Framework for Analyzing Optimistic Fair Exchange with
Distributed Arbiters

Alptekin Kiipcli and Anna Lysyanskaya
Brown University, Providence, RI, USA
{kupcu,anna@cs.brown.edu

We nominate Alptekin Kiipci for the Best Student Paper rilva

Abstract

Fair exchange is one of the most fundamental problems irselistributed computation. Alice has
something that Bob wants, and Bob has something that AlicgsvaA fair exchange protocol would
guarantee that, even if one of them maliciously deviates fitee protocol, either both of them get the
desired content, or neither of them do. It is known that no-p&ety protocol can guarantee fairness
in general; therefore the presence of a trustdaiter is necessary. In optimistic fair exchange, the
arbiter only gets involved in case of faults. To reduce thsttput in an arbiter, it is natural to consider
employing multiple arbiters.

Avoine and Vaudenay (AV) [6] employ multiple autonomousitats in their optimistic fair exchange
protocol which uses timeout mechanisms. They leave two gpestions: (1) Can an optimistic fair
exchange protocol without timeouts provide fairness whepleying multiple autonomous arbiters? (2)
Can any other optimistic fair exchange protocol with timescachieve better bounds on the number of
honest arbiters required? In this paper, we answer botlignesegatively. To answer these questions,
we define a general class of optimistic fair exchange prdsagibh multiple arbiters, called “distributed
arbiter fair exchange” (DAFE) protocols. Informally, in 8ABE protocol, if a participant fails to send
a correctly formed message, the other party must contact soimset of the arbiters and get correctly
formed responses from them. The arbiters do not talk to etinghr,dut only to Alice and Bob. We prove
that no DAFE protocol can exist. However, our impossibitigults can be overcome in the timeout
model (where all arbiters have access to loosely synchedrilocks) and also in case the arbiters can
communicated.g, using secure multi-party computation wii{n?) communication).

1 Introduction

Optimistic fair exchange is a very useful primitive with nyaapplications including contract signing, elec-
tronic commerce, or even peer-to-peer file sharing [4, 3,,Z, B, 13, 15, 17, 16]. In a fair exchange
protocol, the participants Alice and Bob want to exchangaesiiems, and they want to do so fairly. Fair-
ness intuitively refers to Alice getting Bob’s item and Badtting Alice’s item at the end of the protocol, or
neither of them getting anything, even if one of them malisig deviates from the protocol. For technical
definitions of optimistic fair exchange protocols, we refex reader to [15].

It has been shown that no fair exchange protocol can prowadetete fairness without a trusted entity
[18], called thearbiter. In an optimistic fair exchange protocol, the arbiter is mvblved unless there is a
dispute between the participants. But having a singleddusttity is one of the biggest problems that make
the use of such protocols hard in practice. Therefore, tieeofisnultiple arbiters is generally motivated
by reducing the trust put on the arbiter [6, 5 very natural question is how to achieve fairness in the
absence of a single trusted arbiter; for example, what if aeh arbiters only a fraction of whom we want
to put our trust in? It is clear that this can be achieved usewyre multi-party computation techniques with
Q(n?) communication, but can we do better than that?

Avoine and Vaudenay (AV) [6] address this problem in theipgraby using verifiable secret sharing
techniques to employ multiple arbiters in their fair exajparprotocol. They also provide bounds on the
number of arbiters that need to be honest for their protaxdlet fair. A crucial point is that the protocol
uses timeout mechanisms. They leave two important issuepeas questions: (1) Can an optimistic fair
exchange protocol without timeouts provide fairness whapleying multiple autonomous arbiters? (2)
Can any other optimistic fair exchange protocol with timtsoachieve better bounds on the number of
honest arbiters required?

Unfortunately, in this paper, we answer both of these goestnegatively. Inspired by state-of-the-art
optimistic fair exchange protocols with a single arbiteg, define a general class of optimistic fair exchange
protocols with multiple arbiters, called “distributed @b fair exchange” (DAFE) protocols. Informally, in
a DAFE protocol, if one of the participants fails to send arectly formed message, the other participant
must contact some subset of the arbiters and get correcihetbresponses from them in order to make the
exchange faif. Two main properties of a DAFE protocol are its abort/resagmantics and the autonomy
of multiple arbiters used, as discussed in Section 2. In abpfetocol, the arbiters need not talk to each
other, but only to Alice and Bob. A third property is the statachine semantics of the participants. We
show that this class of protocols capture currently knowatesbf-the-art optimistic fair exchange protocols
extended to use multiple distributed arbiters in a veryiiivieimanner, as shown in Section 2.1. Under this
framework, in Section 4 we analyze scenarios that can oagimglthe execution of instances of optimistic
fair exchange protocols, and prove some predicates evehymotocol must satisfy to be able to provide
semantic fairness, which is a property that needs to bdisditisy all optimistic fair exchange protocols.

In Section 5, we prove that no DAFE protocol can provide fes3) answering the first open question
negatively. In Section 6, we prove impossibility of DAFE fwols using threshold-based mechanisms (any
k arbiters are enough for resolution) even when the autonsmadaiters assumption is relaxed. For protocols
using general set-based mechanisms keampiters will not be enough for resolution, specific setsbitars
need to be contacted), we cannot prove impossibility in thiaxed setting, but we conjecture that such
protocols are not possible. However, our impossibilityulesscan be overcome in the timeout model (where
all arbiters have access to loosely synchronized clockg}éso in case the arbiters can communicate. We
use our framework to analyze the existing AV protocol [6]hmsttimeout model in Section 7. We prove
that the bounds proven earlier for that protocol are optiamonstrating how easily our framework can
be applied for such an analysis, and hence answer the sependjaestion also negatively.

1it is possible to have multiple arbiters deployed for redgdhe load, but if only one of them is employed per exchange, w
do not consider that protocol DAFE.
20f course, if not even a single message is sent, there is mbto@entact arbiters. But this is not an interesting caseayae

anyway.

