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Abstract

We present a simple approach for constructing oblivious transfer (OT) using a trapdoor
function (TDF) and interactive hashing (IH). In a nutshell, an OT-receiver inputs a (ran-
domly chosen) function index (encoded as a binary string) into IH. The resulting output
strings are interpreted by an OT-sender and used to encrypt his private inputs. Two func-
tions are shown to be eligible: 1) A specific candidate function: a coding based McEliece
PKC; 2) A collection of TDF with some special properties, loosely speaking: succinctly
representable index set and a unique trapdoor for each index.

The aim of this presentation is to show a proof of concept in two ways: 1) Introduction
of an apparent connection between OT and IH; 2) Emphasizing importance of IH as a
cryptographic primitive in its own right and bringing up some aspects in which the further
development of IH may be required.
Keywords: Oblivious transfer, interactive hashing, McEliece assumptions, special contrived
trapdoor function

1 Introduction

Oblivious Transfer. It is one of the central cryptographic primitives, since it implies secure
two- (and multi-)party computation [16]. It was initially proposed in several flavors [40, 36,
10] which all turned out to be equivalent [6]. We will focus on the one-out-of-two (1-2) OT
[10] which is a two-party primitive, where the honest sender inputs two bits b0 and b1 and
the honest receiver chooses to obtain one of them, the choice bit bc, by inputting his selection
bit c. The cheating sender must remain ignorant of c, while the cheating receiver – ignorant
of the secret bit b1−c. In this work, we will implement a version of 1-2 OT where both inputs
and the selection bit are uniformly random. It can be done without loss of generality due
to the (very efficient) randomized self-reduction of OT [1, Section 3.2].1

Several frameworks for constructing computationally secure2 OT are known, in partic-
ular, using: generic assumptions [10, 17, 4], smooth projective hashing [22], lossy trapdoor
functions [34], dual-mode cryptosystems [33]. Each of them enjoys different advantages,
such as generality of underlying assumptions, efficiency, advanced security properties (e.g.
composability).
Interactive Hashing. This primitive has first appeared as a sub-routine in the oblivious
transfer protocol with computationally unbounded party [32]. Later, IH has proven to have
numerous applications in cryptography, in particular, in bit commitment, zero-knowledge,
and unconditional oblivious transfer protocol design (see, e.g., [37, Section 2.1] for a survey).
IH is a two-party primitive, where the honest sender inputs a string w ∈ {0, 1}n, and both
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1In other words, a standard 1-2 OT can be easily obtained from its version, where the player’s inputs are

uniformly random.
2That is OT based on computational assumptions, where at least one player is computationally bounded.
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him and the honest receiver obtain the first output w and the second output w′ 6= w such
that w′ is uniform in {0, 1}n \ w. 3 The hiding property requires that the cheating receiver
cannot tell which of (w, w′) was the input. According to the binding property, at least one
of (w, w′) is effectively beyond the control of the cheating sender. IH comes in two flavors:
with computational binding (initiated by [32]), we call it C-IH, and information-theoretic
binding (initiated by [3]), we call it IT-IH. Hiding is information-theoretic in both flavors.
Our contribution. We present a new connection between the primitives of oblivious
transfer and interactive hashing by constructing two (quite simple) protocols using two
different flavors of IH and, correspondingly, two types of trapdoor functions. The first
one uses a coding based McEliece PKC and IT-IH, while the second one uses a collection
of trapdoor functions with special properties and C-IH. In the second one, protection is
guaranteed only against passively cheating receiver.
Related Work. In fact, IH has already been used for implementing OT from one-way
permutations (OWP) and one-way functions (OWF) [32], but in that work, one of the players
was given unlimited computing power (and explicitly instructed to invert an OWP/OWF).
In contrast, in our protocols the honest players are bound to run in probabilistic polynomial
time.

OT from coding based assumptions was recently constructed in [8] and [24]. Both
schemes are more efficient than our first protocol, whose bottleneck is the (round- and
communication-)efficiency of the IH protocol. Taking an optimistic view, we note that im-
provements on IH will automatically apply to our protocol as well. Compared to [8], we use
an extra (ad-hoc) coding based assumption. Compared to our first protocol, [24] uses, in ad-
dition, the hardness of permuted kernel problem [39], moreover they need an extra (ad-hoc)
coding based assumption (different from ours) in order to formally argue the sender-security.
In fact, our work is inspired by the protocol [8] in part, where the public key is masked by
a random matrix.

OT from general trapdoor permutations is considered in a line of works [10, 17], where the
players are assumed passively cheating, while protection against active attackers is achieved
using ”secure compilers” [16, 18]. Compared to [17], our OT protocol using special trapdoor
functions is readily secure in the static adversary model. In fact, IH can be seen as sort
of a secure complier and the most of communication overhead derives from it. On the
other hand, our scheme does not enjoy the generality of [17] as the additional properties of
trapdoor functions which we require are somewhat strict and contrived. Interestingly, they
do not include the “density” property of [17].4

A construction in the spirit of our first protocol has been independently discovered by
Claude Crépeau and Jörn Müller Quade [27].
Organization. Section 2 contains a description of basic notation and tools. The protocol
for OT based on the McEliece assumptions and using IT-IH is presented in Section 3, while
the one based on special trapdoor functions and C-IH – in Section 4. Section 5 sketches
possible extensions and Section 6 presents open questions.

