
Framework for Analyzing Optimistic Fair Exchange with
Distributed Arbiters

Alptekin Küpçü and Anna Lysyanskaya
Brown University, Providence, RI, USA

{kupcu,anna}@cs.brown.edu

We nominate Alptekin Küpçü for the Best Student Paper Award

Abstract

Fair exchange is one of the most fundamental problems in secure distributed computation. Alice has
something that Bob wants, and Bob has something that Alice wants. A fair exchange protocol would
guarantee that, even if one of them maliciously deviates from the protocol, either both of them get the
desired content, or neither of them do. It is known that no two-party protocol can guarantee fairness
in general; therefore the presence of a trustedarbiter is necessary. In optimistic fair exchange, the
arbiter only gets involved in case of faults. To reduce the trust put in an arbiter, it is natural to consider
employing multiple arbiters.

Avoine and Vaudenay (AV) [6] employ multiple autonomous arbiters in their optimistic fair exchange
protocol which uses timeout mechanisms. They leave two openquestions: (1) Can an optimistic fair
exchange protocol without timeouts provide fairness when employing multiple autonomous arbiters? (2)
Can any other optimistic fair exchange protocol with timeouts achieve better bounds on the number of
honest arbiters required? In this paper, we answer both questions negatively. To answer these questions,
we define a general class of optimistic fair exchange protocols with multiple arbiters, called “distributed
arbiter fair exchange” (DAFE) protocols. Informally, in a DAFE protocol, if a participant fails to send
a correctly formed message, the other party must contact some subset of the arbiters and get correctly
formed responses from them. The arbiters do not talk to each other, but only to Alice and Bob. We prove
that no DAFE protocol can exist. However, our impossibilityresults can be overcome in the timeout
model (where all arbiters have access to loosely synchronized clocks) and also in case the arbiters can
communicate (e.g., using secure multi-party computation withΩ(n2) communication).

1 Introduction
Optimistic fair exchange is a very useful primitive with many applications including contract signing, elec-
tronic commerce, or even peer-to-peer file sharing [4, 3, 2, 5, 7, 8, 13, 15, 17, 16]. In a fair exchange
protocol, the participants Alice and Bob want to exchange some items, and they want to do so fairly. Fair-
ness intuitively refers to Alice getting Bob’s item and Bob getting Alice’s item at the end of the protocol, or
neither of them getting anything, even if one of them maliciously deviates from the protocol. For technical
definitions of optimistic fair exchange protocols, we referthe reader to [15].

It has been shown that no fair exchange protocol can provide complete fairness without a trusted entity
[18], called thearbiter. In an optimistic fair exchange protocol, the arbiter is notinvolved unless there is a
dispute between the participants. But having a single trusted entity is one of the biggest problems that make
the use of such protocols hard in practice. Therefore, the use of multiple arbiters is generally motivated
by reducing the trust put on the arbiter [6, 15].1 A very natural question is how to achieve fairness in the
absence of a single trusted arbiter; for example, what if we haven arbiters only a fraction of whom we want
to put our trust in? It is clear that this can be achieved usingsecure multi-party computation techniques with
Ω(n2) communication, but can we do better than that?

Avoine and Vaudenay (AV) [6] address this problem in their paper by using verifiable secret sharing
techniques to employ multiple arbiters in their fair exchange protocol. They also provide bounds on the
number of arbiters that need to be honest for their protocol to be fair. A crucial point is that the protocol
uses timeout mechanisms. They leave two important issues asopen questions: (1) Can an optimistic fair
exchange protocol without timeouts provide fairness when employing multiple autonomous arbiters? (2)
Can any other optimistic fair exchange protocol with timeouts achieve better bounds on the number of
honest arbiters required?

Unfortunately, in this paper, we answer both of these questions negatively. Inspired by state-of-the-art
optimistic fair exchange protocols with a single arbiter, we define a general class of optimistic fair exchange
protocols with multiple arbiters, called “distributed arbiter fair exchange” (DAFE) protocols. Informally, in
a DAFE protocol, if one of the participants fails to send a correctly formed message, the other participant
must contact some subset of the arbiters and get correctly formed responses from them in order to make the
exchange fair.2 Two main properties of a DAFE protocol are its abort/resolvesemantics and the autonomy
of multiple arbiters used, as discussed in Section 2. In a DAFE protocol, the arbiters need not talk to each
other, but only to Alice and Bob. A third property is the statemachine semantics of the participants. We
show that this class of protocols capture currently known state-of-the-art optimistic fair exchange protocols
extended to use multiple distributed arbiters in a very intuitive manner, as shown in Section 2.1. Under this
framework, in Section 4 we analyze scenarios that can occur during the execution of instances of optimistic
fair exchange protocols, and prove some predicates every such protocol must satisfy to be able to provide
semantic fairness, which is a property that needs to be satisfied by all optimistic fair exchange protocols.

In Section 5, we prove that no DAFE protocol can provide fairness, answering the first open question
negatively. In Section 6, we prove impossibility of DAFE protocols using threshold-based mechanisms (any
k arbiters are enough for resolution) even when the autonomous arbiters assumption is relaxed. For protocols
using general set-based mechanisms (anyk arbiters will not be enough for resolution, specific sets of arbiters
need to be contacted), we cannot prove impossibility in thisrelaxed setting, but we conjecture that such
protocols are not possible. However, our impossibility results can be overcome in the timeout model (where
all arbiters have access to loosely synchronized clocks) and also in case the arbiters can communicate. We
use our framework to analyze the existing AV protocol [6] in this timeout model in Section 7. We prove
that the bounds proven earlier for that protocol are optimal, demonstrating how easily our framework can
be applied for such an analysis, and hence answer the second open question also negatively.

1It is possible to have multiple arbiters deployed for reducing the load, but if only one of them is employed per exchange, we
do not consider that protocol DAFE.

2Of course, if not even a single message is sent, there is no need to contact arbiters. But this is not an interesting case to analyze
anyway.