2 Definition of a DAFE protocol

In this section, we will define a general optimistic fair eange model that fits currently known state-of-
the-art optimistic fair exchange schemes that uses aregrhitd has semantics for aborting and resolving
that we will define below.

All the participants (Alice, Bob and the arbiters) are iatdive Tur-
ing Machines (ITMsJ. Those ITMs have the following 4 semantic states:
Working, Aborted, Resolved, Dispute (see Figure 1). These semantig
states can correspond to multiple states in the actual ITiMitdens of the
participants, but just these abstractions will be enougtrdoe our results.
Moreover, arbiters do not have tBésputestate. Furthermore, when in Sec-
tion 6 we relax one of our assumptions, even Alice and Bobnatihave Figure 1: Semantic view of
this Disputestate. the state machines of the par-

The ITM of each participant starts in torkingstate. Semantically, ticipants.

Working state denotes any state that the actual ITM of a particigait i

when the protocol is still taking place. When a participaoésinot receive the expected correctly formed
message from the other participant he can possibly aborté@de to contact the arbiters for resolving or
aborting with them, in which case the ITM of that participaniters itsDisputestate. If everything goes
well in the protocol execution (all messages received froendther party are correctly formed), then the
ITM of a participant can transition tResolvedstate directly from thaVorking state. Otherwise, if the
arbiters needed to be contacted, the ITM first visitsDimputestate, and then transitions to eitlidesolved

or Abortedstate.

When the protocol ends, Alice and Bob are allowed to end anihiortedor Resolvedstates (which
can correspond to multiple states in actual ITM definitiofishAlice or Bob ends at itRResolvedstate, then,
by definition, (s)he must have obtained the exchange item fhe other party. When the protocol ends, if
the ITM of a participant is not in itResolvedstate (or one of the corresponding states in the actual ITM
definition), it is considered to be in i&sbortedstate.

Using these semantic definitions, even an adversarial ITiMbeaconsidered to have those 4 states (since
it either obtains the other party’s item and hence ends &etolvedstate, or not therefore ending at its
Abortedstate). The adversarial ITM does not necessarily habésputestate, but this will not affect any
results presented in this paper.

Definition 1 (End of the Protocol) We say that the protocol has ended if (1) the honest partydenge
being in her eitheResolvedor Abortedstate, and (2) the adversary produced its final output atittsee
Resolvedor Abortedstate after running at most a polynomial number of stepsy(umhial in some security
parameter).

» Resolved

Aborted

Now that we defined our participants carefully, we can stateassumptions on them and define DAFE
protocols.

DISTRIBUTED ARBITER FAIR EXCHANGE (DAFE) PrRoTOCOLS DAFE protocols are optimistic fair
exchange protocols that can be characterized with theAfitp

e Exclusive states assumption
e Connection between arbiters’ state and Alice’s and Bob’s
e Autonomous arbiters assumption

We will talk about only complete DAFE protocols (optimisfair exchange protocols satisfying the
optimistic completeness definition in [15]): when both m#pants are honest, they end at theesolved
states. Since our goal here is to analyze fairness of sut¢bqgals, the only interesting case is when we have
one honest party denotédl and one malicious party denotddl. We will not consider cases where both
parties are malicious since there is no honest party to girote

3The ITMs have access to —possibly synchronized— clocksrfeaut mechanisms.

EXCLUSIVE STATES ASSUMPTION This assumption states that tResolvedand Aborted states are
mutually exclusive. For an arbiter, those states inforynalean whether or not the arbiter helped one of
the parties to resolve or abort. We assume that there is nbination of state transitions that can take an
honestarbiter from the Abortedstate to theResolvedstate, or vice versa. In most existing protocols, this
corresponds to the fact that the arbiter will not abort wittagticipant first and then decide to resolve with
him or the other participant, or vice versa.

Definition 2 (Aborting and Resolving with an Arbiter)f a participant interacts with an arbiter and aborts
with him, the arbiter goes to it8bortedstate, from where he will never switch to Resolvedstate. Simi-
larly, if a participant resolves with an arbiter, he goes teResolvedstate, from where he will never switch
to its Abortedstate.

Definition 3 (Aborted and Resolved Protocol Instancén aborted protocol instance means both Alice
and Bob ended at thei\borted states, and a resolved protocol instance means both AlideBarb ended
at their Resolvedstates.

CONNECTION BETWEEN ARBITERS STATE AND ALICE'S AND BOB’S: A resolution makes sense if
at least one of the parties has not resolved yet. In such aA&hkse or Bob can end in theiResolvedtates
(unless they already are in thdResolvedstates) only if a sufficient set of arbiters end in thR&solved
states. There can be multiple sets of arbiters, each saj batfficient for resolving, and those sets can be
different for Alice and Bob. All these will be clear in latezctions when we define those sufficient sets.

AUTONOMOUS ARBITERS ASSUMPTION We assume that the honest arbiters’ decisions are made au-
tonomously, without taking into account the decisions dfeotarbiters. Arbiters can arrive at the same
decision seeing the same input, but they will not consideh edher’s decision while making their own
decisions. In particular, this means no communicationdgitace between arbiters.

We argue that this is the most natural way of using multiplgtars, since the goal in general is to
distribute the trust efficiently. Without autonomy, byzastfault tolerance [1] or secure multiparty compu-
tation [11, 12] techniques can be applied, yielding costiytions Q(n?) communication whem arbiters
are employed).

To model this autonomy, we require the protocol design tealithe honest participants to contact all
arbiters at once. More formally, when the ITM of an honestipgant decides to contact the arbiters for
dispute resolution, the participant creates the messagertd to all of the arbiters before receiving any
response from any arbiter. One can model this withDisputestate in which the message to send to the
arbiters are prepared all at once. We will call this simwétaus (or unordered) resolve/abort. Note that this
only constrains honest Alice or Bob. A malicious party camaduce dependence between messages to
arbiters and responses from other arbiters. Later in Se6tige will relax this autonomy assumption.