2 Preliminaries

Basic Notation. Summation is bitwise exclusive-or. Saying “weight”, we refer to the
Hamming weight. “x ∈R X” means that x is uniformly distributed in the domain X.
Saying that x is negligible in n, we mean that x is decreasing faster than any polynomial
fraction in n. When the statement is claimed to hold “on the average”, it means that it holds
for all but a negligible fraction of instances. We call an algorithm efficient, if it is (unless
stated otherwise) probabilistic polynomial time (PPT). By “ c=”, we denote computational
indistinguishability.

3Hence, the interactive hashing.
4We are aware of the recent manuscript [4] reducing the assumptions for achieving OT to dense trapdoor

functions. All our comments concerning [17] are relevant to this work as well.
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A view of a player participating in the interactive protocol represents the player’s inputs,
results of all local computations and local coin tosses, and messages exchanged. The view
of a player A having input x and interacting with a player B having input y is denoted by
V iewA(A(x), B(y)).

Speaking of information-theoretic or unconditional security, we refer to protection against
computationally unbounded adversary. A security failure probability (negligibly small in
some security parameter) is admitted.
Adversary Model. We consider the static adversary, i.e. either a sender or a receiver gets
corrupt prior to the protocol execution. A player is called honest, if he strictly follows the
protocol. A passive attacker follows the protocol, but may use his view. Finally, an active
attacker, in addition to the above, may deviate from the protocol arbitrarily.
Linear codes. A binary linear (n, k) code of length n and dimension k is a k-dimensional
linear subspace of {0, 1}n. It can be represented by a rank-k generating matrix G ∈ {0, 1}k×n

(i.e. its rows are linearly independent). For further information on linear codes, we refer
the reader to [25].

Fact 1. The fraction of the matrices in {0, 1}k×n of rank less than k is at most O(2k−n−1).

Proof sketch. Note that the number of all the (k × n) matrices of rank k is
∏k−1

i=0 (2n − 2i).
The claim follows by dividing this value by 2kn, the number of all possible (k×n) matrices,
and estimating the resulting expression.

McEliece Public Key Cryptosystem (PKC) [26]. As a matter of fact, we do not use
security of the McEliece PKC per se, but rather employ two assumptions which together
imply its security5 [38].

Define the space of public keys PK
def
= SGP , where S ∈R {0, 1}k×k non-singular; G ∈

{0, 1}k×n a generating matrix of an irreducible Goppa code correcting t errors, k ≥ n − t ·
log2 n; P ∈ {0, 1}n×n random permutation matrix.6 Note that PK ⊂ D, where D is the set
of all linear (n, k) codes.

Encryption of a message m ∈ {0, 1}k proceeds by choosing a random weight-t vector
e ∈ {0, 1}n and computing the ciphertext c = m(SGP ) + e. Decryption proceeds by first
applying P−1 to c and then decoding according to G.

The problems underlying the following two assumptions are discussed in details in [38,
Section 6]. Let us denote by Goppa-IND the problem of distinguishing a randomly sampled
McEliece public key from a random linear code.

Assumption 1. Goppa-IND is hard on the average.

Goppa-IND is not known to reduce to any hard problem.

Remark 1. This assumption implies that one can perform the McEliece encryption on d ∈R

D without noticing that the encryption key does not belong to the public key space. Indeed,
otherwise a (trivial) distinguisher for the McEliece public keys could use the encryption
algorithm.

Let Goppa Bounded Decoding (GBD) be a standard problem of syndrome decoding with
the following promise: the number of errors is guaranteed to be up to t, as in the definition
of the Goppa code.

Assumption 2. GBD is hard on the average.

In other words, without knowing a structure of the code (as the previous assumption
suggests), it is hard to decode errors in the corresponding encoding (and hence, to invert
the McEliece encryption). The underlying problem is not known to be NP-complete, but
it is related to the bounded distance decoding problem conjectured to be NP-hard, and, in

5The opposite is not known to be true, so, technically speaking, these assumptions are stronger than just
assuming a secure McEliece encryption.

6Strictly speaking, the public key is (SGP, t).
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turn, the later is connected to NP-complete syndrome decoding problem (see for details [38,
Section 6] and the references therein).

We will need one more ad-hoc assumption. We call a class of (n, k) linear codes trapdoor
Goppa-Bound decodable (trapdoor-GBD), if the following holds on the average for all the
codes in the class:

• GBD problem is hard given only the code’s description.

• GBD problem is easy given the code’s description and some auxiliary input (a “decod-
ing trapdoor”).

In the above definition, we intend to cover all linear codes with the properties similar to
that of the irreducible Goppa codes.

Assumption 3. Trapdoor-GBD codes constitute a negligible (in |D|) fraction of D.

We consider it to be a plausible assumption, since the opposite implies that a substan-
tial part of all linear codes has an efficient (although “hidden”) Goppa Bounded Decoding
algorithm.7

Generic Functions. The following definitions are adapted from [14, Definitions 2.4.3,
2.4.4].