1

2 Definition of a DAFE protocol
In this section, we will define a general optimistic fair exchange model that fits currently known state-of-
the-art optimistic fair exchange schemes that uses an arbiter, and has semantics for aborting and resolving
that we will define below.

Figure 1: Semantic view of
the state machines of the par-
ticipants.

All the participants (Alice, Bob and the arbiters) are interactive Tur-
ing Machines (ITMs)3. Those ITMs have the following 4 semantic states:
Working , Aborted , Resolved, Dispute (see Figure 1). These semantic
states can correspond to multiple states in the actual ITM definitions of the
participants, but just these abstractions will be enough toprove our results.
Moreover, arbiters do not have theDisputestate. Furthermore, when in Sec-
tion 6 we relax one of our assumptions, even Alice and Bob willnot have
this Disputestate.

The ITM of each participant starts in theWorkingstate. Semantically,
Working state denotes any state that the actual ITM of a participant is in
when the protocol is still taking place. When a participant does not receive the expected correctly formed
message from the other participant he can possibly abort or decide to contact the arbiters for resolving or
aborting with them, in which case the ITM of that participantenters itsDisputestate. If everything goes
well in the protocol execution (all messages received from the other party are correctly formed), then the
ITM of a participant can transition toResolvedstate directly from theWorking state. Otherwise, if the
arbiters needed to be contacted, the ITM first visits theDisputestate, and then transitions to eitherResolved
or Abortedstate.

When the protocol ends, Alice and Bob are allowed to end only in Abortedor Resolvedstates (which
can correspond to multiple states in actual ITM definitions). If Alice or Bob ends at itsResolvedstate, then,
by definition, (s)he must have obtained the exchange item from the other party. When the protocol ends, if
the ITM of a participant is not in itsResolvedstate (or one of the corresponding states in the actual ITM
definition), it is considered to be in itsAbortedstate.

Using these semantic definitions, even an adversarial ITM can be considered to have those 4 states (since
it either obtains the other party’s item and hence ends at itsResolvedstate, or not therefore ending at its
Abortedstate). The adversarial ITM does not necessarily have aDisputestate, but this will not affect any
results presented in this paper.

Definition 1 (End of the Protocol). We say that the protocol has ended if (1) the honest party ended up
being in her eitherResolvedor Abortedstate, and (2) the adversary produced its final output at its either
Resolvedor Abortedstate after running at most a polynomial number of steps (polynomial in some security
parameter).

Now that we defined our participants carefully, we can state our assumptions on them and define DAFE
protocols.

DISTRIBUTED ARBITER FAIR EXCHANGE (DAFE) PROTOCOLS: DAFE protocols are optimistic fair
exchange protocols that can be characterized with the following:

• Exclusive states assumption

• Connection between arbiters’ state and Alice’s and Bob’s

• Autonomous arbiters assumption

We will talk about only complete DAFE protocols (optimisticfair exchange protocols satisfying the
optimistic completeness definition in [15]): when both participants are honest, they end at theirResolved
states. Since our goal here is to analyze fairness of such protocols, the only interesting case is when we have
one honest party denotedH and one malicious party denotedM. We will not consider cases where both
parties are malicious since there is no honest party to protect.

3The ITMs have access to –possibly synchronized– clocks for timeout mechanisms.

2

EXCLUSIVE STATES ASSUMPTION: This assumption states that theResolvedandAbortedstates are
mutually exclusive. For an arbiter, those states informally mean whether or not the arbiter helped one of
the parties to resolve or abort. We assume that there is no combination of state transitions that can take an
honestarbiter from theAbortedstate to theResolvedstate, or vice versa. In most existing protocols, this
corresponds to the fact that the arbiter will not abort with aparticipant first and then decide to resolve with
him or the other participant, or vice versa.

Definition 2 (Aborting and Resolving with an Arbiter). If a participant interacts with an arbiter and aborts
with him, the arbiter goes to itsAbortedstate, from where he will never switch to itsResolvedstate. Simi-
larly, if a participant resolves with an arbiter, he goes to itsResolvedstate, from where he will never switch
to itsAbortedstate.

Definition 3 (Aborted and Resolved Protocol Instance). An aborted protocol instance means both Alice
and Bob ended at theirAbortedstates, and a resolved protocol instance means both Alice and Bob ended
at their Resolvedstates.

CONNECTION BETWEEN ARBITERS’ STATE AND ALICE’ S AND BOB’ S: A resolution makes sense if
at least one of the parties has not resolved yet. In such a case, Alice or Bob can end in theirResolvedstates
(unless they already are in theirResolvedstates) only if a sufficient set of arbiters end in theirResolved
states. There can be multiple sets of arbiters, each set being sufficient for resolving, and those sets can be
different for Alice and Bob. All these will be clear in later sections when we define those sufficient sets.

AUTONOMOUS ARBITERS ASSUMPTION: We assume that the honest arbiters’ decisions are made au-
tonomously, without taking into account the decisions of other arbiters. Arbiters can arrive at the same
decision seeing the same input, but they will not consider each other’s decision while making their own
decisions. In particular, this means no communication takes place between arbiters.

We argue that this is the most natural way of using multiple arbiters, since the goal in general is to
distribute the trust efficiently. Without autonomy, byzantine fault tolerance [1] or secure multiparty compu-
tation [11, 12] techniques can be applied, yielding costly solutions (Ω(n2) communication whenn arbiters
are employed).

To model this autonomy, we require the protocol design to direct the honest participants to contact all
arbiters at once. More formally, when the ITM of an honest participant decides to contact the arbiters for
dispute resolution, the participant creates the message tosend to all of the arbiters before receiving any
response from any arbiter. One can model this with theDisputestate in which the message to send to the
arbiters are prepared all at once. We will call this simultaneous (or unordered) resolve/abort. Note that this
only constrains honest Alice or Bob. A malicious party can introduce dependence between messages to
arbiters and responses from other arbiters. Later in Section 6 we will relax this autonomy assumption.