All optimistic fair exchange protocols need to satisfy tlidwing semantic fairness property (for a
satisfactory definition of (optimistic) fair exchange mrobls, see [15]).

SEMANTIC FAIRNESS The semantic fairness property states that at the end gfrtiiecol, Alice and
Bob both end at the same state (they both end at thimirted states, or they both end at th&esolved
states). In other words, we need the protocol instance tdter @esolved or aborted as in Definition 3, for
every possible instance of the protocol.

Optimistic fair exchange protocols should also satisfytiimely resolutionproperty, which means that
the honest party need not wait indefinitely for any message fany other party. He can have a local
timeout mechanism with which he can decide to proceed withaiting. In particular, he can end his side
of the protocol any time he wants, ending atRissolvedr Abortedstate, according to the rules we defined
above.

Regular DAFE protocols do not have global timeout mechasjsand the sets of arbiters that Alice or
Bob can resolve with are well-defined by the protocol, andsda# change once the honest party is in its
Disputestate. We will show an extended version called DAFE with tiots (DAFET) where the protocols
are allowed to use timeouts. At the timeout specified by tle¢ogol, honest arbiters transition into their

Abortedstates. This is done using the (loosely synchronized) slatkhe ITMs. We call this event “an
arbiter timeouts”. Furthermore, we will allow the possibkts of arbiters to resolve with to change at this
timeout. This is our timeout model and it bypasses the inipibég results for DAFE protocols. These will
be more clear in later sections.

2.1 Sample DAFE Protocols

Many currently known optimistic fair exchange protocolf iiato the category of DAFE protocdls They
can be considered as special cases of DAFE protocols in vitwgk is only one arbiter. We also discuss
a way to extend them to employ multiple autonomous arbitgrgortunately, this means, those extended
protocols cannot provide fairness, as we will prove latethia paper that no DAFE protocol can provide
fairness.

As a representative of optimistic fair exchange protocals,will analyze a protocol due to Asokan,
Shoup and Waidner (ASW) [4]. They have two versions of theatqrol: one version that uses timeout-
based aborts (the version that can be converted to a DAFE®qmlp see Section 7), and one that does not
employ timeouts (the one we will discuss now). It is consedeone of the state-of-the-art signature ex-
change protocols, and tike first completely faipptimistic exchange protocol. An optimistic fair exchange
protocol for exchanging files are given in [15], and all owsadission here applies to that protocol too.

In terms of the state semantics of the participants, it iardleat the ending states of the participants can
be parsed inté\bortedandResolvedstates which are mutually exclusive. Since there is onlyarbéer, it
is autonomous. As for the connection between arbiter'® statl Alice’s and Bob's, it is clear that in case
of a dispute, their state depends on the arbiter’s.

Now, if we want to extend those protocols to use multiple aatoous arbiters, the easiest way is to
employ verifiable secret sharing techniques [6, 19, 14]. 3tage-of-the-art protocols employ verifiable
escrows [9, 10, 4, 15] under the (one and only) arbiter’s ipld@y. The intuition behind using verifiable
escrows is that the recipient can verify the encrypted ctrigethe content that is promised and the arbiter
can decrypt it, without learning the actual content. Vebiftasecret sharing techniques can be employed
to split the promised secret per arbiter. Each of these wsewaiih be encrypted under a different arbiter’'s
public key. The recipient can still verify those encryptédigs can be decrypted and combined to obtain the
promised secret, thereby effectively achieving the sana¢ampa verifiable escrow, but for multiple arbiters.
For a detailed explanation of how to use verifiable secretirsipan distributing the arbiters, we refer the
reader to [6].

When we extend the ASW protocol, instead of this verifiabte@s, the participants will use verifiable
secret sharing techniques as explained above and in [6]arBlegs of whether threshold- or set-based
secret sharing mechanisms are used, the resolution preceow requires contacting multiple arbiters. For
example, if the threshold for the secret sharing method isskdthe resolution will involve contacting at
leastk arbiters.

This did not change the state semantics of the participaatsur discussion above still holds. Because
we assume the arbiters are contacted simultaneously, tbaamy of the arbiters hold. As for the con-
nection between arbiters’ state and Alice’s and Bob'’s, esiresolution needk shares, and secure secret
sharing and encryption methods are used, a participant l@inahe other participant’s exchange item if
and only if (s)he resolves with at ledsarbiters (in case of a dispute). When arbitrary sets are ins¢éead
of thresholds, it is easy to see all these arguments willsgiply.

3 Notation

Remember that in a fair exchange scenario, Alice and Bob twegichange some items fairly. In case of
a dispute, they need to contact the arbiters. They are allaweake the following two actions with the

“4with a very basic and intuitive extension to make them useipielautonomous arbiters

arbiters:abort or resolve As noted in Definition 2, aborting with an honest arbiteretskim to hisAborted
state, whereas resolving with him would take him toRésolvedstate®

Let N denote the set of all arbiters, where there are a totalafthem (N| = n). An honest arbiter acts
as specified by the protocol. LEtbe the set of arbiters who are friends with a malicious piaditt. Those
arbiters are adversariél.

Define two setsHz andMy, which are sets of sets. Any dég € Hy, is a set of arbiters that is sufficient
for the honestparty toresolve(as defined in Section 2 during the discussion about the ctionebetween
arbiters’ state and Alice’s and Bob’s). Similarly, any d&t € M, is a set of arbiters that is sufficient for
the maliciousparty toresolve Therefore, by definition, in case of a dispute, the honesi peaill end at
her Resolvedstateif and only if she resolves withll the arbiters irany oneof the sets ity (unless she
already is in heResolvedstate). Similarly, the malicious party will end at iResolvedstateif and only if
he resolves witlall the arbiters irany oneof the sets inMy, (unless he already is in hResolvedstate).
For DAFE protocols, these sets are well-defined by the pamtdescription, and do not change once the
honest party enters ifSisputestate.