Definition 1. A collection of functions {fi : Di → {0, 1}∗}i∈I is called a collection of
trapdoor functions (TDF) if there exist three efficient algorithms Ind, Dom, Func, such
that the following three conditions hold:

1. Easy to sample and compute: The output distribution of algorithm Ind on input 1n is
a random variable assigned values in the set (I × T )∩ ({0, 1}n ×{0, 1}n); I is called a
set of indices and T a set of trapdoors. The output distribution of algorithm Dom on
input i ∈ I is a random variable assigned values in Di. On input i ∈ I and x ∈ Di,
algorithm Func always outputs fi(x).

2. Hard to invert: There exists no efficient algorithm which on input (In, fIn(Xn)) returns
f−1

In
(fIn(Xn)), except with probability negligible in n, where In is a random variable

describing the distribution of the first element in the output of Ind on input 1n, and
Xn is a random variable describing the output of algorithm Dom on input (random
variable) In.

3. Easy to invert with trapdoor: There exists a deterministic efficient algorithm Func−1,
such that for every (i, t) in the range of Ind and for every x ∈ Di, it holds that
Func−1(t, fi(x)) = x.

In [4, Section 3.2], there listed some properties of trapdoor functions which are necessary
in order to avoid the famous blackbox impossibility results. We borrow two of them (Prop-
erties 4 and 5) which are relevant to our work: 1) The expansion of our functions must be
at most logarithmic, i.e., fi(x) ∈ {0, 1}m for some fixed m = n + O(log n); 2) our trapdoor
function has polynomial pre-image size. Consult [4, Section 3.2] for further details.

A oneway permutation (OWP) is defined analogously to the above, except for: 1) Func-
tions {fi : Di → Di}i∈I are one-to-one; 2) No trapdoor is specified (i.e. the algorithm
Ind outputs only I) and no easy inversion is required (i.e. the third property in the above
definition is absent).

Now, we define a special family of trapdoor functions to be used in our construction.

Definition 2. A special contrived collection of trapdoor functions (SC-TDF) consists of a
collection as in Definition 1 with the following additional properties:

1. The index set I
def
= {0, 1}n′ , for some n′ < n, in other words, I has a succinct binary

representation. Moreover, this representation is efficiently computable.

7In fact, the trapdoor-GBD codes would become candidates to be used in the McEliece-style encryption
instead of the Goppa codes.
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2. There exists a 1-to-1 correspondence8 between I and the set of trapdoors T (i.e., I ≡ T ).
Moreover, the binary representation for trapdoors is efficiently computable. Further-
more, each function has a unique trapdoor.

3. There exists a one-way permutation g : T → I.

Remark 2. We believe that in the above definition, a slightly relaxed (but suitable for our
purposes) version of Property 3 can be derived directly from the first two preceding properties.
This would make this definition somewhat less contrived. We postpone the details for the
full version of this paper.

In the following, we will interchangeably use abbreviations (e.g. SC-TDF) to denote the
corresponding collections and also the functions constituting them.
Interactive hashing (IH). Interactive Hashing is a two-party cryptographic primitive.
It takes as input a string w ∈ {0, 1}n from a sender S, and produces as output two n-bit
strings, one of which is w and the other w′ 6= w (let us call w and w′ the first and the second
output, respectively). The output strings are available to both S and a receiver R, such
that, loosely speaking, a dishonest sender S̃ cannot control both of them, while a dishonest
receiver R̃ cannot tell which one was the input. The (dis)honest sender/receiver will be
denoted henceforth in this paper as above.

The next definition was taken from [37, Definition 2.1] with some cosmetic changes.

Definition 3. Information-theoretic interactive hashing (IT-IH).

1. Correctness: When both players are honest, the input is equally likely to be paired with
any of the other strings. Let w be the sender’s input and let w′ be the second output of
IH. Then provided that both players follow the protocol, w′ will be uniformly distributed
among all 2n − 1 strings different from w.

2. Hiding: R̃ cannot tell which of the two output strings was the original input. Let the
two output strings be w0,w1, labeled according to lexicographic order. Then if both
strings were a priori equally likely to have been the senders input w, then they are a
posteriori equally likely as well.

3. Binding: S̃ cannot force both outputs to have a rare property. Let G be a subset of
{0, 1}n representing S̃’s target set, it must be fixed prior to the protocol execution. Let
|G| be the cardinality of G. Then if |G|/2n is negligible, the probability that S̃ will
succeed in having both outputs w, w′ be in G is also negligible.

The following definition (focusing on a particular scenario of [30]) for the computational
flavor of IH is adapted from [20, Section 3.1].

Definition 4. Computational interactive hashing (C-IH).
Let H : {0, 1}n → {0, 1}n−1 be a family of two-to-one Boolean hash functions and g :

{0, 1}n → {0, 1}n be a one-way permutation. Both players receive the security parameter 1n

as an input and S gets as a private input y ∈ {0, 1}n. At the end, S locally outputs y and,
in addition, both S and R output (h, z) ∈ H × {0, 1}n−1. The following properties must be
satisfied:

1. Correctness: For all n, all y ∈ {0, 1}n, and every pair (y, (h, z)) that may be output by
(S(1n, y), R(1n)), it is the case that h(y) = z.

