{2}(x, y)\right)$ of $\mathbb{F}_{2^{n}}^{2}$ such that $F_{1}(x)=$ $L_{1}(x, f(x))$ is a permutation of $\mathbb{F}_{2^{n}}$ and $f^{\prime}=F_{2} \circ \mathbb{F}_{1}^{-1}$ for $F_{2}(x)=L_{2}(x, f(x))$. As we saw above it is sufficient to consider only the cases

$$
\begin{align*}
& L_{1}(x, y)=x+a y \tag{10}\\
& L_{1}(x, y)=(x / b)^{2}+x / b+a y \tag{11}
\end{align*}
$$

where $a, b \in \mathbb{F}_{2^{n}}^{*}$. We have $L_{2}(x, y)=L^{\prime}(x)+L^{\prime \prime}(y)$ for some linear functions L^{\prime} and $L^{\prime \prime}$ from $\mathbb{F}_{2^{n}}$ to itself, and

$$
F_{2}(x)=L^{\prime}(x)+L^{\prime \prime}(f(x))=L^{\prime}(x)+L^{\prime \prime}(1) f(x) .
$$

Since \mathcal{L} is a permutation then the system

$$
\begin{aligned}
x+a y & =0 \\
L^{\prime}(x)+L^{\prime \prime}(y) & =0
\end{aligned}
$$

in case (10), and the system

$$
\begin{aligned}
(x / b)^{2}+x / b+a y & =0 \\
L^{\prime}(x)+L^{\prime \prime}(y) & =0
\end{aligned}
$$

in case (11), must have only $(0,0)$ solution. Hence, $L^{\prime}(a) \neq L^{\prime \prime}(1)$ for case (10) (since otherwise ($a, 1$) is in the kernel of \mathcal{L}), and $L^{\prime}(b) \neq 0$ for case (11) (since otherwise $(b, 0)$ is in the kernel of \mathcal{L}).

Using Lemma 1 in case (10) we get

$$
\begin{aligned}
f^{\prime}(x) & =F_{2} \circ F_{1}^{-1}(x)=L^{\prime}(x+a f(x))+L^{\prime \prime}(1) f(x+a f(x)) \\
& =L^{\prime}(x)+\left(L^{\prime}(a)+L^{\prime \prime}(1)\right) f(x)
\end{aligned}
$$

since $f(x+a f(x))=f(x)$ as we see it in the proof of Lemma 1. Hence f and f^{\prime} are EA-equivalent as (n, n)-functions.

Applying Lemma 1 for case (11) we get

$$
\begin{aligned}
f^{\prime}(x)= & F_{2} \circ F_{1}^{-1}(x)=L^{\prime}\left(b\left(\phi(x)+\operatorname{tr}_{n}(x)+f(b \phi(x))\right)\right) \\
& +L^{\prime \prime}(1) f\left(b\left(\phi(x)+\operatorname{tr}_{n}(x)+f(b \phi(x))\right)\right) \\
= & L^{\prime}(b \phi(x))+L^{\prime}(b) \operatorname{tr}_{n}(x)+L^{\prime}(b) f(b \phi(x)) \\
& +L^{\prime \prime}(1) f(b \phi(x))+L^{\prime \prime}(1) \operatorname{tr}_{n}(x)+L^{\prime \prime}(1) f(b \phi(x)) \\
= & \left(L^{\prime}(b \phi(x))+L^{\prime}(b) \operatorname{tr}_{n}(x)+L^{\prime \prime}(1) \operatorname{tr}_{n}(x)\right)+L^{\prime}(b) f(b \phi(x))
\end{aligned}
$$

since $f(x+b)=f(x)+1$ as we see it from the proof of Lemma 1 . Thus f and f^{\prime} are EA-equivalent as (n, n)-functions.

2.2 CCZ-equivalence and EA-equivalence of (n, m)-functions when $1<m<n$

We first show in Proposition 1 that there exist values of (n, m) such that CCZ-equivalence is strictly more general than EA-equivalence. We extend then in Theorem 3, thanks to Proposition 2, the hypotheses under which this is true.