All optimistic fair exchange protocols need to satisfy the following semantic fairness property (for a
satisfactory definition of (optimistic) fair exchange protocols, see [15]).

SEMANTIC FAIRNESS: The semantic fairness property states that at the end of theprotocol, Alice and
Bob both end at the same state (they both end at theirAbortedstates, or they both end at theirResolved
states). In other words, we need the protocol instance to be either resolved or aborted as in Definition 3, for
every possible instance of the protocol.

Optimistic fair exchange protocols should also satisfy thetimely resolutionproperty, which means that
the honest party need not wait indefinitely for any message from any other party. He can have a local
timeout mechanism with which he can decide to proceed without waiting. In particular, he can end his side
of the protocol any time he wants, ending at hisResolvedor Abortedstate, according to the rules we defined
above.

Regular DAFE protocols do not have global timeout mechanisms, and the sets of arbiters that Alice or
Bob can resolve with are well-defined by the protocol, and does not change once the honest party is in its
Disputestate. We will show an extended version called DAFE with timeouts (DAFET) where the protocols
are allowed to use timeouts. At the timeout specified by the protocol, honest arbiters transition into their

3

Abortedstates. This is done using the (loosely synchronized) clocks of the ITMs. We call this event “an
arbiter timeouts”. Furthermore, we will allow the possiblesets of arbiters to resolve with to change at this
timeout. This is our timeout model and it bypasses the impossibility results for DAFE protocols. These will
be more clear in later sections.

2.1 Sample DAFE Protocols

Many currently known optimistic fair exchange protocols fall into the category of DAFE protocols4. They
can be considered as special cases of DAFE protocols in whichthere is only one arbiter. We also discuss
a way to extend them to employ multiple autonomous arbiters.Unfortunately, this means, those extended
protocols cannot provide fairness, as we will prove later inthis paper that no DAFE protocol can provide
fairness.

As a representative of optimistic fair exchange protocols,we will analyze a protocol due to Asokan,
Shoup and Waidner (ASW) [4]. They have two versions of their protocol: one version that uses timeout-
based aborts (the version that can be converted to a DAFET protocol, see Section 7), and one that does not
employ timeouts (the one we will discuss now). It is considered one of the state-of-the-art signature ex-
change protocols, and isthe first completely fairoptimistic exchange protocol. An optimistic fair exchange
protocol for exchanging files are given in [15], and all our discussion here applies to that protocol too.

In terms of the state semantics of the participants, it is clear that the ending states of the participants can
be parsed intoAbortedandResolvedstates which are mutually exclusive. Since there is only onearbiter, it
is autonomous. As for the connection between arbiter’s state and Alice’s and Bob’s, it is clear that in case
of a dispute, their state depends on the arbiter’s.

Now, if we want to extend those protocols to use multiple autonomous arbiters, the easiest way is to
employ verifiable secret sharing techniques [6, 19, 14]. Thestate-of-the-art protocols employ verifiable
escrows [9, 10, 4, 15] under the (one and only) arbiter’s public key. The intuition behind using verifiable
escrows is that the recipient can verify the encrypted content is the content that is promised and the arbiter
can decrypt it, without learning the actual content. Verifiable secret sharing techniques can be employed
to split the promised secret per arbiter. Each of these secrets will be encrypted under a different arbiter’s
public key. The recipient can still verify those encrypted shares can be decrypted and combined to obtain the
promised secret, thereby effectively achieving the same goal as a verifiable escrow, but for multiple arbiters.
For a detailed explanation of how to use verifiable secret sharing in distributing the arbiters, we refer the
reader to [6].

When we extend the ASW protocol, instead of this verifiable escrow, the participants will use verifiable
secret sharing techniques as explained above and in [6]. Regardless of whether threshold- or set-based
secret sharing mechanisms are used, the resolution procedure now requires contacting multiple arbiters. For
example, if the threshold for the secret sharing method usedis k, the resolution will involve contacting at
leastk arbiters.

This did not change the state semantics of the participants,so our discussion above still holds. Because
we assume the arbiters are contacted simultaneously, the autonomy of the arbiters hold. As for the con-
nection between arbiters’ state and Alice’s and Bob’s, since resolution needsk shares, and secure secret
sharing and encryption methods are used, a participant can obtain the other participant’s exchange item if
and only if (s)he resolves with at leastk arbiters (in case of a dispute). When arbitrary sets are usedinstead
of thresholds, it is easy to see all these arguments will still apply.

3 Notation
Remember that in a fair exchange scenario, Alice and Bob wantto exchange some items fairly. In case of
a dispute, they need to contact the arbiters. They are allowed to take the following two actions with the

4with a very basic and intuitive extension to make them use multiple autonomous arbiters

4

arbiters:abort or resolve. As noted in Definition 2, aborting with an honest arbiter takes him to hisAborted
state, whereas resolving with him would take him to hisResolvedstate.5

Let N denote the set of all arbiters, where there are a total ofn of them (|N| = n). An honest arbiter acts
as specified by the protocol. LetF be the set of arbiters who are friends with a malicious participant. Those
arbiters are adversarial.6

Define two setsHR andMR , which are sets of sets. Any setHR∈HR is a set of arbiters that is sufficient
for thehonestparty toresolve(as defined in Section 2 during the discussion about the connection between
arbiters’ state and Alice’s and Bob’s). Similarly, any setMR ∈MR is a set of arbiters that is sufficient for
the maliciousparty toresolve. Therefore, by definition, in case of a dispute, the honest party will end at
herResolvedstateif and only if she resolves withall the arbiters inany oneof the sets inHR (unless she
already is in herResolvedstate). Similarly, the malicious party will end at hisResolvedstateif and only if
he resolves withall the arbiters inany oneof the sets inMR (unless he already is in hisResolvedstate).
For DAFE protocols, these sets are well-defined by the protocol description, and do not change once the
honest party enters itsDisputestate.