2. Binding: No PPT S̃ succeeds in the following game with more than negligible probabil-
ity. On security parameter 1n, S̃ interacts with R and R outputs pairs (x0, y0), (x1, y1)
such that y0 = g(x0), y1 = g(x1) and h(y0) = h(y1) = z.

3. Hiding: There exists a polynomial-time simulator Sim such that for every y ∈ {0, 1}n
and h ∈ H the distributions V iewR(S(y), R)(1n) and Sim(1n, h, h(y)) are identical.

8Hence, there exists a succinct binary representation for trapdoors.
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In our work, we abstract the implementation details as much as possible and use IH as
a blackbox. We focus on a connection between OT and IH, and any IH protocols which
satisfies one of the above definitions fits one of our constructions.

Concrete protocols realizing C-IH and IT-IH can be found, e.g., in [30, Section 3.1]
(appears as a part of the commit stage) and [37, Protocol 2.1], respectively. These protocols
are very similar, the main difference between them is in construction of receiver’s queries
(refer to Appendix A for description and some details). The main disadvantage of these
protocols is their round and communication complexity: for n-bit input, they require n− 1
rounds and O(n2) bits of communication.9

String Commitment. This primitive consists of two stages. In the first one, called
committing, the sender S provides the receiver R with an evidence about his input bit-string
b. The cheating receiver R̃ cannot learn b before the second stage, called opening, where S
reveals b to R. The cheating sender S̃ cannot successfully open anything other than b.

We borrow the following definition from [8, Definition 1]. In this and the following
definitions, we denote by z an auxiliary input of the cheating party.

Definition 5. A protocol [S, R](b) is said to secure implement bit commitment, if at the
end of its execution by S and R which are represented as PPT Turing machines having as
their input a security parameter n, the following properties hold:

• Correctness: when the players honestly follow the protocol, R accepts b at the opening
stage.

• Hiding: For any PPT adversary R̃, any security parameter N , any input z of size
polynomial in n, and any l ∈ N, after the committing stage, but before the opening
stage, the view of R̃(z) when S inputs b ∈ {0, 1}l is computationally indistinguishable
from the view where S inputs any other b′ ∈ {0, 1}l, b′ 6= b:

V iewR̃(S(b), R̃(z))|z
c= V iewR̃(S(b′), R̃(z))|z

• Binding: For any PPT adversary S̃, any security parameter n and any input z of size
polynomial in n, any l ∈ N, there exists b ∈ {0, 1}l which can be computed by S after
the committing stage, such that the probability that S̃(b′), b′ 6= b is accepted by R in the
opening stage is negligible in n:

Pr
[
V iewR

(
S̃commit(b), S̃open(b′), b 6= b′

)
= ACCEPT

]
<

1
poly(n)

.

We assume availability of commitments as a blackbox.10

Oblivious transfer. We focus on 1-out-of-2 bit oblivious transfer [10]: The honest sender
S transmits two input bits b0, b1 such that one of them bc is obtained by the honest receiver
R according to his input - the selection bit c. The dishonest sender S̃ cannot learn c, while
the dishonest receiver R̃ cannot learn both b0 and b1.

In our schemes, c is chosen independently of receiver, in the course of protocol execution.
This is not standard as typically c is input by receiver. We claim that this is not a problem
due to a (very efficient) reduction [1, Section 3.2] from OT with randomized (uniformly
chosen) player’s inputs to OT with inputs fixed by players. We can assume w.l.o.g. that, if
standard OT is required, this reduction is applied upon completion of our protocol. There-
fore, in our security argument, we will ignore protection against R̃ trying to bias the choice
of c,11 only concentrating on inability of S̃ to learn c.

9There exists a constant round (information-theoretic) IH protocol [7] with roughly the same communication
cost. However, its security requirements are somewhat stricter compared to ours, so that we cannot use it in our
schemes. Nonetheless, thinking optimistically, this result shows us that improvements are possible in principle.

10If one wants to restrain oneself to the coding assumptions as in [8, Section 2.5], then one can use an (efficient)
construction [28] of commitment from pseudorandom generators which, in turn, can be constructed assuming
hardness of syndrome decoding [11].

11Such the protection is in fact easy to ensure, as pointed out in Remark 3.
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Our protocols involve sender transmitting two encryptions of his corresponding inputs.
One standard sender’s attack is to render one of the encryptions invalid, hoping that receiver
complains and reveals his selection. Clearly, this attack is fruitless in our scenario, where
the selection bit is random.

We borrow [8, Definition 1] (adapted from [22]) with a slight modification to randomized
selection bit.

Definition 6 ([8], Definition 1). A protocol [S, R](b0, b1) is said to securely implement ran-
domized oblivious transfer, if at the end of its execution by the sender S and the receiver R
which are represented by PPT algorithms having as their input a security parameter n, such
that the following properties hold:

• Correctness: when the players honestly follow the protocol, R outputs (c, bc) for c ∈R

{0, 1} while S has no output.