Proposition 1 Let $n \geq 5$ and $m>1$ be any divisor of n, or $n=m=4$. Then for (n, m)-functions CCZ-equivalence is strictly more general than EAequivalence.

Proof. We need to treat the cases n odd and n even differently.

- Let n be any odd positive integer, m any divisor of n and

$$
\begin{equation*}
F(x)=\operatorname{tr}_{n / m}\left(x^{3}\right) . \tag{12}
\end{equation*}
$$

The linear function from $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{m}}$ to itself:

$$
\mathcal{L}(x, y)=\left(L_{1}(x, y), L_{2}(x, y)\right)=\left(x+\operatorname{tr}_{n}(x)+\operatorname{tr}_{m}(y), y+\operatorname{tr}_{n}(x)+\operatorname{tr}_{m}(y)\right)
$$

is an involution, and

$$
F_{1}(x)=L_{1}(x, F(x))=x+\operatorname{tr}_{n}(x)+\operatorname{tr}_{n}\left(x^{3}\right)
$$

is an involution too (which is easy to check). Let:

$$
F_{2}(x)=L_{2}(x, F(x))=\operatorname{tr}_{n / m}\left(x^{3}\right)+\operatorname{tr}_{n}(x)+\operatorname{tr}_{n}\left(x^{3}\right)
$$

then the function:

$$
\begin{aligned}
F^{\prime}(x) & =F_{2} \circ F_{1}^{-1}(x)=F_{2} \circ F_{1}(x) \\
& =\operatorname{tr}_{n / m}\left(x^{3}\right)+\operatorname{tr}_{n / m}\left(x^{2}+x\right) \operatorname{tr}_{n}(x)+\operatorname{tr}_{n / m}\left(x^{2}+x\right) \operatorname{tr}_{n}\left(x^{3}\right)
\end{aligned}
$$

is CCZ-equivalent to F by definition.
The part $\operatorname{tr}_{n / m}\left(x^{2}+x\right) \operatorname{tr}_{n}\left(x^{3}\right)$ is nonquadratic for $n \geq 5$ and $m>1$. Indeed,

$$
\begin{equation*}
\operatorname{tr}_{n / m}\left(x^{2}+x\right) \operatorname{tr}_{n}\left(x^{3}\right)=\sum_{\substack{0 \leq i<n \\ 0 \leq j<n / m}} x^{2^{i+1}+2^{i}+2^{j m}}+\sum_{\substack{0 \leq i<n \\ 0 \leq j<n / m}} x^{2^{i+1}+2^{i}+2^{j m+1}} \tag{13}
\end{equation*}
$$

and for $n \geq 5, m>1$, the item $x^{2^{3}+2^{2}+2^{0}}$ does not vanish in the sum above. By construction the (n, m)-functions F and F^{\prime} are CCZ-equivalent. When $n \geq 5$ and $m>1$ they are EA-inequivalent because they have different algebraic degrees.

- Let now n be any even positive integer, m any divisor of n and F be given by (12). The linear function

$$
L(x, y)=\left(L_{1}(x, y), L_{2}(x, y)\right)=\left(x+\operatorname{tr}_{m}(y), y\right)
$$

is an involution, and

$$
F_{1}(x)=L_{1}(x, F(x))=x+\operatorname{tr}_{n}\left(x^{3}\right)
$$

is also involutive (this can be easily checked). Let:

$$
F_{2}(x)=L_{2}(x, F(x))=\operatorname{tr}_{n / m}\left(x^{3}\right)
$$

then

$$
\begin{aligned}
F^{\prime}(x) & =F_{2} \circ F_{1}^{-1}(x)=F_{2} \circ F_{1}(x)=\operatorname{tr}_{n / m}\left(\left(x+\operatorname{tr}_{n}\left(x^{3}\right)\right)^{3}\right) \\
& =\operatorname{tr}_{n / m}\left(x^{3}\right)+\operatorname{tr}_{n / m}(1) \operatorname{tr}_{n}\left(x^{3}\right)+\operatorname{tr}_{n / m}\left(x^{2}+x\right) \operatorname{tr}_{n}\left(x^{3}\right)
\end{aligned}
$$