A special case of these sets can be represented as thresheld§, be the number of arbiters the
honest party needs to contact for resolution. SimilaFly, denotes the number of arbiters the malicious
party needs to contact for resolution. Thus, the>is composed of all subsets bif with Ty or more
arbiters. Similarly, the se¥z is composed of all subsets Nfwith Ty, or more arbiters.

DefineRy as the set of arbiters the honest paitiias already resolved with, aR; as the set of arbiters
the malicious partyv has already resolved with. Also defiRg as the set of all arbiters that are available
for H for resolution (among the onéthas not already resolved with). Initially, when the dismatsolution
begins, we assume thaly = @, Ry = F, andRa = N — F (and all arbiters are available for resolution to the
malicious party). We furthermore have the following acti@nd their effects on these sets:

Action 1 (H resolves with an arbiteX). The effect is that Rbecomes RU {X}.
Action 2 (M resolves with an arbiteX). The effect is that i becomes RU {X}.
Action 3 (H aborts with an arbiteX € Ra). The effect is that Rbecomes R— {X}.
Action 4 (M aborts with an arbiteX € Ra). The effect is that Rbecomes R— {X}.

As in previous work on optimistic fair exchange [15], we amguthat the adversary can re-order mes-
sages, delay the honest party’s messages to arbiterst iseawn message®tc. But he cannot delay
honest party’s messages indefinitely: the honest partyteatiy reaches the arbiters that he wants to con-
tact initially, and this occurs before the timeout if the toanl uses timeout mechanisms.

3.1 DAFET protocols (DAFE protocols with timeouts):

In DAFET protocols, we allow for timeouts by giving the adhs access to loosely synchronized clocks.
Instead of actions 3 and 4 above (honest or malicious padstiab), the following action is allowed:

Action 5 (An arbiterX € Ry — Ry — Ry timeouts) The effect is that Rbecomes R— {X}.

Another difference between DAFE and DAFET protocols is s %/ (t) and My, (t) being static and
dynamic, respectively. DAFE protocols define such setsa&stthe overall set of arbiters that needs to
be contacted for resolution does not change with time ore&dmest party enters iRisputestate (hence
the notation#y and My). Consider a DAFE type protocol that employs dynamic sé&tsthis: Bob can
resolve only with arbiters that Alice has already resolvéithw\e can think of it as Bob'’s set initially being
empty, and then getting populated. Unfortunately, thidqaol does not satisfy timely resolution (unless
there is a timeout in the protocol) since Bob may need to wadkifinitely for Alice.

5Due to the exclusive states assumption, this happens oalyafbiter is not already in iResolvedbr Abortedstate, respec-
tively.
5For example, they may appear as aborted to the honest pairtirdy may still resolve with the malicious party.

In contrast, we allow DAFET protocols to employ dynamic sé&isese sets may depend on the timeout
and possibly the parties’ actions in that particular inséaof the protocol. Consider the following two cases
as illustrative examples: Some type of protocols allovis keay, Alice to resolve only after a timeout. Some
other type of protocols allow Alice to resolve only with arbigéer that Bob has already resolved with (or
vice versa). In analyzing such types of protocols, we witisider #x (t) and Mg (t) as dynamic, letting
them change with those actions. We discuss the relationdeetthe use of timeouts and dynamic sets in
fair exchange protocols more in Section 8.

We will consider any action that results in a change in thetg as new time steps, but there is no need
to treat other events as separate time steps since they @omgittute a significant part of the analysis of
the protocol instance. Therefore, one can think as if antygan contact any number of arbiters at a given
time stept.

Lastly, the friends of a malicious party can also change tiuitte, if the adversary is allowed to adap-
tively corrupt arbiters. In that case, we will use the natafr(t). t = 0 denotes the time when the dispute
resolution begins (the time the honest party enter®ispute state, not the time the protocol execution
begins).

4 Framework for Analysis of DAFE Protocols

In this section, we will provide our framework for analyzilppAFE (and DAFET) protocols. Our frame-
work is composed of different scenarios that can take placegl the execution of an instance of a DAFE
protocol. Once we have lemmas related to those scenaritosgstiae necessary (not necessarily sufficient)
conditions that need to be satisfied so that the given saeratisfies the semantic fairness property, then
we can analyze different protocol types in the next sectBince our results are impossibility or optimality
type of results, it is enough to analyze necessary (but magbsufficient) conditions. In all our scenar-
ios (except the last one), we assume that neither party IseiRésolvedstate yet. We consider dynamic
resolution sets for our scenario analysis, since staticageta special case of dynamic sets.

4.1 Scenario 1:M can Abort

In this scenario, we consider a protocol instance where thkcious party has the ability to abort and
resolve. The honest party can abort and resolve too, buetudts still apply even if he is restricted to only
resolve action. In this scenario, actions 1, 2, and 4 in 8e@iare possible. Our results in this section will
remain valid regardless of action 3 being possible.

Lemma 1. Every DAFE protocol instance needs to make sure that thevaya exists a time t whéfMg €
Mg (t) IHR € Hg (1) s.t. HR C Mr— F(1).

Proof. Assume otherwise: At any time in the protocol instafddr € My (t) s.t. VHr € Hg (t) HR £
Mg — F(t). The malicious party can break fairness as follows: He aheith the set of arbiterBa — Mg,
and resolves with the set of arbitévg. Since ndHg is now a subset of the available arbit®s= Mg —F(t),
the honest party cannot resolve, while the malicious pdraady resolved. Thus this protocol instance is
unfair (does not satisfy semantic fairness). O

Corollary 1. Atany given time t during the protocol instance before ttegmol is resolved for H, we need
VMR € Mg (t) Mg € F(t) since otherwise we neéiHr € Hx (t) s.t. Hr = @.

Corollary 2. We need a time t to always exist satisfyiftdr € #z (t) s.t. HRNF(t) = & since otherwise
the lemma cannot be satisfied (H can never resolve).