• Sender-security: For every PPT adversary R̃, every input z, a (sufficiently long) ran-
dom tape RS, there exists a selection bit c such that for bc ∈ {0, 1} the distribution
(taken over S’s randomness) of runs of R̃(z) using randomness RS with S having input
bc and b1−c = 0 is computationally indistinguishable from the distribution of runs with
S having input bc and b1−c = 1.

• Receiver-security: For any PPT adversary S̃, any security parameter n and any input
z of size polynomial in n, the view that S̃(z) obtains when c = 0 is computationally
indistinguishable from that of when c = 1, denoted:

{V iewS̃(S̃(z), R)}z
c= {V iewS̃(S̃(z), R)}z.

Hardcore Bit Encryption. Let x and r be bit vectors of appropriate length and denote
the scalar product by “·”. It follows from [15] that for any TDF f , x · r is a hardcore bit,
i.e. it cannot be guessed substantially better than at random, given (f, f(x), r).

Then, encrypting a plaintext bit b given a (candidate) trapdoor function f amounts to
generating (x, r) at random and computing the ciphertext as the triple (b + (x · r), f(x), r),
where “+” is a bitwise exclusive-or. Decryption is performed in a straight forward way,
inverting f using its trapdoor. Clearly, without the trapdoor, b is as hard to guess as the
hardcore bit of f .

3 Coding Based Protocol

In this section, we restrict our consideration to the range of (n, k), which is relevant to the
secure McEliece PKC with parameters (n, t).

Fact 2. The fraction of all (k × n) matrices which do not represent a binary linear code is
negligible in n.

Proof. Follows taking account Fact 1, and that in the McEliece PKC parameter set: k is
less than and in the order of n.

Let us re-assign D
def
= {0, 1}k×n, most of these matrices represent linear codes as men-

tioned above. Let us assume a secure string commitment and a secure implementation of
IT-IH (in this section, we call it “IH” for short) to be available as a blackbox. Let Encpk(b)
be a hardcore bit encryption of a bit b where trapdoor function is the McEliece encryption
having a public key pk ∈ PK. When binary matrix is to be input into IH, it is represented
as a bit string by concatenating the rows.

The sender S has inputs b0, b1 ∈R {0, 1}, the receiver R has no input. Note that R plays
the role of a sender in IH.

Protocol 1.

1. R generates R ∈R D and commits to it.
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2. R generates pk ∈R PK and inputs pk + R into IH, then both S and R obtain outputs
which are assigned to (W0, W1) according to lexicographic order.

3. R opens his commitment to R and S aborts, if the opening stage is rejected.

4. For i = 0, 1: S sends EncWi+R(bi) to R.
R computes c = {i|Wi + R = pk}, decrypts bc and outputs (c, bc).

Remark 3. The above protocol does not guarantee that R̃ is unable to fix the selection bit
c. However, it can be easily modified to achieve this goal as follows. Upon completion of
the IH protocol, the sender chooses uniformly at random whether (W0, W1) are assigned in
lexicographic or reverse lexicographic order. Clearly, the selection bit is beyond R̃’s control
in this case.

Let us informally explain our rationale behind employment of commitment. Suppose
that R directly inputs the public key pk into IH. First of all, on the output, the public key is
a priori not likely to pair with other members of the domain D as Property 2, Definition 3
requires for the IH input. Indeed, the public keys constitute only a negligible fraction of
D as established in Fact 3 below. Then, S̃ might deliberately drive the second input into
some recognizable subset D \ PK (Definition 3 does not forbid this), and hereby learn the
selection bit c.12

A possible way out is to ensure that R’s input looks uniform to S̃. At the same time, this
input must be fixed prior to performing IH in order to prevent R̃ from cheating. Commitment
seems to be a natural solution in this case.

Remark 4. We believe, but do not prove formally, that the Niederreiter PKC [31] can be
used in the above protocol in a similar manner.

Proposition 1. Protocol 1 is a secure implementation of 1-2 OT according to Definition 6
under Assumptions 1-3.

Proof. Correctness. When both players are honest, one of the outputs of IH is indeed
pk + R by Property 1, Definition 3. Then in Step 4, R (knowing both W0 and W1) correctly
identifies Wc, computes c and successfully decrypts bc.
Sender-security. If R̃’s commitment is not rejected in Step 3, then the encryption keys are
fixed to (Z +R′, Z ′+R′), where Z, Z ′ ∈ D are the IH outputs and R′ ∈ D is the committed
value.

Note that the receiver’s only efforts in the protocol are connected with the choice of
keys for b0 and b1. Hence, his attack must be about encrypting both of them on “efficiently
decodable” keys. In other words, R̃ succeeds if he manages to invert the encryption on both
Z + R′ and Z ′ + R′ with non-negligible probability. The sender-security proof is focused on
arguing that this cannot be the case. If so, then at least one of the encryptions is one-way.
In turn, it will imply that R̃’s views are indistinguishable no matter the value of b1−c for
some c ∈ {0, 1}, due to employment of hardcore bit encryption.