The part $\operatorname{tr}_{n / m}\left(x^{2}+x\right) \operatorname{tr}_{n}\left(x^{3}\right)$ is nonquadratic when $n \geq 6, m>1$, or when $n=m=4$. Indeed, in these cases the item $x^{2^{3}+2^{2}+2^{0}}$ does not vanish in (13). Hence, the (n, m)-functions F and F^{\prime} are CCZ-equivalent by construction, and when $n \geq 6, m>1$, or when $n=m=4$ they are EA-inequivalent because of the difference of their algebraic degrees.

The next proposition will allow us to generalize the conditions under which the statement of Proposition 1 is valid.

Proposition 2 If there exist $C C Z$-equivalent (n, m)-functions F and F^{\prime} which are EA-inequivalent then for any positive integer k the $(n, m+k)$-functions $H(x)=(F(x), 0)$ and $H^{\prime}(x)=\left(F^{\prime}(x), 0\right)$ are also CCZ-equivalent and EAinequivalent.

Proof. Let

$$
L(x, y)=\left(L_{1}(x, y), L_{2}(x, y)\right)
$$

be a linear permutation of $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{m}}$ which maps the graph of F to the graph of F^{\prime}. Then we have:

$$
\begin{aligned}
& F_{1}(x)=L_{1}(x, F(x)), \\
& F_{2}(x)=L_{2}(x, F(x)), \\
& F^{\prime}(x)=F_{2} \circ F_{1}^{-1}(x),
\end{aligned}
$$

where F_{1} is a permutation. Let

$$
\psi(x,(y, z))=\left(\psi_{1}(x,(y, z)), \psi_{2}(x,(y, z))\right)
$$

be a function from $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{k}}$ to itself, where

$$
\psi_{1}(x,(y, z))=L_{1}(x, y)+L_{0}(z)
$$

for some linear function L_{0} from $\mathbb{F}_{2^{k}}$ to $\mathbb{F}_{2^{n}}$, and where

$$
\psi_{2}(x,(y, z))=\left(L_{2}(x, y), z\right)
$$

ψ is linear and it is a permutation; indeed its kernel is the set of solutions of the system of two linear equations

$$
\begin{aligned}
L_{1}(x, y)+L_{0}(z) & =0 \\
\left(L_{2}(x, y), z\right) & =0
\end{aligned}
$$

From the second equation we get $z=0$, and since L_{0} is linear then $L_{0}(0)=0$ and we come down to the system

$$
\begin{aligned}
& L_{1}(x, y)=0 \\
& L_{2}(x, y)=0
\end{aligned}
$$

which has only solution $(0,0)$. Hence the kernel of ψ is trivial. Denote $H_{1}(x)=\psi_{1}(x, H(x))$ and $H_{2}(x)=\psi_{2}(x, H(x))$ then

$$
H_{1}(x)=\psi_{1}(x, H(x))=\psi_{1}(x,(F(x), 0))=L_{1}(x, F(x))+L_{0}(0)=F_{1}(x)
$$

which is a permutation and

$$
H_{2}(x)=\psi_{2}(x, H(x))=\psi_{2}(x,(F(x), 0))=\left(L_{2}(x, F(x)), 0\right)=\left(F_{2}(x), 0\right)
$$

Hence,

$$
H^{\prime}(x)=H_{2} \circ H_{1}^{-1}(x)=\left(F_{2} \circ F_{1}^{-1}(x), 0\right)=\left(F^{\prime}(x), 0\right)
$$

is CCZ-equivalent to $H(x)$. If F and F^{\prime} are EA-inequivalent then obviously H and H^{\prime} are EA-inequivalent too.

Proposition 1 and Proposition 2 give
Theorem 3 Let $n \geq 5$ and $k>1$ be the smallest divisor of n. Then for any $m \geq k$, the CCZ-equivalence of (n, m)-functions is strictly more general than their EA-equivalence.

In particular, when $n \geq 6$ is even, this is true for every $m \geq 2$.

Remark.