A special case of these sets can be represented as thresholds. Let TH be the number of arbiters the
honest party needs to contact for resolution. Similarly,TM denotes the number of arbiters the malicious
party needs to contact for resolution. Thus, the setHR is composed of all subsets ofN with TH or more
arbiters. Similarly, the setMR is composed of all subsets ofN with TM or more arbiters.

DefineRH as the set of arbiters the honest partyH has already resolved with, andRM as the set of arbiters
the malicious partyM has already resolved with. Also defineRA as the set of all arbiters that are available
for H for resolution (among the onesH has not already resolved with). Initially, when the disputeresolution
begins, we assume thatRH = ∅, RM = F, andRA = N−F (and all arbiters are available for resolution to the
malicious party). We furthermore have the following actions and their effects on these sets:

Action 1 (H resolves with an arbiterX). The effect is that RH becomes RH ∪{X}.

Action 2 (M resolves with an arbiterX). The effect is that RM becomes RM ∪{X}.

Action 3 (H aborts with an arbiterX ∈ RA). The effect is that RA becomes RA−{X}.

Action 4 (M aborts with an arbiterX ∈ RA). The effect is that RA becomes RA−{X}.

As in previous work on optimistic fair exchange [15], we assume that the adversary can re-order mes-
sages, delay the honest party’s messages to arbiters, insert his own messages,etc. But he cannot delay
honest party’s messages indefinitely: the honest party eventually reaches the arbiters that he wants to con-
tact initially, and this occurs before the timeout if the protocol uses timeout mechanisms.

3.1 DAFET protocols (DAFE protocols with timeouts):

In DAFET protocols, we allow for timeouts by giving the arbiters access to loosely synchronized clocks.
Instead of actions 3 and 4 above (honest or malicious party aborting), the following action is allowed:

Action 5 (An arbiterX ∈ RA−RH −RM timeouts). The effect is that RA becomes RA−{X}.

Another difference between DAFE and DAFET protocols is the setsHR (t) andMR (t) being static and
dynamic, respectively. DAFE protocols define such sets as static: the overall set of arbiters that needs to
be contacted for resolution does not change with time once the honest party enters itsDisputestate (hence
the notationHR andMR). Consider a DAFE type protocol that employs dynamic sets like this: Bob can
resolve only with arbiters that Alice has already resolved with. We can think of it as Bob’s set initially being
empty, and then getting populated. Unfortunately, this protocol does not satisfy timely resolution (unless
there is a timeout in the protocol) since Bob may need to wait indefinitely for Alice.

5Due to the exclusive states assumption, this happens only ifan arbiter is not already in itsResolvedor Abortedstate, respec-
tively.

6For example, they may appear as aborted to the honest party, but they may still resolve with the malicious party.

5

In contrast, we allow DAFET protocols to employ dynamic sets. These sets may depend on the timeout
and possibly the parties’ actions in that particular instance of the protocol. Consider the following two cases
as illustrative examples: Some type of protocols allow, let’s say, Alice to resolve only after a timeout. Some
other type of protocols allow Alice to resolve only with an arbiter that Bob has already resolved with (or
vice versa). In analyzing such types of protocols, we will considerHR (t) andMR (t) as dynamic, letting
them change with those actions. We discuss the relation between the use of timeouts and dynamic sets in
fair exchange protocols more in Section 8.

We will consider any action that results in a change in those sets as new time steps, but there is no need
to treat other events as separate time steps since they do notconstitute a significant part of the analysis of
the protocol instance. Therefore, one can think as if any party can contact any number of arbiters at a given
time stept.

Lastly, the friends of a malicious party can also change withtime, if the adversary is allowed to adap-
tively corrupt arbiters. In that case, we will use the notation F(t). t = 0 denotes the time when the dispute
resolution begins (the time the honest party enters itsDisputestate, not the time the protocol execution
begins).

4 Framework for Analysis of DAFE Protocols
In this section, we will provide our framework for analyzingDAFE (and DAFET) protocols. Our frame-
work is composed of different scenarios that can take place during the execution of an instance of a DAFE
protocol. Once we have lemmas related to those scenarios stating the necessary (not necessarily sufficient)
conditions that need to be satisfied so that the given scenario satisfies the semantic fairness property, then
we can analyze different protocol types in the next section.Since our results are impossibility or optimality
type of results, it is enough to analyze necessary (but maybenot sufficient) conditions. In all our scenar-
ios (except the last one), we assume that neither party is in the Resolvedstate yet. We consider dynamic
resolution sets for our scenario analysis, since static sets are a special case of dynamic sets.

4.1 Scenario 1:M can Abort

In this scenario, we consider a protocol instance where the malicious party has the ability to abort and
resolve. The honest party can abort and resolve too, but the results still apply even if he is restricted to only
resolve action. In this scenario, actions 1, 2, and 4 in Section 3 are possible. Our results in this section will
remain valid regardless of action 3 being possible.

Lemma 1. Every DAFE protocol instance needs to make sure that there always exists a time t when∀MR∈
MR (t) ∃HR ∈HR (t) s.t. HR ⊆ MR−F(t).

Proof. Assume otherwise: At any time in the protocol instance∃MR ∈ MR (t) s.t. ∀HR ∈ HR (t) HR 6⊆
MR−F(t). The malicious party can break fairness as follows: He aborts with the set of arbitersRA−MR,
and resolves with the set of arbitersMR. Since noHR is now a subset of the available arbitersRA = MR−F(t),
the honest party cannot resolve, while the malicious party already resolved. Thus this protocol instance is
unfair (does not satisfy semantic fairness).

Corollary 1. At any given time t during the protocol instance before the protocol is resolved for H, we need
∀MR ∈MR (t) MR 6⊆ F(t) since otherwise we need∃HR ∈HR (t) s.t. HR = ∅.

Corollary 2. We need a time t to always exist satisfying∃HR ∈ HR (t) s.t. HR∩F(t) = ∅ since otherwise
the lemma cannot be satisfied (H can never resolve).