The key point of our proof is a use of Property 3, Definition 3. Let us denote by the bad
set the set of all possible elements in D which allow for efficient inversion (in other words, the
GBD problem is easy for such the elements of D). The above mentioned property implies
that if the cardinality of the bad set is negligible in n, then the probability for R̃ to land
both Z + R and Z ′ + R′ in this set is also negligible in n. Hence, we are done by arguing
that the bad set is indeed a negligible fraction of D. The rest of the sender-security proof is
focused on arguing this point.

Let us show that the bad set is, in fact, the set of all (n, k) codes for which GBD problem
can be efficiently solved using auxiliary input of polynomial size. We begin by identifying
two important subsets constituting the bad set. The first subset consists of the codes for
which GBD is easy given only a description of the code (e.g. some good LDPC codes).
This subset (call it D′) is handled in Lemma 1 below. Secondly, we note that although the

12It would be tempting to argue that the existence of such the malicious sender algorithm implies some bad
thing, like a distinguisher for public keys. However, it does not seems to be easy.
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public key set PK does not intersect much with D′ (by Assumptions 1 and 2), it must also
be included into the bad set. This is because R̃ can compute trapdoors for some pk ∈ PK
even during the protocol execution (hence making them easy-to-decode), while the bad set
must be fixed prior to it (as required in Property 3, Definition 3). The easiest solution is to
conservatively include the whole of PK into the bad set. This reasoning led us to introducing
the trapdoor-GBD codes (which include PK as the special case) – they constitute the second
subset.

Lemma 1. Under Assumption 2, |D′|/|D| is negligible.

Proof. The opposite suggests that with non-negligible probability, for H as in Assumption 2
which is chosen uniformly at random, its corresponding generating matrix H⊥ ∈ D′. In
other words, such the code is efficiently decodable, a contradiction.

Fact 3. |PK|/|D| is negligible.

Proof. Let us estimate the number of the McEliece public keys. According to [38, Sec-
tion 2.2.2.], the number of the (Goppa) generator polynomials can be estimated as 2mt/t =
2n−k. Each of them can be permuted (n! variants) to yield the public key.13 Remember that
m = log n and let us for simplicity take k = n −mt. We have the following upper bound
|PK| < n! ·2n−k = n! ·2−t log n = O(nn) ·2−t log n = 2O(n log n) ·2−t log n = 2O((n−t) log n). The
second equality follows by the Stirling approximation. Clearly, the latter number constitutes
a negligible fraction of |D| = 2nk.

As for the trapdoor-GBD codes in general, note that any large code family in this class is
a potential candidate to be used in a coding based PKC. The search for such the candidates
was not very successful so far as noted in [9, Section 1.1]. Although finding a trapdoor-GBD
family of the non-negligible size (or superpolynomially many ”small” families) does not seem
to be an easy task, their existence do not contradict to Assumption 2. Hence, we employ
Assumption 3 to simplify our security argument.

We conclude that Lemma 1 and Fact 3 along with Assumption 3 imply the sender-
security.

Remark 5. Now it is a right time to explain why the constant-round interactive hashing of
[7] cannot be directly used in our protocol. Their security proof requires a priori knowledge
of the upper bound on the bad set size. In our case, this translates into the explicit upper
bound on the number of codes in the bad set, which seems to be hard to obtain.

Receiver-security. By Property 2, Definition 3, S̃ cannot tell R’s input among W0 and
W1, hence IH does not help him. Moreover, if S̃ efficiently recognized a public key among
(W0 + R,W1 + R), this would contradict to Assumption 1.

Note that no matter what S̃ sends in Step 4, c will be defined by R as c = {i|Wi = pk+R},
where Wi, i ∈ {0, 1} follows lexicographic order. Such c is out of S̃’s control, since R is not
known to him (by the hiding property of commitment) during the IH execution.

We conclude that the views of S̃ are indistinguishable for either value of c, when the
protocol is accepted.

Remark 6. We emphasize that we have no evidence that some proof similar to that of
[30] will not work in our case. However in this work, we are mostly after presenting the
concept. Thus, we prefer to go by Assumption 3 rather than constructing the whole proof in
the computational IH scenario.

13For simplicity, we disregard the permuted polynomials, which produce the same code, since there are are
only polynomially many of them [38, Section 2.2.2.].
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One argument for constructing the aforementioned new proof is as follows. In Protocol 1,
it might be possible to substitute the McEliece PKC with any PKC having the public
key whose binary representation is: 1) indistinguishable from random; 2) “sparse” in the
sense of Fact 3. Unfortunately, the potential existence of “trapdoor-GBD” keys (along
with necessity to include the whole public key space into the bad set) makes the analysis
somewhat complicated and contrived. Proving a statement to the effect “if computationally
bounded OT-receiver in Protocol 1 learns both inputs, then he also successfully cheats in IH”
would substantially simplify the security proof, and would allow for the above mentioned
generalization.

In the next section, we take another way around this problem. We explore limits of
our approach by employing C-IH and trapdoor functions with special properties. These
properties give us an insight as for which cryptosystems are admissible for our construction.