The paper [5] is dedicated to the study of permutations of the kind $G(x)+$ $f(x)$ where f is a Boolean function of $\mathbb{F}_{2^{n}}$ and G is either a permutation or a linear function from $\mathbb{F}_{2^{n}}$ to itself. Lemma 1 gives us a description of the inverses of all such permutations:

Corollary 1 Let L be a linear function from $\mathbb{F}_{2^{n}}$ to itself and f be a Boolean function of $\mathbb{F}_{2^{n}}$. If $F(x)=L(x)+f(x)$ is a permutation then F^{-1} is $E A$ equivalent to F.

Corollary 2 Let G be a permutation of $\mathbb{F}_{2^{n}}$ and f be a Boolean function of $\mathbb{F}_{2^{n}}$. If $F(x)=G(x)+f(x)$ is a permutation then

$$
F^{-1}(x)=G^{-1}(x)+G^{-1} \circ f \circ G^{-1}(x)
$$

Proof. We have $F(x)=G \circ H(x)$, where $H(x)=x+G^{-1} \circ f(x)$ is a permutation. H is involutive by Lemma 1. Hence

$$
F^{-1}(x)=H^{-1} \circ G^{-1}(x)=H \circ G^{-1}(x)=G^{-1}(x)+G^{-1} \circ f \circ G^{-1}(x) .
$$

3 Consequence on a notion of equivalence of vectorial functions whose definition is more general than CCZ-equivalence

It is not hard to check that CCZ-equivalence of functions is the same as EAequivalence of the graphs of these functions. Indeed, for a given function F from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{m}, let us denote the indicator of its graph G_{F} by $1_{G_{F}}$, that is,

$$
1_{G_{F}}(x, y)= \begin{cases}1 & \text { if } y=F(x) \\ 0 & \text { otherwise }\end{cases}
$$

$1_{G_{F}}$ is a Boolean function over \mathbb{F}_{2}^{n+m}. It is obvious that when composing $1_{G_{F}}$ by an affine permutation \mathcal{L} of \mathbb{F}_{2}^{n+m} on the right, that is, taking $1_{G_{F}} \circ \mathcal{L}$, we are within the definition of CCZ- equivalence of functions. If we compose $1_{G_{F}}$ by an affine permutation \mathcal{L} of \mathbb{F}_{2} on the left, then we get $\mathcal{L} \circ 1_{G_{F}}=1_{G_{F}}+b$ for $b \in \mathbb{F}_{2}$. Hence, we have only to prove that if for an (n, m)-function F^{\prime} and for an affine Boolean function φ of \mathbb{F}_{2}^{n+m}

$$
1_{G_{F^{\prime}}}(x, y)=1_{G_{F}}(x, y)+\varphi(x, y)
$$

then F and F^{\prime} are CCZ-equivalent. In case $m>2$ we must have $\varphi=0$ because $1_{G_{F}}$ and $1_{G_{F^{\prime}}}$ have Hamming weight 2^{n} while, if φ is not null, it has then Hamming weight 2^{n+m-1} or 2^{n+m}, a contradiction, since $2^{n+m-1}>2^{n+1}$. Thus, for $m>2$ we get $F=F^{\prime}$. Let us consider now the case $m=1$. Then $1_{G_{F}}(x, y)=F(x)+y+1$ and $\varphi(x, y)=A(x)+a y+b$ for some affine Boolean function A of \mathbb{F}_{2}^{n} and $a, b \in \mathbb{F}_{2}$. Therefore,

$$
1_{G_{F^{\prime}}}(x, y)=1_{G_{F}}(x, y)+\varphi(x, y)=F(x)+A(x)+(a+1) y+b+1 .
$$