Corollary 3. Using threshold-based mechanisms, we need that there alexdgts a time t that satisfies
Th <Tm—[F()].

Corollary 4. Using threshold-based mechanisms, at any given time t gidhie protocol instance before
the protocol is resolved for H, we neeg & |F(t)| since otherwise we neeg, K 0.

Corollary 5. Using threshold-based mechanisms, we need a time t to akxéstsatisfying i < n— |F(t)|
since otherwise H can never resolve.

4.2 Scenario 2: OnlyH can Abort

In this scenario, we assume that the malicious party hadhilitydo resolve only, whereas the honest party
can abort and resolve. In this scenario, actions 1 to 3 in@e8tare possible (action 4 is not possible).

Lemma 2. Every DAFE protocol instance needs to make sure that thevaya exists a time t whefMr €
MK(t) JdHR € }[K(t) StHRC Mgr— F(t).

Proof. Assume otherwise: At any given timéMg € My () S.t. VHr € Hg (1) HR € Mr—F(t). The
malicious party can break fairness as follows: Witwants to abort the protocdM lets abort messages
to all arbiters inRy — MR to reach their destination, but intercept the messagdégte F(t) (F(t) really
does not matter since his friends will help him anyways). kéntresolves wittg. Even ifH notices this,
he cannot go and resolve since there is ndet H (t) that will allow him to. Therefore, this protocol
instance also does not satisfy semantic fairness. O

Note that Lemma 2 is the same as Lemma 1, and therefore albtbBaries apply to this scenario too.

4.3 Scenario 3:H can Resolve only after Timeout

In this scenario, aborts can be caused by timeouts only. Blieious party can resolve before and after the
timeout, but the honest party can resolve only after thedimeTherefore, actions 2 and 5 are possible, but
not 3 and 4. Action 1 is possible only after the timeout.

Lemma 3. Every DAFET protocol instance needs to make sure there alwaigts a time t wheviMg €
Mg (t) IHR € Hg (1) s.t. HR C Mr—F(1).

Proof. Assume otherwise: At any given timéMg € My (t) s.t. VHg € Hg (1) HR € Mr—F(t). The
malicious party can break fairness as follows:resolves withMr before the timeout. When the timeout
occurs, all arbiters iRy — Ry — Ry to go to theirAbortedstates Ry being the empty set), which means
now Ry = Mg — F(t). ButH cannot resolve with the remaining available arbiters amtéehis protocol
instance is not semantically fair. O

Note that Lemma 3 is the same as Lemma 1, and therefore albtbaries apply to this scenario too.

4.4 Scenario 4:M already Resolved

All of the scenarios above assumed that déthndM start in theilnWorkingstates when they are performing
the resolutions. Yet, it might be perfectly possible that thsolution starts at a point in the protocol where
one of the parties has already resolved (and hence is Reg®lvedstate). IfH has already resolved, then
there is no point to further analyze, since we do not carecifafotocol is fair to the malicious party. But if
M has already resolved, then we need the following lemma @ hol

Lemma 4. Every DAFE protocol instance needs to make sure that thevays exists a time t whetHg €
Hg (1) s.t. HRNF(t) = 2.

Proof. Assume at all timeSHg € Hz (t) HRNF(t) # @. The malicious party has already resolved but since
all possible ways to resolve fét has to go through one of the malicious party’s friends, henwalsope of
resolving. O

This lemma corresponds to corollary 2 and hence corollatg®applies here.

7

5 Impossibility Results on DAFE Protocols

The previous section analyzed possible scenarios in DABED&FET protocol instances. In this section,
we will analyze DAFE protocol types, using the results froifiedent scenarios that might come up in
instances of such protocols. We will conclude that no DAR&Eqwol can provide fairness under any realistic
assumption. DAFET protocols using dynamic sets are passibeed, and we analyze an existing DAFET
protocol in Section 7.

For every protocol type, we will consider the following twases: The case where the honest player
plays the role of Alice, and the case where he plays the rolgobf We denote the set of sets for Alice
to resolve asiy (t); similarly B (t) is for Bob to resolve. The difference in types of protocolste to
these sets being static or dynamic will play a big role. Faeeaf analysis (and since it is enough for the
impossibility results in this section) we will assume thierfid listF(t) of the malicious party is static (does
not change with time}. Since this is a weaker adversary, our impossibility resuilisalso apply when we
consider stronger adversarfesiVe will useFa to denote friends of a malicious Alice, afig to denote
friends of a malicious Bob.

In the DAFE protocol types below, we will consider the s@ig(t) andBx (t) as static (therefore using
the notationfg , By), which eases the use of the lemmas. With static sets, we tlnesal to consider
different times in the protocol instance. A lemma sayingehaust exist a timé can be simplified by just
looking at the initial sets.

5.1 Protocol 1: Alice and Bob can Abort and Resolve

In this type of protocols, Alice is given the ability to abartd resolve, and Bob is also given the ability to
abort and resolve.

Case 1: Honest Alicevs. Malicious Bob: This case falls under Scenario 1, which means (for thecstati
case) any DAFE protocol needs to haiBr € Bz JAr € Ag S.t. RC Br—Fg.

Case 2: Malicious Alicevs. Honest Bol This case also falls under Scenario 1, which means (again
for the static case) any DAFE protocol needs to hafg € 4z IBr € By S.t. BR C AR —Fa.

These two cases lead to the conclusion that every protostalrine needs two seig € A5 andBgr € By
s.t. Ax=Bg C {trusted arbiters. These arbiters must be trusted, and so there is no poinsinhditing
the arbiters. It is even worse: If any of these arbiters areupted, the DAFE protocol fails to be fair.
Therefore, no such realistic DAFE protocol can exist.

When considering threshold-based schemes, this corrdsgorthe requirement thdg < Tg — Fa—
Fg, which means no party should have any friends for such a gobto be fair. If even one arbiter is
corrupted, the protocol becomes unfair. Therefore, no sealistic DAFE protocol can exist. Since set-
based mechanisms cover threshold-based ones, we will sctsdi threshold-based schemes separately
again unless necessary. All impossibility results provansket-based mechanisms directly apply in the
context of threshold-based ones.