4 Protocol Using Special Trapdoor Functions

Intuition. The receiver uniformly samples a function from SC-TDF along with its trapdoor
and inputs the function’s index (but not the trapdoor) into C-IH (in this section, we call
it “IH” for brevity), resulting in two function indices on the output. The sender uses
these functions to encrypt his inputs, respectively (in addition, indicating which function
was used for which input). The sender-security is guaranteed computationally since the
cheating receiver is unlikely to find a trapdoor for both SC-TDF’s. The receiver-security
is guaranteed information-theoretically since for the cheating sender, either function looks
equally likely to be chosen by the receiver, according to the hiding property of IH.

Let F be a collection of SC-TDF (according to Definition 2) with index set I. Define
by fh

i (b) a hardcore bit encryption (as described in Section 2) of the bit b with a function
fi ∈ F (determined by an index i ∈ I) as trapdoor function. IH is employed in a blackbox
manner. When an index i ∈ I is to be input into IH, its binary representation is used.

The sender S has inputs b0, b1 ∈R {0, 1}, the receiver R has no input. Note that, as in
the previous protocol, R plays the role of an IH-sender.

Protocol 2.

1. R generates i ∈R I.
R inputs i to IH, both S and R obtain (i0, i1) as output.
The outputs are assigned to ij according to lexicographic order.

2. For j = 0, 1 : S sends (ij , fh
ij

(bj)).
R computes c = {j|i = ij} and decrypts bc.

Note that in Step 2, in order to save on communication, S may send some (short)
identifiers instead of ij (say, a value of the least significant bit where i0 and i1 differ).

Proposition 2. Protocol 2 is a secure implementation of 1-2 OT according to Definition 6
with information-theoretic receiver-security, assuming that SC-TDF exist and the receiver
only cheats passively.

Proof. Correctness. When both players are honest, one of the IH-outputs is indeed the in-
dex i by the IH-correctness property. Then in Step 2, R correctly identifies ic and successfully
decrypts the corresponding sender’s input bc.
Sender-security. By Property 1, Definition 2, any input and output of IH is an index in
I. Due to the use of hardcore bit encryption, R̃ must invert both fic

and fi1−c
in order to

learn both b0 and b1.
Since R̃ follows the protocol, his input to (and the first output of) IH is i = ic for

some c ∈ {0, 1}. The second output i1−c will be uniformly distributed in I \ ic according
to Property 1, Definition 3. Then, by the hard-to-invert property of TDF (Property 2,
Definition 1), R̃ cannot invert fi1−c

with non-negligible probability. This concludes the
sender-security proof.
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Receiver-security. Note that i ∈R I, therefore by Property 3, Definition 4, even compu-
tationally unbounded S̃ cannot tell R’s input among i0 and i1.

No matter what S̃ actually sends in Step 4, c will be defined by R as c = {j|i = ij},
where ij , j ∈ {0, 1} follow lexicographic order. Such c is out of S̃’s control, since the latter
cannot tell apart i0 and i1. We conclude that the views of S̃ are indistinguishable for either
value of c, when the protocol is accepted.

It is worth noting that the abstract nature of TDF is essential for the above construction
to work. An actual candidate TDF (a public key cryptosystem) cannot be plugged into our
scheme immediately. The main problem is to satisfy Property 1, Definition 1 which requires
efficient indexing of the public keys. On the positive side, one has freedom of choosing
a particular binary representation for public keys to be input to IH. This might help in
constructing a more efficient implementation.

5 Possible Extensions

Next, we discuss possible extensions to our work.
Security Against Actively Cheating Receiver In Protocol 2. Note that the existence
of OWP from index set I to trapdoor set T (Property 3, Definition 2) has never been used
in the sender-security proof of Proposition 2. This is because it is tailored to provide an
active security against receiver in Protocol 2. Unfortunately, the protection can be provided
only in the limited sense: one can guarantee that R̃ does not learn trapdoors for both fi0

and fi1 . This is weaker than to guarantee that R̃ cannot invert both fi0 and fi1 . Below is
an intuition behind the proof of the above fact.

Consider the proof of the binding property (i.e. Property 2, Definition 4) in [30] and
compare it to our case. Remember that the IH-sender is assumed computationally bounded.
The authors construct an unconditionally hiding commitment using OWP and prove that
if the sender can successfully cheat, then he can also invert the underlying OWP. More
precisely, their protocol [30, Section 3.1] is constructed in such a way that successfully
cheating IH-sender will surely be able to invert OWP in the scenario described in Property 2,
Definition 4. In our protocol, the input to IH is an index of SC-TDP. Intuitively, our scenario
is related to the one above: the OT-receiver (who is the sender in IH) must not be able to
compute a trapdoor for both fi0 and fi1 . We do not know how to prove the latter statement
directly if only a standard TDF is assumed. Hence, we take a way around by constructing
a special (and somewhat contrived) trapdoor function SC-TDF (see Definition 2) in which
the relation between indices and trapdoors is OWP and so the proof of [30] applies directly.
Alternative SC-TDF Based Protocol. We believe that communication efficiency of our
second construction (taking into account the cost of IH) can be improved, if we replace the
McEliece PKC with SC-TDF in the protocol [8] in the trivial manner. The formal proof
of this claim is postponed to the full version of this paper. Let us now compare the two
constructions, calling the new scheme Protocol 2-a.