Corollary 3. Using threshold-based mechanisms, we need that there always exists a time t that satisfies
TH ≤ TM −|F(t)|.

6

Corollary 4. Using threshold-based mechanisms, at any given time t during the protocol instance before
the protocol is resolved for H, we need TM > |F(t)| since otherwise we need TH ≤ 0.

Corollary 5. Using threshold-based mechanisms, we need a time t to alwaysexist satisfying TH ≤ n−|F(t)|
since otherwise H can never resolve.

4.2 Scenario 2: OnlyH can Abort

In this scenario, we assume that the malicious party has the ability to resolve only, whereas the honest party
can abort and resolve. In this scenario, actions 1 to 3 in Section 3 are possible (action 4 is not possible).

Lemma 2. Every DAFE protocol instance needs to make sure that there always exists a time t when∀MR∈
MR (t) ∃HR ∈HR (t) s.t. HR ⊆ MR−F(t).

Proof. Assume otherwise: At any given time∃MR ∈ MR (t) s.t. ∀HR ∈ HR (t) HR 6⊆ MR− F(t). The
malicious party can break fairness as follows: WhenH wants to abort the protocol,M lets abort messages
to all arbiters inRA−MR to reach their destination, but intercept the messages toMR−F(t) (F(t) really
does not matter since his friends will help him anyways). He then resolves withMR. Even ifH notices this,
he cannot go and resolve since there is no setHR ∈ HR (t) that will allow him to. Therefore, this protocol
instance also does not satisfy semantic fairness.

Note that Lemma 2 is the same as Lemma 1, and therefore all the corollaries apply to this scenario too.

4.3 Scenario 3:H can Resolve only after Timeout

In this scenario, aborts can be caused by timeouts only. The malicious party can resolve before and after the
timeout, but the honest party can resolve only after the timeout. Therefore, actions 2 and 5 are possible, but
not 3 and 4. Action 1 is possible only after the timeout.

Lemma 3. Every DAFET protocol instance needs to make sure there always exists a time t when∀MR ∈
MR (t) ∃HR ∈HR (t) s.t. HR ⊆ MR−F(t).

Proof. Assume otherwise: At any given time∃MR ∈ MR (t) s.t. ∀HR ∈ HR (t) HR 6⊆ MR− F(t). The
malicious party can break fairness as follows:M resolves withMR before the timeout. When the timeout
occurs, all arbiters inRA−RH −RM to go to theirAbortedstates (RH being the empty set), which means
now RA = MR−F(t). But H cannot resolve with the remaining available arbiters and hence this protocol
instance is not semantically fair.

Note that Lemma 3 is the same as Lemma 1, and therefore all the corollaries apply to this scenario too.

4.4 Scenario 4:M already Resolved

All of the scenarios above assumed that bothH andM start in theirWorkingstates when they are performing
the resolutions. Yet, it might be perfectly possible that the resolution starts at a point in the protocol where
one of the parties has already resolved (and hence is in itsResolvedstate). IfH has already resolved, then
there is no point to further analyze, since we do not care if the protocol is fair to the malicious party. But if
M has already resolved, then we need the following lemma to hold:

Lemma 4. Every DAFE protocol instance needs to make sure that there always exists a time t when∃HR ∈
HR (t) s.t. HR∩F(t) = ∅.

Proof. Assume at all times∀HR∈HR (t) HR∩F(t) 6= ∅. The malicious party has already resolved but since
all possible ways to resolve forH has to go through one of the malicious party’s friends, he hasno hope of
resolving.

This lemma corresponds to corollary 2 and hence corollary 5 also applies here.

7

5 Impossibility Results on DAFE Protocols
The previous section analyzed possible scenarios in DAFE and DAFET protocol instances. In this section,
we will analyze DAFE protocol types, using the results from different scenarios that might come up in
instances of such protocols. We will conclude that no DAFE protocol can provide fairness under any realistic
assumption. DAFET protocols using dynamic sets are possible indeed, and we analyze an existing DAFET
protocol in Section 7.

For every protocol type, we will consider the following two cases: The case where the honest player
plays the role of Alice, and the case where he plays the role ofBob. We denote the set of sets for Alice
to resolve asAR (t); similarly BR (t) is for Bob to resolve. The difference in types of protocols related to
these sets being static or dynamic will play a big role. For ease of analysis (and since it is enough for the
impossibility results in this section) we will assume the friend listF(t) of the malicious party is static (does
not change with time).7 Since this is a weaker adversary, our impossibility resultswill also apply when we
consider stronger adversaries.8 We will useFA to denote friends of a malicious Alice, andFB to denote
friends of a malicious Bob.

In the DAFE protocol types below, we will consider the setsAR (t) andBR (t) as static (therefore using
the notationAR ,BR), which eases the use of the lemmas. With static sets, we do not need to consider
different times in the protocol instance. A lemma saying there must exist a timet can be simplified by just
looking at the initial sets.

5.1 Protocol 1: Alice and Bob can Abort and Resolve

In this type of protocols, Alice is given the ability to abortand resolve, and Bob is also given the ability to
abort and resolve.

Case 1: Honest Alicevs. Malicious Bob: This case falls under Scenario 1, which means (for the static
case) any DAFE protocol needs to have∀BR ∈ BR ∃AR ∈ AR s.t. AR ⊆ BR−FB.

Case 2: Malicious Alicevs. Honest Bob: This case also falls under Scenario 1, which means (again
for the static case) any DAFE protocol needs to have∀AR ∈ AR ∃BR ∈ BR s.t. BR ⊆ AR−FA.

These two cases lead to the conclusion that every protocol instance needs two setsAR∈AR andBR∈BR

s.t. AR = BR ⊆ {trusted arbiters}. These arbiters must be trusted, and so there is no point in distributing
the arbiters. It is even worse: If any of these arbiters are corrupted, the DAFE protocol fails to be fair.
Therefore, no such realistic DAFE protocol can exist.