5.2 Protocol 2: Only one party can Abort

In this type of protocols, Alice is given the ability to abarid resolve, whereas Bob is given only the ability
to resolve. Analysis of protocols that are symmetric to tiise of protocols (where Bob can abort and
resolve, and Alice can only resolve) obviously yields toshene conclusions.

Case 1: Honest Alicevs. Malicious Bob: This case falls under Scenario 2, which requires that DAFE
protocols need to make swBr € By JAR € Ag S.t. RC Br—Fs.

Case 2. Malicious Alicevs. Honest Bola This case falls under Scenario 1, which means any DAFE
protocol needs to hawéAr € Az IBr € By S.t. BRC AR—Fa.

"This corresponds to the familiar “static corruption modalinany other works.
8A more powerful adversary can dynamically corrupt arbjthesing a dynamic set of friends.

We can conclude as in the previous section (Section 5.1)etfety protocol instance needs two sets
AR € Ay andBr € By s.t. Ar = Bgr C {trusted arbiters. Again, this means there is no point in distributing
the arbiters in terms of trust. Remember that thresholédbaersions have the same impossibility.

Unfortunately, the versions of the state-of-the-art ofsiin fair exchange protocols we analyzed in
Section 2.1without any timeouts fall under this protocol category. Note thhis imeans, using static
resolution sets and autonomous arbiters, those protoeoisot be extended to use multiple arbiters and
remain fair.

6 Relaxing Autonomous Arbiters Assumption

In this section, we will extend our framework by relaxing tngonomous arbiters assumption to allow for
ordered aborts by the honest party and therefore includeaalbr range of protocols in our framework. We
immediately notice that the only places where we really uBatlassumption are Scenario 2 and Protocol 2.
Results about all other scenarios and protocols stay ugelgawhen we do the relaxation by removing the
explicit Disputestate in the ITM definitions of the participants, thus coasitg contacting arbiters with a
specific order. Yet, we still are not considering byzantiagltftolerance or secure multiparty computation
techniques.

6.1 Scenario 2 Revisited

In Section 4.2, we analyzed the scenario in which the maigjmarty has the ability to resolve only, whereas
the honest party can abort and resolve. We analyzed thadsc@sing the autonomous arbiters assumption.
Below, we will remove the requirement that arbiters are actetd simultaneously (without any specific
order), and revisit our analysis.

6.1.1 Scenario 2 with Threshold-based Mechanisms

Here, we are limiting our protocol instances to the case beaty threshold-based mechanisms are used.
This means, the sety (t) and Mx (t) are of the specific form we have described before. Rementizer, t
setHg (t) is composed of all subsets Nfwith Ty or more arbiters. Similarly, the séil (t) is composed

of all subsets oN with Ty, or more arbitersTy and Ty are the corresponding thresholds.

Lemma 5. Every DAFE protocol instance needs to make sure there alwaigts a time t when <
v —[F(1)].

Proof. Assume otherwise: At all time$y > Ty — |F(t)|. Malicious party can break fairness as follows:
WhenH wants to abort the protocol (as directed by the protocol,tmposbably triggered by an incorrect
input from the malicious party)M waits untilH aborts withn — Ty, + 1 arbiters.H can no longer resolve
after this point since there are less thaparbiters left in the set of available arbitdRg. At this point,M
intercepts any more abort messages fitérand resolves witfy — |F(t)| honest arbiters (as well &5(t)|
friends). Therefore, this protocol instance is unfair @oet satisfy semantic fairness). O

Notice that Lemma 5 is the same as Corollary 3. Thereforepl@mies 4 and 5 also apply here.

6.1.2 Scenario 2 General Case

Now, we remove all the restrictions we made on our scenartbéarprevious sub-scenarios. This means,
we allow for any set-based resolution mechanism, and we all@n the protocol to specify an order of
arbiters for aborting, possibly depending on the execubibtine protocol instance. One can think of it as
the honest party aborting with one arbiter at every time,sdepd reconsidering his decision to abort each
time. Therefore, the arbiters are no longer completelyrartmus.

Lemma 6. Every DAFE protocol instance needs to make sure that atralsitVMg € My (t) Mg Z F(t)
(before H has resolved) AND there exists a time t whidR € #g (t) s.t. HRNF(t) = @.

Proof. Assume there exists a time whéNlr € My (t) Mg Z F(t) (beforeH has resolved). Malicious party
can break fairness as follows: Whehwants to abort the protocoM lets him abort with all the arbiters.
Then, he goes and resolves wiitg, all members of which are his friends.

Now assume at all time8Hg € #Hg (t) HRNF(t) # @. Malicious party can break fairness by just
resolving with anyMgr € My (t). Since all possible ways to resolve fldrhas to go through one of the
malicious party’s friends, he has no hope of resolving. O

In this general scenario, as in the previous cases, we widdd be able to prove that any DAFE
protocol instance needs to make sure there always existsed tvhen VMg € My (t) IHR € Hg (1) S.t.
Hr € Mg — F(t). Even though this seems a very plausible and realistic osimli, several problems arise
with its proof.

The general idea is to use an adversary very similar to tharoBection 4.2. So, the adversary will
let H to abort with any arbiter ifRa — Mgr. Then, ifH wants to abort with an arbiter Mg — F(t), M will
intercept and resolve witMr. The problem is that this works depending on the order oftabdFhere
might be a possible protocol construction and order spatidic that makes surd can still resolve once
he detects this behavior. We do not know of and could not cogonwith such a construction, due mostly
to the fact thaf(t) is unknown to the honest party, and hence designing a priatestance using an order
that works without knowind-(t) seems impossible. Even though the order may work for somegwb
instances, having an order that works with high probabflibat works on all but negligible fraction of
protocol instances) does not seem possible. Furtherntmendment we allow more powerful adversaries,
since the order of arbiters to abort for the honest partittifg public, the adversary might “bribe” some
“key” arbiters to become his friends and make sure the anddgils to provide fairness (in the dynamical
corruption model). We admit that we have no proof for thisagahcase with less powerful adversaries, but
we conjecture that the same predicate for scenario 4.2 asebefll hold.