In contrast to Protocol 2, Protocol 2-a does not involve IH and admits a probabil-
ity of sender-security failure which decreases exponentially fast in the number of honest-
protocol iterations. Moreover, Protocol 2-a requires commitments. If one wants to have the
information-theoretical receiver-security, the scheme [21] can be used, although it is quite in-
volving, and hence it is unclear whether any savings in communication cost can be achieved.
However, if computational receiver-security is in order, then an efficient construction [28]
can be employed.

The sender-security proof is simpler in Protocol 2-a, either fi0 or fi1 is guaranteed to be
uniformly chosen by construction. Hence, the hard-to-invert property is directly applicable
(see the corresponding subsection in the proof of Proposition 2).

Protocol 2-a compares quite favorably to [17, 4] in terms of communication complexity.
The main challenge for improving it is to reduce its computational assumptions, preferably
all the way down to standard TDF.
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Possible SC-TDP Candidate. We believe but do not prove formally that the ElGamal
PKC [13] can be considered as a SC-TDP candidate. Let us present our intuition behind this
claim. First, we very briefly sketch the key generation algorithm. Let G be a multiplicative
cyclic group of a (large) prime order q with a generator g. The key generation algorithm picks
x ∈R {0, . . . , q−1}, computes h = gx mod q and outputs the public key pk = (G, q, g, h) and
the secret key x. From now on, we will refer to only h as the “public key”. The ElGamal
function is a well-known TDF candidate. Let us show that it also satisfies the “special
contrivance” properties according to Definition 2, starting with the second one. Indeed,
both the index and the trapdoors sets can be represented by {0, . . . , q − 1}. And indeed,
the function computing the public keys from elements of G is an OWP. The problem seems
to be the first property of Definition 2 demanding the succinct representation of G. The
number p must be prime, hence the binary representation will certainly have some invalid
encodings.

In the context of IT-IH, the problem of set encoding was addressed in [3] (using [5]) and
later developed in [7] and [37, Section 4.2.1]. Showing that the ElGamal PKC is a SC-TDF
candidate will amount to arguing that the proof of [30] can accommodate some particular
encoding of {0, . . . , q − 1} to binary strings. The challenge comes from the fact that such a
representation either must contain invalid encodings or some (or all) of set elements will be
contained more than once.

The ultimate goal of investigation on an appropriate public key encoding would be to
show that a standard TDF with a “dense” (but not succinct) index set in {0, 1}n can be
used in Protocol 2.
String Oblivious Transfer. Note that up to log k hardcore bits (where k is the range
size of the underlying trapdoor function) are available in the hardcore bit encryption [15].
Hence, our constructions can be easily generalized to OT of short strings instead of bits.

If one needs obliviously transfer bit strings of arbitrary length, then either generic con-
versions [35, 12, 23] (which provide for indistinguishability of encryptions) can be used14 or
generic reductions from Bit OT to String OT can be employed (see [37] for the survey and
some new constructions).

6 Open Questions

Interactive Hashing. It is interesting to look for new natural definitions of IH in cryptog-
raphy. Another important question is efficiency of IH protocols. Although it was shown in
[19] that based on OWP in blackbox manner, IH must have Ω(n/ log n) rounds, this question
remains open for specific computational assumptions. Moreover, in our application, com-
mitments are used along with IH. Providing an IH protocol with reduced communication
complexity (possibly using commitments) will automatically improve our protocols as well.
Upgrading Security of Protocol 2. Proving security against actively cheating receiver.
Indistinguishable Public Key PKC’s. It is interesting to generalize Protocol 1 for the
case of any PKC with the public key indistinguishable from random (e.g., lattice based
PKC’s). To this effect, it would be interesting to show a rigorous proof of security showing
that the OT-receiver, who adaptively pre-compute trapdoors, does not pose a threat.
SC-TDF Candidates. Can any PKC qualify as such?
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Appendix A Interactive Hashing Protocol

The following protocol was introduced in [32]. Let w be a n-bit string that the sender S
wishes to transmit to the receiver R. All operations take place in the binary field F2.
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Protocol 3. Interactive Hashing

1. R chooses a (n − 1) × n matrix Q uniformly at random among all binary matrices of
rank n− 1. Let qi the i-th query, consisting of the i-th row of Q.

2. For 1 ≤ i ≤ n− 1 do:

(a) R sends query qi to S.
(b) S responds with ci = qi · w.

3. Given Q and c (the vector of Rs responses), both parties compute the two values of
w consistent with the linear system Q · w = c. These solutions are labeled w0, w1

according to lexicographic order.

A proof that the above protocol is IT-IH (i.e. satisfies Definition 3) can be found in [37,
Section 2.3]. A slight modification of Protocol 3 is shown to satisfy Definition 4 (i.e. to be C-
IH) in [30], with a tighter security proof presented in [20] (along with several generalizations).
Its only difference compared to Protocol 3 is the matrix Q chosen in a canonical way.
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