When considering threshold-based schemes, this corresponds to the requirement thatTB ≤ TB−FA−
FB, which means no party should have any friends for such a protocol to be fair. If even one arbiter is
corrupted, the protocol becomes unfair. Therefore, no suchrealistic DAFE protocol can exist. Since set-
based mechanisms cover threshold-based ones, we will not discuss threshold-based schemes separately
again unless necessary. All impossibility results proven for set-based mechanisms directly apply in the
context of threshold-based ones.

5.2 Protocol 2: Only one party can Abort

In this type of protocols, Alice is given the ability to abortand resolve, whereas Bob is given only the ability
to resolve. Analysis of protocols that are symmetric to thistype of protocols (where Bob can abort and
resolve, and Alice can only resolve) obviously yields to thesame conclusions.

Case 1: Honest Alicevs. Malicious Bob: This case falls under Scenario 2, which requires that DAFE
protocols need to make sure∀BR ∈ BR ∃AR ∈ AR s.t. AR ⊆ BR−FB.

Case 2: Malicious Alicevs. Honest Bob: This case falls under Scenario 1, which means any DAFE
protocol needs to have∀AR ∈ AR ∃BR ∈ BR s.t. BR ⊆ AR−FA.

7This corresponds to the familiar “static corruption model”in many other works.
8A more powerful adversary can dynamically corrupt arbiters, having a dynamic set of friends.

8

We can conclude as in the previous section (Section 5.1) thatevery protocol instance needs two sets
AR ∈ AR andBR ∈ BR s.t. AR = BR ⊆ {trusted arbiters}. Again, this means there is no point in distributing
the arbiters in terms of trust. Remember that threshold-based versions have the same impossibility.

Unfortunately, the versions of the state-of-the-art optimistic fair exchange protocols we analyzed in
Section 2.1without any timeouts fall under this protocol category. Note that, this means, using static
resolution sets and autonomous arbiters, those protocols cannot be extended to use multiple arbiters and
remain fair.

6 Relaxing Autonomous Arbiters Assumption
In this section, we will extend our framework by relaxing theautonomous arbiters assumption to allow for
ordered aborts by the honest party and therefore include a broader range of protocols in our framework. We
immediately notice that the only places where we really usedthat assumption are Scenario 2 and Protocol 2.
Results about all other scenarios and protocols stay unchanged when we do the relaxation by removing the
explicit Disputestate in the ITM definitions of the participants, thus considering contacting arbiters with a
specific order. Yet, we still are not considering byzantine fault tolerance or secure multiparty computation
techniques.

6.1 Scenario 2 Revisited

In Section 4.2, we analyzed the scenario in which the malicious party has the ability to resolve only, whereas
the honest party can abort and resolve. We analyzed that scenario using the autonomous arbiters assumption.
Below, we will remove the requirement that arbiters are contacted simultaneously (without any specific
order), and revisit our analysis.

6.1.1 Scenario 2 with Threshold-based Mechanisms

Here, we are limiting our protocol instances to the case where only threshold-based mechanisms are used.
This means, the setsHR (t) andMR (t) are of the specific form we have described before. Remember, the
setHR (t) is composed of all subsets ofN with TH or more arbiters. Similarly, the setMR (t) is composed
of all subsets ofN with TM or more arbiters.TH andTM are the corresponding thresholds.

Lemma 5. Every DAFE protocol instance needs to make sure there alwaysexists a time t when TH ≤
TM −|F(t)|.

Proof. Assume otherwise: At all timesTH > TM − |F(t)|. Malicious party can break fairness as follows:
WhenH wants to abort the protocol (as directed by the protocol, most probably triggered by an incorrect
input from the malicious party),M waits untilH aborts withn−TH + 1 arbiters.H can no longer resolve
after this point since there are less thanTH arbiters left in the set of available arbitersRA. At this point,M
intercepts any more abort messages fromH and resolves withTM −|F(t)| honest arbiters (as well as|F(t)|
friends). Therefore, this protocol instance is unfair (does not satisfy semantic fairness).

Notice that Lemma 5 is the same as Corollary 3. Therefore, Corollaries 4 and 5 also apply here.

6.1.2 Scenario 2 General Case

Now, we remove all the restrictions we made on our scenario inthe previous sub-scenarios. This means,
we allow for any set-based resolution mechanism, and we evenallow the protocol to specify an order of
arbiters for aborting, possibly depending on the executionof the protocol instance. One can think of it as
the honest party aborting with one arbiter at every time step, and reconsidering his decision to abort each
time. Therefore, the arbiters are no longer completely autonomous.

9

Lemma 6. Every DAFE protocol instance needs to make sure that at all times t∀MR ∈MR (t) MR 6⊆ F(t)
(before H has resolved) AND there exists a time t when∃HR ∈HR (t) s.t. HR∩F(t) = ∅.

Proof. Assume there exists a time when∃MR∈MR (t) MR 6⊆ F(t) (beforeH has resolved). Malicious party
can break fairness as follows: WhenH wants to abort the protocol,M lets him abort with all the arbiters.
Then, he goes and resolves withMR, all members of which are his friends.

Now assume at all times∀HR ∈ HR (t) HR∩ F(t) 6= ∅. Malicious party can break fairness by just
resolving with anyMR ∈ MR (t). Since all possible ways to resolve forH has to go through one of the
malicious party’s friends, he has no hope of resolving.

In this general scenario, as in the previous cases, we would like to be able to prove that any DAFE
protocol instance needs to make sure there always exists a time t when∀MR ∈ MR (t) ∃HR ∈ HR (t) s.t.
HR ⊆ MR−F(t). Even though this seems a very plausible and realistic conclusion, several problems arise
with its proof.