6.2 Protocol 2 Revisited

In this type of protocols, Alice is given the ability to ab@md resolve, whereas Bob is given only the
ability to resolve. Analysis of protocols that are symmneetd this type of protocols (where Bob can abort
and resolve, and Alice can only resolve) obviously yieldghes same conclusions. The predicate for case
1 changes when we relax our autonomous arbiters assumpfiage 2 stays the same. Remember, the
resolution sets we consider here are static.

Case 1. Honest Alicevs. Malicious Bob: This case falls under Scenario 2, which requires special
treatment when arbiters are not contacted simultaneooslglforting. For threshold-based mechanisms,
every DAFE protocol needs to haV¥g < Tg — |Fg|. For the most general case of DAFE protocols, we need
VBr € @R Br € Fg AND JdAR € /QIR s.t. RNFg=@.

Case 2. Malicious Alicevs. Honest Bola This case falls under Scenario 1, which means any DAFE
protocol needs to havéAr € Ay JBr € By s.t. BR € Ar— Fa. Remember, Corollary 3 (using threshold-
based mechanisms) requifg < Ta — |Fa].

Regarding DAFE protocols using threshold-based arbiteolséion mechanisms, we can conclude
(from the two cases above) that no such meaningful protaoksist Ta < Tg — |Fg| andTg < Ta— |Fa|
givesTa < Ta — |Fa| — |Fg|, which means all the arbiters need to be trusted). Henceg theo point in
distributing the arbiters in terms of trust. It is even wosste we need to trust every single arbiter, and the
protocol cannot be fair even if only one arbiter is corrupt.

Regarding general set-based DAFE protocols, we cannofiumsa@n immediate impossibility. But
following our discussion in Section 6.1.2, we conjectura tho such useful protocol can exist.

10

Unfortunately, as we have shown in Section 2.1, the versidribe state-of-the-art protocols we an-
alyzed in Section 2.iwvithout any timeouts fall under this protocol category. So the insgmkty with
threshold-based mechanisms, and our conjecture applyyaceenmon real cases, even when the arbiters
are not contacted simultaneously by the honest party.

7 Analysis of an Existing DAFET Protocol using Dynamic Resaltion Sets

In this section, we analyze an existing DAFET protocol tladis$y the predicates required by our analysis
in Section 4. The main property of this protocol is that itaidgnamic resolution sets: The set of arbiters
needed by a party for resolution changes during the coursigeoéxecution of the protocol instance. By
adjusting resolution sets reactively, this protocol cavjate semantic fairness.

AV Protocol [6] This protocol is due to Avoine and Vaudenay (AV) [6]. In thiefmcol, timeouts are used
for aborting (it is a DAFET protocol). It is a three-step ol in which Alice starts by sending verifiable
secret shares encrypted under each arbiter's public kegn,TRob responds with his secret, and Alice
responds with her secret. To resolve, Bob contketbiters to get the decrypted shares and reconstruct the
secret of Alice (wherd is the threshold for the secret sharing scheme). Beforagitie decrypted share,
each honest arbiter asks for the secret of Bd#tence, the seBg (t) contains all subsets & with k or
more arbiters andly () is initially empty©.

The state semantics obviously coincide with our 3-statentiefin. The participants either succeed in
obtaining the other party’s exchange item and hence eneéaRbsolvedtate, or they fail to do so, ending
at theirAbortedstate. The honest arbiters will either help both participam abort at the timeout and help
neither.

Even though in the AV protocol the honest arbiters directigtact Alice when Bob resolves with them,
we can see it as the arbiters storing Bob’s secret, and Atineacting them to obtain Bob’s secret later on.
Since Alice can only resolve after Bob, and Bob has to resobfere the timeout, it is safe to think of this
protocol as letting Alice to resolve only after the timeo8b, setsH (t) and My (t) change according to
the following additional rule regarding the actions (renbemthe actions in Section 3):

Action 6 (Bob resolves with an arbitet € Ry). The effect is that a s¢iX} is added to the set of sef; (t).

This rule is there since in the AV protocol, when Bob contastishonest arbiter, that arbiter contacts
Alice and sends Bob'’s whole secret. It guarantees that thmeanba malicious Bob resolves with any
honest arbiter, honest Alice is guaranteed to be able tdveesbet us analyze the two cases and see how
this protocol satisfies the lemmas regarding scenarios.

Case 1: Honest Alicevs. Malicious Bob: This case falls under Scenario 3, which means any DAFET
protocol needs to make sure there always exists a time WBgR B (t) IAr € Ax (1) s.t. AR C BrR—Fe.

Case 2: Malicious Alicevs. Honest Bolh Depending on at which point of the protocol the resolution
begins, the malicious Alice might have already resolvedylinich case this case falls under Scenario 4,
which requires there exists a time wheéBr € By (t) s.t. BRNFa= 2.

Lemma 7. AV protocol cannot provide semantic fairness unless fotiles tVBg € Bz (t) Br Z Fs AND
for some time 8B € B (t) s.t. BRNFa = @.

Proof. It follows directly from the analysis of the cases above gsiarollary 1 for case 1. O

The AV protocol achieves semantic fairness using dynantic @ follows: The seflk (t) is initially
empty. When Bob contacts an arbibéraction 6 above takes place, and hence theXétis added to the
set of setsig (t) (the threshold for Alice effectively becomes 1). Therefamrce Bob contacts an honest
arbiter (not one of his friends), then Alice is guaranteeti¢able to resolve. This saves an honest Alice

9The user should refer to [6] for any more details.
101t does not contain the empty set, it is empty. This means nofsehbiters is sufficient for Alice to resolve.