If $a=1$ then $1_{G_{F^{\prime}}}$ is not an indicator of a graph of a function since $1_{G_{F^{\prime}}}(x, 0)=$ $1_{G_{F^{\prime}}}(x, 1)=1$ when $F(x)+A(x)=b$. If $a=0$ then $1_{G_{F^{\prime}}}(x, y)=1$ if and only if $y=F(x)+A(x)+b$, that is, $F^{\prime}(x)=F(x)+A(x)+b$ and F and F^{\prime} are EA-equivalent and therefore CCZ-equivalent. Let now $m=2$. Then φ has Hamming weight 2^{n+1} while $1_{G_{F}}$ and $1_{G_{F^{\prime}}}$ have Hamming weight 2^{n}. Therefore, $\varphi(x, F(x))=1$ for any $x \in \mathbb{F}_{2}^{n}$. Besides, since $1_{G_{F^{\prime}}}$ is the indicator of the graph of a function then for any $x \in \mathbb{F}_{2}^{n}$ there is a unique $\alpha_{x} \in \mathbb{F}_{4}, \alpha_{x} \neq F(x)$, that $\varphi\left(x, \alpha_{x}\right)=1$. Withought loss of generality we can assume that $F(0)=0$. Then $\varphi(0,0)=\varphi(0, F(0))=1$. We also have $\varphi\left(0, \alpha_{0}\right)=1$ and $\varphi(0, \beta)=0$ for any $\beta \in \mathbb{F}_{4} \backslash\left\{0, \alpha_{0}\right\}$. Since φ is affine then for any $x \in \mathbb{F}_{2}^{n}$ we have $\varphi\left(x, F(x)+\alpha_{0}\right)=\varphi(x, F(x))+\varphi\left(0, \alpha_{0}\right)+1=1$ and $\varphi(x, F(x)+\beta)=\varphi(x, F(x))+\varphi(0, \beta)+1=0$. Thus, $1_{G_{F^{\prime}}}(x, y)=1$ if and only if $y=F(x)+\alpha_{0}$, that is, $F^{\prime}(x)=F(x)+\alpha_{0}$.

Hence, (n, m)-functions F and F^{\prime} are CCZ-equivalent if and only if the graphs of F and F^{\prime} are EA-equivalent. A natural question is to know whether CCZ-equivalence of the graphs is more general than their EA-equivalence.

Definition 1 Two (n, m)-functions F and F^{\prime} are called ECCZ-equivalent if the indicators of their graphs $G_{F}=\left\{(x, F(x)) ; x \in F_{2}^{n}\right\}$ and $G_{F^{\prime}}=$ $\left\{\left(x, F^{\prime}(x)\right) ; x \in F_{2}^{n}\right\}$ are CCZ-equivalent.

According to Theorem 1 we have:
Corollary 3 Let F and F^{\prime} be two (n, m)-functions. F and F^{\prime} are $E C C Z$ equivalent if and only if they are CCZ-equivalent.

References

[1] L. Budaghyan and C. Carlet. On CCZ-equivalence and its use in secondary constructions of bent functions. Preprint available at IACR ePrint Archive, number 2009/042.
[2] L. Budaghyan, C. Carlet, A. Pott. New Classes of Almost Bent and Almost Perfect Nonlinear Functions. IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 1141-1152, March 2006.
[3] C. Carlet. Vectorial Boolean Functions for Cryptography. Chapter of the monography Boolean Methods and Models, Y. Crama and P. Hammer eds, Cambridge University Press, in press.
[4] C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent functions and permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography, 15(2), pp. 125-156, 1998.
[5] P. Charpin, G. Kyureghyan. On a class of permutation polynomials over $\mathbb{F}_{2^{n}}$. Proceedings of SETA 2008, Lecture Notes in Computer Science 5203, pp. 368-376, 2008.
[6] K. Nyberg. Perfect non-linear S-boxes. Proceedings of EUROCRYPT' 91, Lecture Notes in Computer Science 547, pp. 378-386, 1992.

[^0]: *Department of Informatics, University of Bergen, PB 7803, 5020 Bergen, NORWAY; e-mail: Lilya.Budaghyan@ii.uib.no
 ${ }^{\dagger}$ Universities of Paris 8 and Paris 13; CNRS, UMR 7539 LAGA; Address: University of Paris 8, Department of Mathematics, 2 rue de la liberté, 93526 Saint-Denis cedex 02, France; e-mail: claude.carlet@inria.fr