The general idea is to use an adversary very similar to the onein Section 4.2. So, the adversary will
let H to abort with any arbiter inRA−MR. Then, ifH wants to abort with an arbiter inMR−F(t), M will
intercept and resolve withMR. The problem is that this works depending on the order of aborts. There
might be a possible protocol construction and order specification that makes sureH can still resolve once
he detects this behavior. We do not know of and could not come up with such a construction, due mostly
to the fact thatF(t) is unknown to the honest party, and hence designing a protocol instance using an order
that works without knowingF(t) seems impossible. Even though the order may work for some protocol
instances, having an order that works with high probability(that works on all but negligible fraction of
protocol instances) does not seem possible. Furthermore, the moment we allow more powerful adversaries,
since the order of arbiters to abort for the honest participant is public, the adversary might “bribe” some
“key” arbiters to become his friends and make sure the ordering fails to provide fairness (in the dynamical
corruption model). We admit that we have no proof for this general case with less powerful adversaries, but
we conjecture that the same predicate for scenario 4.2 as before will hold.

6.2 Protocol 2 Revisited

In this type of protocols, Alice is given the ability to abortand resolve, whereas Bob is given only the
ability to resolve. Analysis of protocols that are symmetric to this type of protocols (where Bob can abort
and resolve, and Alice can only resolve) obviously yields tothe same conclusions. The predicate for case
1 changes when we relax our autonomous arbiters assumption.Case 2 stays the same. Remember, the
resolution sets we consider here are static.

Case 1: Honest Alicevs. Malicious Bob: This case falls under Scenario 2, which requires special
treatment when arbiters are not contacted simultaneously for aborting. For threshold-based mechanisms,
every DAFE protocol needs to haveTA ≤ TB−|FB|. For the most general case of DAFE protocols, we need
∀BR ∈ BR BR 6⊆ FB AND ∃AR ∈ AR s.t. AR∩FB = ∅.

Case 2: Malicious Alicevs. Honest Bob: This case falls under Scenario 1, which means any DAFE
protocol needs to have∀AR ∈ AR ∃BR ∈ BR s.t. BR ⊆ AR−FA. Remember, Corollary 3 (using threshold-
based mechanisms) requireTB ≤ TA−|FA|.

Regarding DAFE protocols using threshold-based arbiter resolution mechanisms, we can conclude
(from the two cases above) that no such meaningful protocol can exist (TA ≤ TB−|FB| andTB ≤ TA−|FA|
givesTA ≤ TA− |FA| − |FB|, which means all the arbiters need to be trusted). Hence, there is no point in
distributing the arbiters in terms of trust. It is even worsesince we need to trust every single arbiter, and the
protocol cannot be fair even if only one arbiter is corrupt.

Regarding general set-based DAFE protocols, we cannot conclude an immediate impossibility. But
following our discussion in Section 6.1.2, we conjecture that no such useful protocol can exist.

10

Unfortunately, as we have shown in Section 2.1, the versionsof the state-of-the-art protocols we an-
alyzed in Section 2.1without any timeouts fall under this protocol category. So the impossibility with
threshold-based mechanisms, and our conjecture apply to very common real cases, even when the arbiters
are not contacted simultaneously by the honest party.

7 Analysis of an Existing DAFET Protocol using Dynamic Resolution Sets
In this section, we analyze an existing DAFET protocol that satisfy the predicates required by our analysis
in Section 4. The main property of this protocol is that it uses dynamic resolution sets: The set of arbiters
needed by a party for resolution changes during the course ofthe execution of the protocol instance. By
adjusting resolution sets reactively, this protocol can provide semantic fairness.

AV Protocol [6] This protocol is due to Avoine and Vaudenay (AV) [6]. In this protocol, timeouts are used
for aborting (it is a DAFET protocol). It is a three-step protocol in which Alice starts by sending verifiable
secret shares encrypted under each arbiter’s public key. Then, Bob responds with his secret, and Alice
responds with her secret. To resolve, Bob contactsk arbiters to get the decrypted shares and reconstruct the
secret of Alice (wherek is the threshold for the secret sharing scheme). Before giving the decrypted share,
each honest arbiter asks for the secret of Bob.9 Hence, the setBR (t) contains all subsets ofN with k or
more arbiters andAR (t) is initially empty10.

The state semantics obviously coincide with our 3-state definition. The participants either succeed in
obtaining the other party’s exchange item and hence end at their Resolvedstate, or they fail to do so, ending
at theirAbortedstate. The honest arbiters will either help both participants or abort at the timeout and help
neither.

Even though in the AV protocol the honest arbiters directly contact Alice when Bob resolves with them,
we can see it as the arbiters storing Bob’s secret, and Alice contacting them to obtain Bob’s secret later on.
Since Alice can only resolve after Bob, and Bob has to resolvebefore the timeout, it is safe to think of this
protocol as letting Alice to resolve only after the timeout.So, setsHR (t) andMR (t) change according to
the following additional rule regarding the actions (remember the actions in Section 3):

Action 6 (Bob resolves with an arbiterX ∈RA). The effect is that a set{X} is added to the set of setsAR (t).

This rule is there since in the AV protocol, when Bob contactsan honest arbiter, that arbiter contacts
Alice and sends Bob’s whole secret. It guarantees that the moment a malicious Bob resolves with any
honest arbiter, honest Alice is guaranteed to be able to resolve. Let us analyze the two cases and see how
this protocol satisfies the lemmas regarding scenarios.

Case 1: Honest Alicevs. Malicious Bob: This case falls under Scenario 3, which means any DAFET
protocol needs to make sure there always exists a time when∀BR ∈ BR (t) ∃AR ∈ AR (t) s.t. AR ⊆ BR−FB.

Case 2: Malicious Alicevs. Honest Bob: Depending on at which point of the protocol the resolution
begins, the malicious Alice might have already resolved, inwhich case this case falls under Scenario 4,
which requires there exists a time when∃BR ∈ BR (t) s.t. BR∩FA = ∅.

Lemma 7. AV protocol cannot provide semantic fairness unless for alltimes t∀BR ∈ BR (t) BR 6⊆ FB AND
for some time t∃BR ∈ BR (t) s.t. BR∩FA = ∅.

Proof. It follows directly from the analysis of the cases above using corollary 1 for case 1.