11

against a malicious Bob (case 1). In case 2, as long as Bobmdua fset of honest arbiters that he can
resolve with, he is saved against malicious Alice.

Actually, the AV protocol [6] uses threshold-based mechiansi instead of set-based ones, therefore we
have the following corollary:

Corollary 6. AV protocol cannot provide semantic fairness unlgsg < Tg AND Tg < n— |Fa|.

It is important to notice that the AV paper [6] proves essaiytithe same result. Thus, we have proven
that the bounds proven in that paper are tight and hence tivegot is optimal in that sense. Furthermore,
this result is applicable to all protocols of the same type,IMFET protocol of the same type can achieve
better bounds. In particular, the same technique of emmipgiultiple autonomous arbiters can be used on
[4] and [15] (as described in Section 2.1) to convert themetbut-based versions to DAFET protocols, and
the same lemma will hold.

As the corollary immediately reveals, when usimgrbiters, to obtain maximum tolerance, one should
set the threshold for Bolbg = n/2 so that the protocol tolerates uprig2 — 1 friends of each participant.
Of course, this greatly reduces the efficiency of the reswiutf the optimistic fair exchange protocol.

8 Discussion: Timeouts and Dynamic Resolution Sets

As we have proved in Section 5.2, the natural extension afnigtic fair exchange protocols without time-
outs to make them DAFE protocols lead to an impossibilityltesvhereas Section 7 shows an existing
DAFET protocol that employs timeouts. Therefore, we canciiaie that the timeouts play an important
role in optimistic fair exchange protocols when we woulcelito employ multiple autonomous arbiters.
Even without completely autonomous arbiters, Section Bd®vs an impossibility of DAFE protocols us-
ing threshold-based mechanisms, and even with set-baseldamisms, it is not clear how such a DAFE
protocol can be constructed.

Timeouts are tied to the use of dynamic sets in general (asdviedDAFET protocols). When only
one party can resolve before the timeout, static resolssis lose their meaning since the resolution set for
the party who cannot resolve before the timeout is empty tititimeout. That set gets defined only after
the timeout, which results in that set being dynamic in soamess. As shown in Section 7, this helps AV
protocol achieve semantic fairness.

This suggests that even though timeouts may not be a niagréeimt terms of system design, it really
helps when the system needs to be extended to use multipterarfiogether with the use of dynami-
cally changing resolution sets). Thus, we suggest the rdseammunity to carefully consider versions of
optimistic fair exchange protocols that use timeouts.

9 Conclusion

In this paper, we presented a framework to analyze DAFE potgpwhich are natural extensions of opti-
mistic fair exchange protocols to make them use multipleraarious arbiters. Using the presented frame-
work, we have proved that DAFE protocols cannot providentsgs. Even when we extended our framework
by relaxing the autonomy assumption about the arbiterspuwed out that even broader classes of optimistic
fair exchange protocols fall under our impossibility réesulM/e then switched to the DAFET model to in-
clude timeouts and dynamically changing sets of arbiteregolve with. We analyzed one existing DAFET
protocol using our framework and proved that the previousbs on the required number of honest arbiters
are optimal. No DAFET protocol of the same type can achietebkounds. We also showed that timeouts
and dynamic resolution sets play an important role in thégdesf such distributed arbiter fair exchange
protocols.

12

References
[1] A. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. Martin, an€. Porth. Bar fault tolerance for cooperative
services. IPACM SOSP2005.
[2] N. Asokan, M. Schunter, and M. Waidner. Optimistic piits for fair exchange. IACM CCS 1997.

[3] N.Asokan, V. Shoup, and M. Waidner. Optimistic fair eacige of digital signatures. BUROCRYPT
1998.

[4] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair eaclge of digital signaturedEEE Selected
Areas in Communicationd8:591-610, 2000.

[5] G. Ateniese. Efficient verifiable encryption (and fairckange) of digital signatures. BCM CCS$S
1999.

[6] G. Avoine and S. Vaudenay. Optimistic fair exchange dage publicly verifiable secret sharing.
ACISR 2004.

[7] F. Bao, R. Deng, and W. Mao. Efficient and practical faicleange protocols with off-line TTP. In
IEEE Security and Privagy1998.

[8] M. Belenkiy, M. Chase, C. Erway, J. Jannotti, A. Kiip@i Lysyanskaya, and E. Rachlin. Making
p2p accountable without losing privacy. ACM WPES$2007.

[9] J. Camenisch and I. Damgard. Verifiable encryptionugrencryption, and their applications to group
signatures and signature sharing schemea3MCRYPT2000.

[10] J. Camenisch and V. Shoup. Practical verifiable enagpand decryption of discrete logarithms. In
CRYPTQ2003.

[11] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaglijysecure multi-party computation. KXCM
TOCS pages 639-648, 1996.

[12] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Usisally composable two-party and multi-party
secure computation. IBTOC pages 494-503, 2002.

[13] Y. Dodis, P. Lee, and D. Yum. Optimistic fair exchangeaimulti-user settingLNCS 4450:118, 2007.

[14] E. Fujisaki and T. Okamoto. A practical and provably wgecscheme for publicly verifiable secret
sharing and its applications. EUROCRYPTvolume 1403 oL NCS pages 32-46, 1998.

[15] A. Kiupci and A. Lysyanskaya. Usable optimistic fakchange. IfCryptology ePrint Archive, Report
2008/431 2008.

[16] S. Micali. Simultaneous electronic transactions witkible trusted parties. US Patent 5,553,145,
1996.

[17] S. Micali. Simple and fast optimistic protocols forrfa@lectronic exchange. IRODC, 2003.

[18] H.Pagnia and F. Gartner. On the impossibility of faicleange without a trusted third pariyarmstadt
University of TechnologyTUD-BS-1999-02, 1999.

[19] T. P. Pedersen. Non-interactive and information-thgo secure verifiable secret sharingRYPTQ
1991.

13