The AV protocol achieves semantic fairness using dynamic sets as follows: The setAR (t) is initially
empty. When Bob contacts an arbiterX, action 6 above takes place, and hence the set{X} is added to the
set of setsAR (t) (the threshold for Alice effectively becomes 1). Therefore, once Bob contacts an honest
arbiter (not one of his friends), then Alice is guaranteed tobe able to resolve. This saves an honest Alice

9The user should refer to [6] for any more details.
10It does not contain the empty set, it is empty. This means no set of arbiters is sufficient for Alice to resolve.

11

against a malicious Bob (case 1). In case 2, as long as Bob can find a set of honest arbiters that he can
resolve with, he is saved against malicious Alice.

Actually, the AV protocol [6] uses threshold-based mechanisms instead of set-based ones, therefore we
have the following corollary:

Corollary 6. AV protocol cannot provide semantic fairness unless|FB| < TB AND TB ≤ n−|FA|.

It is important to notice that the AV paper [6] proves essentially the same result. Thus, we have proven
that the bounds proven in that paper are tight and hence the protocol is optimal in that sense. Furthermore,
this result is applicable to all protocols of the same type; No DAFET protocol of the same type can achieve
better bounds. In particular, the same technique of employing multiple autonomous arbiters can be used on
[4] and [15] (as described in Section 2.1) to convert their timeout-based versions to DAFET protocols, and
the same lemma will hold.

As the corollary immediately reveals, when usingn arbiters, to obtain maximum tolerance, one should
set the threshold for BobTB = n/2 so that the protocol tolerates up ton/2−1 friends of each participant.
Of course, this greatly reduces the efficiency of the resolution of the optimistic fair exchange protocol.

8 Discussion: Timeouts and Dynamic Resolution Sets
As we have proved in Section 5.2, the natural extension of optimistic fair exchange protocols without time-
outs to make them DAFE protocols lead to an impossibility result, whereas Section 7 shows an existing
DAFET protocol that employs timeouts. Therefore, we can conclude that the timeouts play an important
role in optimistic fair exchange protocols when we would like to employ multiple autonomous arbiters.
Even without completely autonomous arbiters, Section 6.2 shows an impossibility of DAFE protocols us-
ing threshold-based mechanisms, and even with set-based mechanisms, it is not clear how such a DAFE
protocol can be constructed.

Timeouts are tied to the use of dynamic sets in general (as we did for DAFET protocols). When only
one party can resolve before the timeout, static resolutionsets lose their meaning since the resolution set for
the party who cannot resolve before the timeout is empty until the timeout. That set gets defined only after
the timeout, which results in that set being dynamic in some sense. As shown in Section 7, this helps AV
protocol achieve semantic fairness.

This suggests that even though timeouts may not be a nice feature in terms of system design, it really
helps when the system needs to be extended to use multiple arbiters (together with the use of dynami-
cally changing resolution sets). Thus, we suggest the research community to carefully consider versions of
optimistic fair exchange protocols that use timeouts.

9 Conclusion
In this paper, we presented a framework to analyze DAFE protocols, which are natural extensions of opti-
mistic fair exchange protocols to make them use multiple autonomous arbiters. Using the presented frame-
work, we have proved that DAFE protocols cannot provide fairness. Even when we extended our framework
by relaxing the autonomy assumption about the arbiters, we found out that even broader classes of optimistic
fair exchange protocols fall under our impossibility results. We then switched to the DAFET model to in-
clude timeouts and dynamically changing sets of arbiters toresolve with. We analyzed one existing DAFET
protocol using our framework and proved that the previous bounds on the required number of honest arbiters
are optimal. No DAFET protocol of the same type can achieve better bounds. We also showed that timeouts
and dynamic resolution sets play an important role in the design of such distributed arbiter fair exchange
protocols.

12

References
[1] A. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. Martin, andC. Porth. Bar fault tolerance for cooperative

services. InACM SOSP, 2005.

[2] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange. InACM CCS, 1997.

[3] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. InEUROCRYPT,
1998.

[4] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures.IEEE Selected
Areas in Communications, 18:591–610, 2000.

[5] G. Ateniese. Efficient verifiable encryption (and fair exchange) of digital signatures. InACM CCS,
1999.

[6] G. Avoine and S. Vaudenay. Optimistic fair exchange based on publicly verifiable secret sharing.
ACISP, 2004.

[7] F. Bao, R. Deng, and W. Mao. Efficient and practical fair exchange protocols with off-line TTP. In
IEEE Security and Privacy, 1998.

[8] M. Belenkiy, M. Chase, C. Erway, J. Jannotti, A. Küpçü, A. Lysyanskaya, and E. Rachlin. Making
p2p accountable without losing privacy. InACM WPES, 2007.

[9] J. Camenisch and I. Damgård. Verifiable encryption, group encryption, and their applications to group
signatures and signature sharing schemes. InASIACRYPT, 2000.

[10] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In
CRYPTO, 2003.

[11] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. InACM
TOCS, pages 639–648, 1996.

[12] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party
secure computation. InSTOC, pages 494–503, 2002.

[13] Y. Dodis, P. Lee, and D. Yum. Optimistic fair exchange ina multi-user setting.LNCS, 4450:118, 2007.

[14] E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly verifiable secret
sharing and its applications. InEUROCRYPT, volume 1403 ofLNCS, pages 32–46, 1998.

[15] A. Küpçü and A. Lysyanskaya. Usable optimistic fairexchange. InCryptology ePrint Archive, Report
2008/431, 2008.

[16] S. Micali. Simultaneous electronic transactions withvisible trusted parties. US Patent 5,553,145,
1996.

[17] S. Micali. Simple and fast optimistic protocols for fair electronic exchange. InPODC, 2003.

[18] H. Pagnia and F. Gärtner. On the impossibility of fair exchange without a trusted third party.Darmstadt
University of Technology, TUD-BS-1999-02, 1999.

[19] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. InCRYPTO,
1991.

13

